15-745
Introduction

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based in part on slides by
Todd Mowry and Michael Voss

Introduction

* Why study compilers?

* Administriva

- Structure of a Compiler
- Optimization Example

Reference: Muchnick 1.3-1.5

Moore's Law

Moore's Law

Imagine: Computers that

Imagining it is hard enough,
achieving it requires a rethink of
the entire tool chain.

What is Behind Moore's Law?

- A lot of hard work!

* Two most important tools

- Parallelism
- Bit-level
* Pipeline
- Function unit
+ Multi-core

- Locality

1000.00

100.00

0.00

1.00

Performance: Ops/Sec

I @ mips

M iniel 266

Iniel 466

Intel pentinm
¥ intzaipantium 2
® nlzlpantium 3
4 intalpantium 4

Specint2000 4

W intel Hanium

= Alpha 21064
Alpha 21164
Alpha 21264
spare
SUpars parc
Sparced

HP P&

FowerPC
AMDKS
AMDKT

i

97 98 99 00

B5 &6 87 88 B89 90 91 9z 9% 04 G5 06

01 02 Horowitz

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

lecture 1, 15-745

©2002-9 Seth Copen Goldstein

6

SpecInt/Mhz

Performance: Ops/Clk * Clks/Sec

1000.00

100.00

0.00

M niel 286
Inlel 4B6
Intel pentivm

X intaipantium 2

& nialpantium 3

 Inlalpantinm 4

Specint2000

W intel Hanium

== Alpha 21064
Alpha 21164
Alpha 21264
spare
Suparsparc
Sparcid

Mips
HPPA
FowerPC
AMDKE
AMDKT

1.00

lecture 1, 15-745

i

B5 &6 87 28 B89 90 91 92 93 04

95 06

©2002-9 Seth Copen Goldstein

97 98 99

00 01 02 Horowitz

7

1.00 -

0.10 1

W intel 286

intel 486

intel pentium
HKintel pentium 2
® intel pentium 3
=+ intel pentium 4

®intelitanium

= Alpha 21064

Alpha 21164

Alpha 21264

Sparc

4 ***g:.l‘

SuperSparc
Sparc4
Mips

HPPA
Power PC
AMD Ke
AMDK7

0.01

lecture 1, 15-745

©2002-9 Seth Copen Goldstein

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

Horowitz

8

Another View of Moore's Law

1.E+03

1Ev02 M

~>=SRAM
-{~DRAM
=/x-CPU cycle

1.E+01

1.E+00

1980 1985 1990 1995 2000

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

The Computer System

Processor
Cache
| Memory-I/0 bus
I/0 I/0 I/0
Memory controller controller controller

lecture 1, 15-745

Network

i —_—)

©2002-9 Seth Copen Goldstein

The Memory Hierarchy

cache virtual memory
H
CPU | 88 la| 328 pemory| 8K @
H
e
Register Cache Memory Disk Memory
size: 200 B 32 KB/4MB 128 MB 20 6B
speed: 3ns 6 ns 60 ns 8 ms
$/Mbyte: $100/MB $.30/MB $0.005/MB
block size: 8B 328 8 KB

larger, slower, cheaper

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

lecture 1, 15-745

Compiler Writer's Job

- Improve locality

« Increase
parallelism

Tolerate latency
Reduce power

©2002-9 Seth Copen Goldstein

Why study compilers
* They are really amazing

Combines theory & practice

- CS is about abstraction
* Primary abstraction: programming language
* Compiler lowers PL to ISA (or further!)

- Compiler is a big system

Crucial for performance

- especially for modern processors

- practically part of the architecture

I bet: Everyone will write a compiler

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Why study compilers
They are really amazing

Combines theory & practice

- CS is about abstraction
* Primary abstraction: programming language
* Compiler lowers PL to ISA (or furtherl!)

- Compiler is a big system

Crucial for performance

- especially for modern processors

- practically part of the architecture

I bet: Everyone will write a compiler

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 14

What this course is about

High-level Low-level
language - Code language
Optimizer Generator |
(Eg..C) ; i (Eg. x86)
Sourc;e code IR IR ASM

(Eg., SSA)
* Theory and practice of modern optimizing compilers
* No lexing or parsing
* Focus on IR, back-end, optimizations
* Internals of today's (and tomorrow's) compilers

* Working with a real compiler

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Prerequisites

211 & 213 or the equivalent

Parts of 411 or the equivalent
- Basic compiler data structures

- Frames, calling conventions, def-use
chains, etc.

- Don't really care about front-end
Proficient in C/C++ programming
* Basic understanding of architecture

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 16

My Expectations

* You have the prerequisites
- If not come see me asap

- 3 assignments + a project
* Class participation

Grading

* Class participation ~20%
- Throughout the semester
- During paper presentations
- Project presentations

- THIS IS A MUST! * assignments ~20%

- Read text/papers before class * Project ~40%

- Attendance is essentially mandatory - Midterm ~20%
Assignments The Text

Intro to LLVM/Liveness
- Dependence analysis
Locality/Parallel transformations

All labs and the final project will be
done in a state-of-the-art research
compiler: LLVM

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

* No assigned text. Its really up to you.
* Muchnick, Advanced Compiler Design & Impl., 1997

« Allen, et.al., Optimizing Compilers for Modern Archs, 2001

« Copper, et.al., Engineering a compiler, 2003
* Aho, et.al., Compilers: ..., 2006

* Papers will be assigned

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Before we get too bored Full Employment Theorem

* More admin at the end, but first ... * No such thing as "The optimizing compiler”
- Why not?

- What exactly is an optimizing compiler? * There is always a befter optimizing

- An optimizing compiler transforms a program compiler, but ...

into an equivalent, but "better” form. - Compiler must preserve correctness
- What is equivalent? - On average improve X, where X is:
- What is better? » Performance
* Power

- Finish in your lifetime

cture 1, 15-745 ©2002-9 Seth Copen Goldstein 21 lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

How might performance be improved? Ingredients to a compiler opt

« Identify opportunity
- Avail in many programs

execution time = . cycles per instruction - Occurs in key areas (what are these?)
instructions - Amenable to "efficient” algorithm
* Formulate Problem
* Reduce the number of instructions * Pick a Representation
* Replace "expensive” instructs with "cheap” ones - Develop an Analysis
* Reduce memory cost - Detect when legal
- Improve locality - And desirable

- Reduce # of memory operations
* Increase parallelism

Implement Code Transformation
Evaluate (and repeat!)

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 23 lecture 1, 15-74! ©2002-9 Seth Copen Goldstein

Examples of Optimizations

* Machine Independent

- Algebraic simplification
Constant propagation
Constant folding
Common Sub-expression elimination
Dead Code elimination
Loop Invariant code motion
- Induction variable elimination

* Machine Dependent
- Jump optimization
- Reg allocation
- Scheduling
- Strength reduction
- Loop permutations

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 25

Really Powerful Opts we won't do

* How to optimize:
SumfromltoN(int max) {
sum = 0;
for (i=1; iI<=max; I++) sum+=i;
return sum;

}

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 26

Really Powerful Opts we won't do

* How to optimize:
SumfromltoN(int max) {
sum = 0;
for (i=1; I<=max; I++) sum+=i;
return sum;
by
- What we should, but won't do:
inline sumfromltoN(int max) {

return max > 0 ?
((max+max*max)>>1) : O;

}

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 27

Algebraic Simplifications
a*l; =a
a/l; =a
a*0; =0
a+0; = a

a-0;=a

a=b+1

czaq-1 = ¢=P

Use algebraic identities to simplify computations

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 28

Jump Optimizations

cmp dO,d1 cmp dO,d1

beq L1

bra L2 bne L2
L1: - = L1: -
L2: : L2:

Simplify jump and branch instructions.

cture 1, 15-745 ©2002-9 Seth Copen Goldstein

Constant Propagation

a = b5; a =5;

b:3; b:3;

n =-a + b; = n= 5_+ 3;])
for (i = 0; i<n; ++i) for (i = 0; i<n; ++i)
{

} }

If the compiler can determine that the values
of a and b are constants, then it can replace

the variable uses with constant values.

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Constant Folding

n = 8 ;
for (i =0 ; i <8 ; ++i) {

}

* The compiler evaluates an expression (at

compile time) and inserts the result in the code.

+ Can lead to further optimization opportunities;
esp. constant propagation.

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Common Subexpression Elimination

(CSE)
a = c*d; a = c*d;
; = ;
d=(c*d + ©) * u d=(a+1t)*u

If the compiler can determine that:

- an expression was previously computed

- and that the values of its variables have not
changed since the previous computation,

Then, the compiler can use the previously
computed value.

lecture 1, 15- 02-9 Seth Copen Goldstein

Strength Reduction

+ On some processors, the cost of an addition is less
than the cost of multiplication.

* The compiler can replace expensive multiplication
instructions by less expensive ones.

c=b* 2;

move $2000, dO
mulls #2, dO
move dO, $3000

c = -1*b;

move $2000, dO
mulls #-1,dO
move dO, $3000

lecture 1, 15-745

c=Db+b; c = Ish(b);
move $2000, d0 Move $2000, dO
add do, do Isl #1, dO
move dO, $3000 Mmove dO, $3000

c = negative(b);

move $2000, dO
neg do
move dO, $3000

©2002-9 Seth Copen Goldstein

Dead Code Elimination

debug = False;

it

}
a

(debug) {

= T(b);

If the compiler can determine that code will
never be executed or that the result of a
computation will never be used, then it can
eliminate the code or the computation.

lecture 1, 15-745

©2002-9 Seth Copen Goldstein 34

Loop Invariant Code Motion

for (i=0; i<100 ; ++i) { for (i=0; i<100 ; ++i) {
for (J=0; j<100 ; ++j) { for (3=0; j<100 ; ++j) {
for (k=0 ; k<100 ; ++k) tl = alillil:
t2 = i*j;
ali]l0Ol1Ik] = i*j*k; for (k=0 ; k<100 ; ++k)

ti[k] = t2*k;
3

}
}

* Loop invariant: expression evaluates to the same
value each iteration of the loop.

+ Code motion: move loop invariant outside loop.
Very important because inner-most loop executes

most frequently.

lecture 1, 15-745

©2002-9 Seth Copen Goldstein

Loop Invar

int *a;
int n;

scanf(“%d”, &n);

iant Code Motion

int *a;
int n;

scanf(“%d”, &n);

for (i=0; i<n ; ++i) { f=a/p;)
for (j=0; j<n ; ++j) { for (i=0; i<n 5 ++i) {
for (k=0 ; k<n ; ++k) for (3=0; j<n ; ++J) {
{ tl = a[il[il;
f = g/p; 2 = 17j;
a[i][j][k] - f*i*j*k; IOI‘ (k:O y k<n ; ++k)
}} tl[k] = F~t2*k;
1 3
}
}

lecture 1, 15-745

©2002-9 Seth Copen Goldstein 36

Cache Optimizations

for (j=0; j<n ; ++i) {
for (i=0; i<n ; ++i) {
x += ali][il;
}

}

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

Cache Optimizations

for (g=0; j<n ; ++j) {

for (i=0; i<n ; ++i) { for (i=0; i<n ; ++i) {

x += a[il[i]; for (J=0; j<n ; ++j) {
} x += alilli]l;
3 }
3
—_—
e

IIII Feshesslsee—

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 38

Example

A program that sorts 4-byte elements in an n-
element array of integers A[1..n] using
bubblesort.

A
for (i=n-1; i >= 1 ; —--i) { 1 0
for g =1; J <=1 ; +tj) { 2 4
it (AL0] > A+1D { 3 8
temp = ALJ]: :
A0l = AD+11; e i 1y
AL+1] = temp- j %éaddr(A) + (g-1)*4
3 :
3} n:

}

// i1 and j are not used later

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

A Generated IR

. i = n-1 t10 = j+1
fori{ 5. if i < 1 goto Exit t1l = t10-1 }AUHJ
. j=1 t12 = 4*tl1
for if g4: ir j > i goto S2 t13 = [A+t12]
- tl = j-1 tl4 = j-1 Jolo
2 = 411 t15 = 4*tl4
t3 = [A+t2] [A+t15] = t13 JALl=A[j+1]
i t4 = j+1 t16 = j+1 _
[+1] t5 = t4-1 t17 = t16-1 }AU*”
t6 = 4*t5 t18 = 4*tl17
if L t7 = [A+t6] [A+t18] = tempiAlj+ll=temf
Alj]
[J{ 8 = j-1 S3: j = j+1 }forj
*ecra{ 19 = 4*t8 goto S4
U temp = [A+t9] $2: i = i-1 Feor
goto S5

lecture 1, 15-745 ©2002-9 Seth Copen diadkill T 7 40

Optimizations I - Algebraic Simplifications

Optimizations IT - CSE

i =n-1 t10 = j+1 i =n-1 tl2 = 4*
S5: if i < 1 goto Exi 1l = t10-1 S5: if i < 1 goto Exit t13 = [A+t12]
j=1 tl2 = 4%} t12 = 4*tl1l j=1 t14 = t1
S4: if j > i goto S2 t13 = [A+tl2] S4: if jJ > i goto S2 ti5 = 4*¥t14
€2 1 [Ares] = 113
t2 = 4*t1 t14 = j-1 t2 = 4*t1 t18 = 4*j
t3 = [A+t2] t18 = 4% tl5 = 4*tl4 t3 = [A+t2] [A+t18] = temp
t4 = j+1 [A+t15] = t13 t6 = 4*j S3: j = j+1
t5 = t4-1 t16 = j+1 t7 = [A+t6] goto S4
t6 = 4*t5 - tl7 = tl6-1 S2: 1 =1i-1
t7 = [A+t6] 6 = 4%) t18 = 4*t17 goto S5
[A+t18] = Exit:
t8 = j-1 temp
19 = 4*t8 S3: j = j+1
temp = [A+t9] goto S4
S2: i1 =1i-1
goto S5
Exit:
lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 41 lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 42
Optimizations IT - CSE Optimizations ITI - Copy Propagation
i =n-1 i =n-1 Ltl2 = t6
S5: if i < 1 goto Exit =t t13 = [A+ t12] S5: if i < 1 goto Exit t13 = [A+t12]
j=1 tl4 = t1 j=1 tl4 = t1
S4: if j > i goto S2 tl5 = 4*tl4 S4: if j > i goto 82 < |t15 = 4*t14
tl = j-1 A+t15] = t13 tl = j-1 [A+t15] = t13
t2 = 4*tl ’m'—FET]j_\ t2 = 4*tl ti8 = t6
t3 = [A+t2 [A+t18] = temp t3 = [A+t2] a—— " |[[A+t18] = temp
6 = 4% S3: j = j+l 6 = 4% [[A+t6] = temp |s3: § = j+1
t7 = [A+t6] goto S4 t7 = [A+t6] goto S4
S2: 1 = 1i-1 S2: 1 = 1i-1
t8 = t1 goto S5 t8 = t1 goto S5
19 = 4*t8 Exit: 9 = 4*t8 O = 4| it
temp = [A+t9] temp = [A+t9]

lecture 1, 15-745

©2002-9 Seth Copen Goldstein

43

lecture 1, 15-745

©2002-9 Seth Copen Goldstein

44

Optimizations IV - CSE (2)

t13 = t7
n-1

i= t13 = [A+t6
S5: if i < 1 goto Exit t15 = 4*tl

j=1 [A+t15] = t13
S4: if j > i goto S2 [A+t6] = temp

tl = j-1 S3: j = j+1

t2 = 4*tl goto S4

t3 = [A+t2] S2: i =1i-1

t6 = 4*] goto S5

Exit:

temp = [A+t9]

Optimizations V - Copy Propagation (2)

i =n-1 t13 = t7
S5: if 1 < 1 goto EXIit tl5 = t2

j=1 [A+t2] = t7 I" [A+t15] = t13
S4: if j > 1 goto S2 [A+t6] = temp

tl = j-1

t2 = 4*t1 S3: j = j+1

t3 = [A+t2] goto S4

t6 = 4*j S2: i = 1i-1

t7 = [A+t6] goto S5

Exit:
9 = t2

temp = [A+t9]

| temp = [A+t2]

lecture 1, 15-745

©2002-9 Seth Copen Goldstein 45

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 46

Optimization VI - CSE (3)

Optimization VIT - Copy Propagation (3)

i = n-1 [A+t2] = t7
S5: if i < 1 goto Exit [A+t6] = temp

i=1
S4: if j > i goto S2 S3: j = j+1

tl = j-1 goto S4

t2 = 4*tl S2: i =1i-1

t3 = [A+t2] goto S5

t6 = 4%j Exit:

t7 = [

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

A+t6] L—————————J
|temp = [A+t2] }/

47

i =n-1 [A+t2] = t7
S5: if i < 1 goto Exit [A+t6] = temp |
i=1
S4: if j > i goto s?[A+t6] = [t3] F3: j=in
tl = j-1 goto S4
t2 = 4*t1 S2: 1 =1i-1
t3 = [A+t2] goto S5
t6 = 4%j Exit:
t7 = [A+t6]

lecture 1, 15-745

©2002-9 Seth Copen Goldstein 48

Optimizations VIIT - IVE & Strength

Optimizations VIIT - IVE & Strength

Reduction Reduction
i =n-1 i =n-1 i =n-1
S5: if 1 < 1 goto Exit S5: if 1 < 1 goto Exit S5: if i1 < 1 goto Exit
j=1 j=1 t2 =0
: if j > i goto S2 S4: if j > i goto S2 t6 = 4
tl = j-1 tl = j-1 S4:] t19 = 4*%i
/‘ if t6 > t19 goto S2
= TA+EZ] = TA+TZ] Loop Invariant t3 = [A+t2]
Code Motion...
T7 = [A+t6] T7 = [A+t6] 17 = [A+t6]
[A+t2] = t7 [A+t2] = t7 [A+t2] = t7
[A+t6] = t3 [A+t6] = t3 [A+t6] = t3
J =]J+1 S3: J = j+1 S3: |t2 = t2+4
goto S4 goto S4 t6 = t6+4
i =i-1 S2: 1 =1-1 goto &4
goto S5 goto S5 S2: 1 =1-1
Exit: Exit: goto S5
Exit:
Done? Done?
i=n-l_— 119 = i*4 i =n-1
SS:/;;:EEE;él?ifO EXit t19 = i*4
= S5: if tl19 < 4 goto Exit
t6 = 4 €19 < 4 6 = 4
S4: Ho—4x1 — S4: if t6 > t19 goto S2
if t6 > t19 goto S2 t3 = [A+t6-4]
t3 = [A+e2] t7 = [A+t6]
[A-4+16] t7 = [A+t6]
[A+t6-4] = t7
[A+¥2] = t7 [A+t6] = t3
[A+t6] = t3 S3: t6 = t6+4
S3: 2= 272 goto S4 ..
t6 = t6+4 s2: t19 = t19 - 4 Eliminate mult,
_ %giii/\ €19 = t19.4 __goto S5 Use double load (if aligned?)
S2: Exit Unroll?
goto S5 Eliminate jmp

Exit:

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein

51

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 52

Done For Now.

i =n-1
t19 = i<<2

S5: g :12 < 4 goto Exit Inner loop: 7 instructions
if t6 > t19 goto S2 4 mem ops

S4: 13 = [A+t6-4] 2 brm:uc.hes
t7 = [A+t6] 1 addition
[A+t6-4] = t7 Original inner loop: 25 instructi
[A+t6] = t3 6 mem ops

S3: t6 = t6+4 3 bram;hgs
if t6 <= t19 goto s4 10 adc!m.on .

S2: t19 = t19 - 4 6 multiplication
if t19 >= 4 goto s5

Exit:

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 53

Course Schedule

- www.cs.cmu.edu/afs/cs/academic/class/

15745-s09/www/

- The Web site is a vital resource

- (And, of course us t00.)

cture 1,15-745 ©2002-9 Seth Copen Goldstein 54

Course Staff

Seth Goldstein www..../~seth

Jim Cipar jcipar@cs.cmu.edu

Marilyn Walgora
mwalgora@cs.cmu.edu

lecture 1, 15-745 ©2002-9 Seth Copen Goldstein 55

First Assignment

Install llvm on your favorite machine

Get familiar with llvm tools, IR,
structure

Lots of docs at www.llvm.org

First part of assignment 1 will be
posted later today.

cture 1, 15-745 ©2002-9 Seth Copen Goldstein 56

