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Recall: Data Flow Analysisy

• A framework for proving facts about programp g p g

• Reasons about lots of little facts

• Little or no interaction between facts

• Works best on properties about how program computes

• Based on all paths through program

• including infeasible paths

Recall: Data Flow Equationsq
• Let s be a statement

• succ(s) = {immediate successor statements of s}succ(s)  {immediate successor statements of s}
• Pred(s) = {immediate predecessor statements of s}
• In(s) program point just before executing s

Out(s)  program point just after executing s• Out(s) = program point just after executing s

• In(s) = ∩ s’ � pred(s) Out(s’) must

• Out(s) = Gen(s) � (In(s) – Kill(s))

• Note these are also called transfer functions

forward

G ( )  t f f t  t  ft /b f th t Gen(s) = set of facts true after/before s that 
weren’t true before/after

ill( ) f f l f /b fKill(s) = set of facts no longer true after/before s

forward/backward

Forward Data Flow, Again, g
Out(s) = Top       for all statements s                                     

W := { all statements }     (worklist)W := { all statements }     (worklist)

Repeat

Take s from W

• temp := fs( s′ pred(s) Out(s′))  (fs monotonic transfer fn)

• if (temp != Out(s)) {

• Out(s) := temp

W :  W � succ(s)• W := W � succ(s)

• }

until W = 



What we would like to know:

Does it terminate?Does it terminate?

Is it accurate?Is it accurate?

How long does it take?How long does it take?

Data Flow Facts and lattices

Typically  data flow facts form a latticeTypically, data flow facts form a lattice

Example, Available expressions

“top”

“bottom”

Partial Orders

•A partial order is a pair (P  � ) such that •A partial order is a pair (P, � ) such that 

• ��� P � P

• ��is reflexive: x � x

• ��is anti-symmetric: x � y and y � x implies y y y p
x = y

• ��is transitive: x � y and y � z implies x � zy y p

Lattices

• A partial order is a lattice if � and 	 are defined so that

• � is the meet or greatest lower bound operation
x � y � x and x � y � y• x � y � x and x � y � y

• If z � x and z � y then z � x � y

• 	 is the join or least upper bound operation
• x � x 	 y and y � x 	 y 

If x � z and y � z  then x y � z• If x � z and y � z, then x 	 y � z



Lattices (cont.)( )

A finite partial order is a lattice if meet and join exist 
f   i  f l t

p j
for every pair of elements

A lattice has unique elements bot and top such that

x � 
 = 
 x 	 
 =x

           x � � = x       x 	 � = �

In a lattice

x � y iff x � y = x

  iff    x � y iff x 	 y = y

Useful Lattices
• (2S , � ) forms a lattice for any set S.

2S i  th  t f S ( t f ll b t )• 2S is the powerset of S (set of all subsets)

• If (S, � ) is a lattice, so is (S,� )

• i.e., lattices can be flipped

• The lattice for constant propagation

�

1 2 3 …

�




Monotonicityy

• A function f on a partial order is monotonic ifp

x � y implies f(x) � f(y)

• Easy to check that operations to compute In and    Out are 
monotonic

• In(s) = s’ � pred(s) Out(s’)p ( )

• Temp = Gen(s) � (In(s) – Kill(s))

• Putting the two together

• Temp = fs ( s’ � pred(s) Out(s’))

Termination

•We know algorithm terminates because•We know algorithm terminates because

•The lattice has finite height

•The operations to compute In and Out are 
monotonic

•On every iteration we remove a statement 
from the worklist and/or move down the 
l ttilattice.



Lattices (P, ≤)( , )

Available expressionsp

• P = sets of expressions

• S1 S2 = S1 ∩ S2

• Top = set of all expressions

Reaching Definitions

• P = set of definitions (assignment 
statements)

• S1 S2 = S1 � S2• S1 S2 = S1 S2

• Top = empty set

Fixpointsp

We always start with Topy p

• Every expression is available, no defns reach 
this point

M t ti i ti  ti• Most optimistic assumption

• Strongest possible hypothesis
• = true of fewest number of states

Revise as we encounter contradictions

• Always move down in the lattice (with meet)Always move down in the lattice (with meet)

Result:  A greatest fixpoint

Lattices (P, ≤), cont’d( , ),

Live variablesLive variables

• P = sets of variables

S1 S2  S1 � S2• S1 S2 = S1 � S2

• Top = empty set

Very busy expressions
• P = set of expressions• P = set of expressions

• S1 S2 = S1 ∩ S2

• Top = set of all expressions• Top  set of all expressions

Forward vs. Backward
Out(s) = Top  for all s
W := { all statements }

In(s) = Top  for all s
W := { all statements }W :  { all statements }

repeat
Take s from W
temp := f ( ′ d( ) Out(s′))

W :  { all statements }
repeat

Take s from W
temp := f ( ′ ( ) In(s′))temp :  fs( s′ pred(s) Out(s ))

if (temp != Out(s)) {
Out(s) := temp
W := W � succ(s)

temp :  fs( s′ succ(s) In(s ))
if (temp != In(s)) {
In(s) := temp
W := W � pred(s)W :  W succ(s)

}
until W = 

W :  W pred(s)
}

until W = 



Termination Revisited
How many times can we apply this step:

temp := f ( Out(s′))temp := fs( s′ pred(s) Out(s ))

if (temp != Out(s)) { ... }

Claim:  Out(s) only shrinks
• Proof:  Out(s) starts out as top

– So temp must be ≤ than Top after first step

• Assume Out(s′) shrinks for all predecessors s′ of s

• Then s′ pred(s) Out(s′) shrinks

Si  f t i  f ( O t( ′)) h i k• Since fs monotonic, fs( s′ pred(s) Out(s′)) shrinks

Termination Revisited (cont’d)Termination Revisited (cont d)

A descending chain in a lattice is a sequenceA descending chain in a lattice is a sequence

• x0 x1 x2 ...

Th  h i h f  l i  i  h  l h f h  The height of a lattice is the length of the 
longest descending chain in the lattice

Th  d t fl  t t i t  i  O( k) tiThen, dataflow must terminate in O(nk) time

• n = # of statements in program

• k = height of lattice

• assumes meet operation takes O(1)
timetime

Least vs. Greatest Fixpointsp

Dataflow tradition:  Start with Top, use meetp,

• To do this, we need a meet semilattice with top

• meet semilattice = meets defined for any set

• Computes greatest fixpoint

Denotational semantics tradition:  Start with Bottom, use join

• Computes least fixpointp p

Distributive Data Flow Problems

By monotonicity, we also haveBy monotonicity, we also have

A function f is distributive ifA function f is distributive if



Benefit of Distributivity

Joins lose no information

y

Joins lose no information

Accuracy of Data Flow Analysis

Ideally, we would like to compute the meet over all paths 

y y

y, p p
(MOP) solution:

• Let fs be the transfer function for statement s

If i   th {   }  l t f f f• If p is a path {s1, ..., sn}, let fp = fn;...;f1
• Let path(s) be the set of paths from the entry to s

If a data flow problem is distributive, then solving the data 
flow equations in the standard way yields the MOP solution

What Problems are Distributive?

Analyses of how the program computes

What Problems are Distributive?

Analyses of how the program computes

• Live variables

• Available expressions

• Reaching definitionsg

• Very busy expressions

All Gen/Kill problems are distributive/ p

A Non-Distributive Example

Constant propagation

p

Constant propagation

In general  analysis of what the In general, analysis of what the 
program computes is not distributive



Order Matters

Assume forward data flow problemp

• Let G = (V, E) be the CFG

• Let k be the height of the lattice

If G acyclic, visit in topological order

• Visit head before tail of edge

Running time O(|E|)g ( )

• No matter what size the lattice

Order Matters — Cycles
If G has cycles, visit in reverse postorder

• Order from depth-first search

y

Order from depth first search

Let Q = max # back edges on cycle-free pathLet Q  max # back edges on cycle free path

• Nesting depth

• Back edge is from node to ancestor on DFS tree

Then if   x. f(x)� x      (sufficient, but not necessary)

• Running time is O((Q + 1) |E|)
• Note direction of req’t depends on top vs. bottom

Flow-Sensitivity
Data flow analysis is flow-sensitive

• The order of statements is taken into 

y

• The order of statements is taken into 
account

• i.e., we keep track of facts per program 
pointpoint

Alternative:  Flow-insensitive analysisAlternative:  Flow insensitive analysis

• Analysis the same regardless of statement 
order

• Standard example:  types

Terminology Review

Must vs. May

gy

y

• (Not always followed in literature)

Forwards vs. BackwardsForwards vs. Backwards

Flow-sensitive vs. Flow-insensitive

Distributive vs. Non-distributive



Another Approach:  Elimination

Recall in practice, one transfer function per basic block

pp

p , p

Why not generalize this idea beyond a basic block?

• “Collapse”  larger constructs into smaller ones  • Collapse   larger constructs into smaller ones, 
combining data flow equations

• Eventually program collapsed into a single node!

• “Expand out” back to original constructs, 
rebuilding information

Elimination Methods:  Conditionals

Elimination Methods:  Loopsp Elimination Methods: Loops (cont)

Let f i = f o f o ... o f (i times)( )

• f 0 = id

LetLet

Need to compute limit as j goes to infinity

• Does such a thing exist?

Observe:  g(j+1) ≤ g(j)



Forming regions: T1-T2 Reduction

Oldest and simplest

Can reduce all well-
structured graphs!

T1: self loop

g p

T2: two-block sequenceonly requirement for 
T2:

second block hassecond block has

single predecessor

T1-T2 Reduction

Oldest and simplest

Can reduce all well-
structured graphs!

T1: self loop

structured graphs!

T2: two-block sequence

But...cannot reduce  
irreducible graphs!g p
--end up w/ “limit flow graph”

T1-T2 Example

Hierarchy can seem 
strange....g

T1-T2 Example

Hierarchy can seem 
strange....g

T2

(out edges  from new region
get merged – not shown)get merged not shown)



T1-T2 Example

Hierarchy can seem 
strange....g

T2

T1-T2 Example

Hierarchy can seem 
strange....g

T1

T1-T2 Example

Hierarchy can seem 
strange....g

T2

Why?

An alternate approach to  dataflow analysis
before  we iterated on basic blocks–before, we iterated on basic blocks

Now, each time we form a region ->
form a composite transfer function that

summarizes the effect of that region

AfA( )

x

A

x

BfB( )

fA(x)
A

B
[fB•fA]( )

fB(fA(x)) =
fB(fA(x))

fB(fA(x)) 

[fB•fA](x)



Dataflow Analysis on the Control 
Tree
•After all regions are formed there is just one 
region for the whole proc, i.e., you get one region for the whole proc, i.e., you get one 
transfer function for the whole proc

•But what good is it to have dataflow info at the 
exit node?exit node?

•The rest of the story: you also build functions 
for distributing the results back down the 
control tree to each region  eventually to the control tree to each region, eventually to the 
leaves (basic blocks)

Details...

How to calculate fB•fA?

Well, we have already done this when 
computing the transfer function of a block that 
i    f i t ti b t t  ll it tis a sequence of instructions...but to spell it out:

AfA( )
x

fA(x) = GenA U  (x-KillA)
A

BfB( )

fA( )
fA(x)

fB(fA(x))

fB(fA(x)) = GenB U (fA(x) – KillB)
= GenB U ((GenA U (x-KillA)) – KillB)

 G B U (G A KillB) U (  (KillA U KillB))

fB(fA(x))

= GenB U (GenA – KillB) U (x – (KillA U KillB))

More Sample Calculations

fR(x) = fB(fA(x)) ^ fA(x)

= [ (fB•fA) ^ fA](x)x

fA

[ ( ) ]( )

= [ (fB ^ I) • fA ](x)
x

R

fB
^  is the meet operator

• gets just slightly more complicated
for flow-sensitive transfer functions

y

where fAthen is different than fAelse

• distribution caluclation (coming downdistribution caluclation (coming down
the control tree) is obvious

More Sample Calculations

  fR( )  fA( ) ^ [fA fB fA]( ) ^ x

fA

y = fR(x) = fA(x) ^ [fA•fB•fA](x) ^ ....

= [fA•(fB•fA)*] (x)

x
R

fB
*  is  Kleene (“clay-nee”) closure:

f* = I ^ f ^ f•f ^ f•f•f ^ ....

top-down calculations:
y

• in(fA) = [(fB•fA)*](x)

• in(fB) = fA(in(fA))in(fB)  fA(in(fA))



Example closure for gen/killp g /

fR(x) = I ( 0 fn)
x

RfR(x)  I ( n>0 f )

Suppose, f(x) = gen ∪ (x – kill)
fA

fB

R

pp ( ) g ( )
[E.g., reaching defs]

f2(x) f(f(x))
y

fB

f2(x) = f(f(x))
= gen ∪ ( (gen ∪ (x – kill)) – kill )
= gen ∪ (x – kill)g ( )

So, fR(x) = I ∪ (gen ∪ (x – kill))
= x ∪ gen

Non-Reducible Flow Graphs

Elimination methods usually only applied to 

p

y y pp
reducible flow graphs

• Ones that can be collapsed

St d d t t  i ld l  d ibl  fl  • Standard constructs yield only reducible flow 
graphs

Unrestricted goto can yield non-reducible graphs

Comments

Can also do backwards elimination

• Not quite as nice (regions are usually single entry
but often not single exit)

For bit-vector problems, elimination efficient

• Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than 
iteration

• Not really the case• Not really the case

• But, showing new signs of life for JIT


