Data Flow Analysis

Recall: Data Flow Analysis

- A framework for proving facts about program

15-745
3/24/09

- Reasons about lots of little facts
- Little or no interaction between facts
- Works best on properties about how program computes
- Based on all paths through program
- including infeasible paths

Recall: Data Flow Equations

- Let s be a statement
- $\operatorname{succ}(\mathrm{s})=\{$ immediate successor statements of s$\}$
- Pred(s) $=\{$ immediate predecessor statements of s$\}$
- In(s) program point just before executing s
- Out(s) = program point just after executing s
- $\operatorname{In}(s)=\cap_{s^{\prime} 5 \text { pred(s) }} \operatorname{Out}\left(s^{\prime}\right) \quad$ must
- Out(s) = Gen(s) ^ (In(s) - Kill(s)) forward
- Note these are also called transfer functions

Gen(s) = set of facts true after/before s that weren't true before/after

Kill(s) = set of facts no longer true after/before s

Forward Data Flow, Again

Out(s) = Top for all statements s
$\mathrm{W}:=$ \{ all statements $\} \quad$ (worklist)
Repeat
Take s from W

- temp := $\mathrm{f}_{\mathrm{s}}\left(\Pi_{s^{\prime} \in \operatorname{pred}(s)}\right.$ Out($\left.\left.s^{\prime}\right)\right)$ (f_{s} monotonic transfer fn)
- if (temp != Out(s)) \{
- Out(s) := temp
- $W:=W^{\wedge} \operatorname{succ}(s)$
- $\}$
until $W=\varnothing$

What we would like to know:

Does it terminate?
Is it accurate?
How long does it take?

Partial Orders

-A partial order is a pair ($\mathrm{P}, \%$) such that
\bullet - \# P \& P
$\bullet \%$ \#s reflexive: $\mathrm{x} \% \mathrm{x}$
$\bullet \%$ is anti-symmetric: $x \% y$ and $y \% x$ implies $x=y$
$\bullet \%$ fis transitive: $x \% y$ and $y \% z$ implies $x \% z$

Data Flow Facts and lattices

Typically, data flow facts form a lattice
Example, Available expressions

Lattices

- A partial order is a lattice if x and w are defined so that
- x is the meet or greatest lower bound operation
- $x \times y \% x$ and $x \times y \% y$
- If $z \% x$ and $z \% y$ then $z \% x x y$
- w is the join or least upper bound operation
- $x \% x$ w y and $y \% x$ w y
- If $x \% z$ and $y \% z$, then $x w y \% z$

Lattices (cont.)

A finite partial order is a lattice if meet and join exist for every pair of elements

A lattice has unique elements bot and top such that
$X x B=B \quad X w B=x$
$\mathrm{xxA}=\mathrm{x} \quad \mathrm{xwA}=\mathrm{A}$
In a lattice
$x \% y$ iff x x $y=x$
$x \% y$ iff $x w y=y$

Useful Lattices

- $\left(2^{\mathrm{S}}, \gg\right)$ forms a lattice for any set S .
- 2^{S} is the powerset of S (set of all subsets)
- If ($\mathrm{S}, \%$) is a lattice, so is (S, \dot{i})
- i.e., lattices can be flipped
- The lattice for constant propagation

Termination

-We know algorithm terminates because

- The lattice has finite height
- The operations to compute In and Out are monotonic
- On every iteration we remove a statement from the worklist and/or move down the lattice.

Lattices (P, \leq)

Available expressions

- $P=$ sets of expressions
- $\mathrm{S} 1 п \mathrm{~S} 2=\mathrm{S} 1 \cap \mathrm{~S} 2$
- Top = set of all expressions

Reaching Definitions

- $P=$ set of definitions (assignment statements)
- S 1 п $\mathrm{S} 2=\mathrm{S} 1^{\wedge} \mathrm{S} 2$
- Top = empty set

Fixpoints

We always start with Top

- Every expression is available, no defns reach this point
- Most optimistic assumption
- Strongest possible hypothesis
- = true of fewest number of states

Revise as we encounter contradictions

- Always move down in the lattice (with meet)

Result: A greatest fixpoint

Lattices (P, \leq), cont'd

Live variables

- $P=$ sets of variables
- S1 п S2 = S1 ^ S2
- Top = empty set

Very busy expressions

- $P=$ set of expressions
- S1 п S2 = S1 ก S2
- Top = set of all expressions

Forward vs. Backward

```
Out(s) = Top for all s
W := { all statements }
repeat
    Take s from W
    temp:= }\mp@subsup{\textrm{f}}{\textrm{s}}{(}\mp@subsup{\Pi}{\mp@subsup{\textrm{s}}{}{\prime}\in\operatorname{pred}(\textrm{s}}{
    if (temp != Out(s)) {
        Out(s) := temp
        W := W ^ succ(s)
        }
until W = \emptyset
```

$\ln (\mathrm{s})=$ Top for all s W := \{ all statements \} repeat

Take s from W
temp := $\mathrm{f}_{\mathrm{s}}\left(\mathrm{\Pi}_{\mathrm{s}^{\prime} \in \operatorname{succ}(\mathrm{s})} \ln \left(\mathrm{s}^{\prime}\right)\right)$
if (temp != $\ln (\mathrm{s})$) $\{$
$\ln (\mathrm{s}):=$ temp
$\mathrm{W}:=\mathrm{W}^{\wedge} \operatorname{pred}(\mathrm{s})$
\}
until $\mathrm{W}=\varnothing$

Termination Revisited

How many times can we apply this step：
temp $:=\mathrm{f}_{\mathrm{s}}\left(\Pi_{\mathrm{s}^{\prime} \in \operatorname{pred}(\mathrm{s})} \operatorname{Out}\left(\mathrm{s}^{\prime}\right)\right)$
if（temp $!=\operatorname{Out}(\mathrm{s}))\{\ldots\}$
Claim：Out（s）only shrinks
－Proof：Out（s）starts out as top
－So temp must be \leq than Top after first step
－Assume Out（ s^{\prime} ）shrinks for all predecessors s^{\prime} of s
－Then $\Pi_{s^{\prime} \in \operatorname{pred}(s)}$ Out（s＇）shrinks
－Since f_{s} monotonic，$f_{s}\left(\Pi_{s^{\prime} \in \operatorname{pred}(s)}\right.$ Out（ $\left.\left.s^{\prime}\right)\right)$ shrinks

Termination Revisited（cont＇d）

A descending chain in a lattice is a sequence
－ x 0 こ x 1 巳 x 2 コ．．．
The height of a lattice is the length of the longest descending chain in the lattice

Then，dataflow must terminate in $\mathrm{O}(\mathrm{nk})$ time
－ $\mathrm{n}=\#$ of statements in program
－$k=$ height of lattice
－assumes meet operation takes $\mathrm{O}(1)$ time

Least vs．Greatest Fixpoints

Dataflow tradition：Start with Top，use meet
－To do this，we need a meet semilattice with top
－meet semilattice＝meets defined for any set
－Computes greatest fixpoint

Denotational semantics tradition：Start with Bottom，use join
－Computes least fixpoint

Distributive Data Flow Problems

By monotonicity，we also have

$$
f(x \sqcap y) \leq f(x) \sqcap f(y)
$$

A function f is distributive if

$$
f(x \sqcap y)=f(x) \sqcap f(y)
$$

Benefit of Distributivity

Joins lose no information

```
    k(h(f(T) пg(T)))=
k(h(f(T)) пh(g(T)))=
k(h(f(T))) }~k(h(g(T))
```


Accuracy of Data Flow Analysis

Ideally, we would like to compute the meet over all paths (MOP) solution:

- Let f_{s} be the transfer function for statement s
- If p is a path $\left\{s_{1}, \ldots, s_{n}\right\}$, let $f_{p}=f_{n} ; \ldots ; f_{1}$
- Let path(s) be the set of paths from the entry to s

$$
\operatorname{MOP}(s)=\Pi_{p \in \operatorname{path}_{(s)}} f_{p}(\top)
$$

If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

Analyses of how the program computes

- Live variables
- Available expressions
- Reaching definitions
- Very busy expressions

All Gen/Kill problems are distributive

A Non-Distributive Example

Constant propagation

In general, analysis of what the program computes is not distributive

Order Matters

Assume forward data flow problem

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the CFG
- Let k be the height of the lattice

If G acyclic, visit in topological order

- Visit head before tail of edge

Running time $\mathrm{O}(|E|)$

- No matter what size the lattice

Flow-Sensitivity

Data flow analysis is flow-sensitive

- The order of statements is taken into account
- i.e., we keep track of facts per program point

Alternative: Flow-insensitive analysis

- Analysis the same regardless of statement order
- Standard example: types

Order Matters - Cycles

If G has cycles, visit in reverse postorder

- Order from depth-first search

Let $\mathrm{Q}=$ max \# back edges on cycle-free path

- Nesting depth
- Back edge is from node to ancestor on DFS tree

Then if ; $x . f(x) \% x \quad$ (sufficient, but not necessary)

- Running time is $\mathrm{O}((\mathrm{Q}+1)|\mathrm{E}|)$
- Note direction of req't depends on top vs. bottom

Terminology Review

Must vs. May

- (Not always followed in literature)

Forwards vs. Backwards
Flow-sensitive vs. Flow-insensitive
Distributive vs. Non-distributive

Another Approach: Elimination

Recall in practice, one transfer function per basic block
Why not generalize this idea beyond a basic block?

- "Collapse" larger constructs into smaller ones, combining data flow equations
- Eventually program collapsed into a single node!
- "Expand out" back to original constructs, rebuilding information

Elimination Methods: Conditionals

Elimination Methods: Loops

$f_{\text {while }}=f_{\text {head }} \Gamma$
$f_{\text {head }} \circ f_{\text {body }} \circ f_{\text {head }} \sqcap$
$f_{\text {head }} \circ f_{\text {body }} \circ f_{\text {head }} \circ f_{\text {body }} \circ f_{\text {head }} \sqcap \cdots$

Elimination Methods: Loops (cont)

```
Let fi}= fofo... of (i times
    - fol= id
Let
```


Need to compute limit as j goes to infinity

- Does such a thing exist?

Observe: $\mathrm{g}(\mathrm{j}+1) \leq \mathrm{g}(\mathrm{j})$

Forming regions: T1-T2 Reduction
Oldest and simplest
Can reduce all well-
 structured graphs!
only requirement for T2:
second block has
single predecessor

T1-T2 Reduction

Oldest and simplest
Can reduce all wellstructured graphs!

But...cannot reduce irreducible graphs!
--end up w/ "limit flow graph"

T1-T2 Example

Hierarchy can seem strange....
(out edges from new region get merged - not shown)

T1-T2 Example

Hierarchy can seem strange....

T1-T2 Example

Hierarchy can seem strange....

T1-T2 Example

Hierarchy can seem strange....

Why?

An alternate approach to dataflow analysis
-before, we iterated on basic blocks
Now, each time we form a region -> form a composite transfer function that summarizes the effect of that region

Dataflow Analysis on the Control Tree

- After all regions are formed there is just one region for the whole proc, i.e., you get one transfer function for the whole proc
- But what good is it to have dataflow info at the exit node?
-The rest of the story: you also build functions for distributing the results back down the control tree to each region, eventually to the leaves (basic blocks)

Details...

How to calculate $\mathrm{fB} \bullet f \mathrm{f}$?

Well, we have already done this when computing the transfer function of a block that is a sequence of instructions...but to spell it out:
$f A(x)=$ GenA $U(x-$ KillA $)$

$\mathrm{fB}(\mathrm{fA}(\mathrm{x}))=\operatorname{GenB} U(\mathrm{fA}(\mathrm{x})-\mathrm{KillB})$
$=\operatorname{GenB} U(($ GenA $\cup(x-$ Kill $A))-$ KillB $)$
$=\underline{\text { Gen } B} \cup($ Gen $A-$ KillB $) \cup(x-\underline{\text { Kill } A \cup K i l l B)})$

More Sample Calculations

$$
\begin{aligned}
\mathrm{fR}(\mathrm{x}) & =\mathrm{fB}(\mathrm{fA}(\mathrm{x}))^{\wedge} \mathrm{fA}(\mathrm{x}) \\
& =[(\mathrm{fB} \bullet \mathrm{fA}) \wedge \mathrm{fA}](\mathrm{x}) \\
& =[(\mathrm{fB} \wedge \mathrm{I}) \bullet \mathrm{fA}](\mathrm{x})
\end{aligned}
$$

\wedge is the meet operator

- gets just slightly more complicated for flow-sensitive transfer functions where $f A_{\text {then }}$ is different than $f A_{\text {else }}$
- distribution caluclation (coming down the control tree) is obvious

More Sample Calculations

$$
\begin{gathered}
y=f R(x)=f A(x) \wedge[f A \bullet f B \bullet f A](x) \wedge \ldots \\
=\left[f A \bullet(f B \bullet f A)^{*}\right](x)
\end{gathered}
$$

* is Kleene ("clay-nee") closure:

$$
f^{*}=I \wedge f \wedge f \bullet f \wedge f \bullet f \bullet f \wedge \ldots
$$

top-down calculations:

- in $(f A)=\left[(f B \bullet f A)^{*}\right](x)$
- in(fB) $=\mathrm{fA}(\mathrm{in}(\mathrm{fA}))$

Example closure for gen/kill

$\left.f R(x)=I \quad \sqcap\left(\Pi_{n>0} f\right)^{n}\right)$
Suppose, $f(x)=$ gen $\cup(x-$ kill $)$
[E.g., reaching defs]

$f^{2}(x)=f(f(x))$
$=$ gen $\cup(($ gen $\cup(x-$ kill $))-$ kill $)$
$=$ gen $\cup(x-k i l l)$
So, $f R(x)=I \cup($ gen $\cup(x-$ kill $))$

$$
=x \cup \text { gen }
$$

Non-Reducible Flow Graphs

Elimination methods usually only applied to reducible flow graphs

- Ones that can be collapsed
- Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs

Comments

Can also do backwards elimination

- Not quite as nice (regions are usually single entry but often not single exit)

For bit-vector problems, elimination efficient

- Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than iteration

- Not really the case
- But, showing new signs of life for JIT

