15-745

15-745
Optimizing For Data Locality - 1

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based on "A Data Locality Optimizing Algorithm,
Wolf & Lam, PLDI '91

© 2005 Seth Copen Goldstein

Outline

The Problem

* Loop Transformations

- dependence vectors

- Transformations

- Unimodular transformations
* Locality Analysis
SRP

15-745 © 2005 Seth Copen Goldstein

15-745

The Issue

- Improve cache reuse in nested loops
- Canonical simple case: Matrix Multiply

for I, :=1 to n
for I,:=1 to n
for I;:=1 to n
CLI.. 151 += AL, 1,1 * B[, 151

1, 1,+1 1,

— P —

© 2005 Seth Copen Goldstein

wor 1.1 w2 Viling solves problem

for 1,:=1 to n
for I;:=1 to n
CLI.. 11 +=ALl, 11 * B[LI,, 151

for Il,:=1 to n by s
for 11;:=1 to n by s
for I, :=1 to n
for I, :=11, to min(1l,+s-1,n)
for 1;:=11; to min(Il;+s-1,n)
CLI,, 151 += ALy, 15] * B[1,, 151

1, 1,+1 1,
f \ 1, —
P N

I = [l |

15-745 © 2005 Seth Copen Goldstein

The Problem

How to increase locality by transforming loop
nest

Matrix Mult is simple as it is both

- legal to tile

- advantageous Yo tile

Can we determine the benefit?

(reuse vector space and locality vector space)
Is it legal (and if so, how) o transform loop?
(unimodular transformations)

15-745 © 2005 Seth Copen Goldstein

Handy Representation:
“Tteration Space”

000000000000
000000000000

for i = 0 to N-1 000000000000
for j = 0 to N-1 000000000000
... 000000000000
ALIION = BOIL: 5 5565060000000
000000000000
000000000000
000000000000
000000000000

- each position represents an iteration

i

Visitation Order in Iteration
Space

-0 -89

C-6=0-60-00 06T ©9©

for i = 0 to N-1 -C=L0- 60679
_ e=60-6 S 25 —6

for j = 0 to N-1 e S0 60-0-CTC=S9

oo I -0 80 TTSE9
ALI10O] = 8O —

L0886 TTS89

-2 000 TTSO

=0 00679

L0 TT89
oo ~T=2

Note: iteration space is not data space

When Do Cache Misses Occur?

for 1 = 0 to N-1
for j = 0 to N-1
ALT10O] = BO1LI];

>

00000000
00000000
00000000
00000000
00000000
00000000
00000000

_00000000
00000000
00000000
00000000
00000000
00000000 ¥
00000000
00000000

_00000000

When Do Cache Misses Occur? When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1
AL10O] = BO1L]; O Hit
O Miss '"ooooooo0o0
A B for i = 0 to N-1 0000000
Teoeo0000@0 "Too0o0o00000 i = $0000000
for j =0 to N-1 00000000
e0eo0eo0eo 00000000 A[i+j1[0] = i*j; 00000000
Q0000000 o0e000000 00000000
Q0000000 o0o000000 00000000
Q000000 0000000 50006600
Q0000000 oe000000 f
Q0000000 o0o000000
Q00000080 oc0000000
i J

Optimizing the Cache Behavior

When Do Cache Misses Occur? of Array Accesses

- We need to answer the following
O Hit questions:

"o0o0o00000 |OMs _ ,
- 0006006 when do cache misses occur?
fo;o: i 0 gotg—; 1 00000000 - use "locality analysis"
= - 00000000 . .

ALI+J1[0] = i*i; c0000000 - can we change the order of the iterations
leceoees (or possibly data layout) to produce better
ce0o000000 behavior?

i

- evaluate the cost of various alternatives
- does the new ordering/layout still produce
correct results?
- use “dependence analysis"”

Examples of Loop
Transformations

Loop Interchange
Cache Blocking
Skewing

Loop Reversal

— Can improve locality

J\

— Can enable above

Loop Interchange

for i = 0 to N-1 for j = 0 to N-1

for j = 0 to N, for i = 0 to N-1

AL = i*j; AOILE] = %5
"eeoo0o0o0o0o0o Jeoeoeoeo O Hit
eeoeo00000 0000000 @ Miss
ecoco0cco0co0e > CYoX XX XoX Xe!
e0000000 0000000
eoo000000 0000000
eoo000000 CYoX XeX XoX X!
00000000 Yo X XoX XoX Xo)
o000 0000 00 00e00eo

J 1

* (assuming N is large relative to cache size)

Impact on Visitation Order
in Iteration Space

for JJ = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
TALIT.ALD:

for i = 0 to N-1
for j = 0 to N-1
TCALIT.ALOD:

==L 8888889 c.:::c::s
-0 CTTSD c‘:‘:*: G060 8OO
-80S 5T7==9 Q@ :% G060 @00
-80S ST TSD c-f::*: Q0| B0
=089 -6 G- |=E-6-©
- 885789 GO0 | G670 |G=O—C~O
G-6=0-0-00-0O0TCT 6O B0 |39 |60
C-L-0-00-0-0C-5-5"8© E=0-C~0 |60 E=6C-0O
-0 0000 TTOO G<0-0 |G- B<OO
OC-0-6-60-0-0-0-65© e::‘ae::‘zh:‘a

Cache Blocking (aka "Tiling")

for JJ = 0 to N-1 by B
for i = 0 to N-1

for i = 0 to N-1
for j =0 to N-1 —

for j = JJ to max(N-1,JJ+B-1)

fALILLALID; f(ALI1.ALID:

A|i| A|'!| A|i| A|'!|

100000000 00000000 100OOOOOO 100OOOOOOO
00000000 00000000 ! 00000OOOO 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 0000000O0 0000000O
00000000 00000000 00000000 00000000
J j J J

now we can exploit locality

Cache Blocking (aka "Tiling")

for i = 0 to N-1 for JJ = 0 to N-1 by B

for J =0 to N1 fo;o: i : jg :;1max(N 1,J3J+B-1)
- - J - - > -
f(A[1],A : _ _
(ALLADD FALITLALD;
ALi] ALl ALi] ALl
io0000000 100000000 (I66660000 166660000
00000000 00000000 : 00000000 00000000
00000000 Q0000000 : 00000000 00000000
00000000 00000000 : ©0000000 ©0000000
00000000 00000000 00000000 666060000
00000000 Q0000000 ©®@00 O:Q [oXe N} 000 O:O 00O
00000000 Q0000000 : 00000000 00000000
00000000 - 00000000 : ©0000000 - 00000000
J i J 3

now we can exploit temporal locality

Cache Blocking in Two
Dimensions

for JJ = 0 to N-1 by B

for i = 0 to N-1 for KK = 0 to N-1 by B
for j = 0 to N-1 for i = 0 to N-1
for k = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)

for k = KK to max(N-1,KK+B-1)
c[i,k] += ali,j1*blj.k]1;

cli.k] += a[i,j1*b[j.k];

* brings square sub-blocks of matrix "b" into
the cache

- completely uses them up before moving on

Predicting Cache Behavior
through "Locality Analysis”

* Definitions:
- Reuse:
accessing a location that has been accessed in the
past

- Locality:
accessing a location that is now found in the cache
* Key Insights
- Locality only occurs when there is reuse!

- BUT, reuse does not necessarily result in locality.
- Why not?

Steps in Locality Analysis

1. Find data reuse
- if caches were infinitely large, we would be
finished
2. Determine "localized iteration space”

- set of inner loops where the data accessed
by an iteration is expected to fit within
the cache

3. Find data locality:

- reuse D localized iteration space o locality

Types of Data Reuse/Locality

for i =0 to 2
for j = 0 to 100 O Hit
ALi1Li1 = BLj1L01 + BLI+11[01; @ Miss
ALi10] BL1LO1 BLj+11[0]
'eo0eoceoceo '00000000 '"o0o000000
Yo X YeX NoX Xl 00000000 00000000
(<N .<3|lc>l>0_ 000000 O_ @0 000000
j j i
Spatial Temporal Group
(spatial)

Kinds of reuse and the factor

) What kinds of reuse
for i =0 to N-1 are there?
for j = 0 to N-1 A[I:P

F(ALT].ALID:;

AT

15-745 © 2005 Seth Copen Goldstein 22

Kinds of reuse and the factor

for 1, :=0 to 5
for 1,:=0 to 6
ALl + 1] = 1/3 * (A[1,1+ AL1, + 1] + A[1, + 2])

15-745 © 2005 Seth Copen Goldstein

Kinds of reuse and the factor

for 1, :=0 to 5
for 1,:=0 to 6
A[l,+1] =1/3* (ALLL1+ ALL, + 1] + A[L, + 2])

self-temporal in 1, self-spatial In 2
Also, group spatial In 2

What 1s different about this and previous?
for 1 = 0 to N-1

for j = 0 to N-1
TCALIL.AOD:;

15-745 © 2005 Seth Copen Goldstein 24

Uniformly Generated references Eg of Uniformly generated sets

These references all belong to the same

* fand g are indexing functions: Zn > Z4 for 1, :=0 to uniformly generated set: H=[01]
- n is depth of loop nest for 1,:=0 to 6
- d is dimensions of array, A ALlo + 11 =173 = (ALL1+ ALT * 11 + ALL * 21)
- Two references A[f(i)] and A[g(i)] are ALY, +1] [o11|r|+C1]
uniformly generated if S
f(i) = Hi + c; AND g(i)=Hi+c, ALI] [01] :: +[0]
* His a linear transform 3
* ¢¢ and ¢, are constant vectors ALl, +2] Lor1) 1+r021

555555

Quantifying Reuse Quantifying Reuse
* Why should we quantify reuse? * Why should we quantify reuse?
- How do we quantify locality? - How do we quantify locality?

» Use vector spaces to identify loops with
reuse

- We convert that reuse into locality by
making the "best" loop the inner loop

* Metric: memory accesses/iter of
innermost loop. No locality > mem access

Self-Temporal

- For a reference, A[Hi+c], there is
self-temporal reuse between m and n
when Hm+c=Hn+c, i.e., H(r)=0, where

Example of self-temporal reuse

for 1,:=1 to n
for 1,:=1 to n
for I;:=1 to n
CLI.. 151 += ALl 121 * B[, 151

r=m-n. Access H ker H reuse? Local?
- The direction of reuse is r. C[I;Is] (1007 span{(0,1,0)} ninI,
* The self-temporal reuse vector space 001
is: Rgt = Ker H AlI,I,] (100) span{(0,0,1)}
+ There is locality if Rgy is in the 010)
localized vector space. B[I,,I;] (010) span{(1,0,0)}
Recall that for nxm matrix A, 001
the ker A = nullspace(A) = {x™| Ax = 0}
Self-Spatial Self-Spatial

+ Occurs when we access in order

- A[i,j]: best gain, L

- A[i,j*k]: best gain, L/k if |k| <=L

 How do we get spatial reuse for UG: H?

+ Occurs when we access in order
- A[i,j]: best gain, L
- A[i,j*k]: best gain, L/k if |k| <=L
* How do we get spatial reuse for UG: H?
- Since all but row must be identical, set
last row in H to O, H,
self-spatial reuse vector space = Rgg
Rss = ker Hg
* Notice, ker H < ker H,

- If, R, L = Rgr L, then no additional
benefit 10 SS ..uncmiien

Example of self-spatial reuse

for 1,:=1 to n
for 1,:=1 to n
for I;:=1 to n
CLI.. 151 += ALl 121 * BLI;, 151

Access H, ker H, reuse? Local?
C[I,I;] (100) span{(0,1,0), 1/1
000 (0,0,1)}
A[I,I,] (100) span{(0,0,),
000 (0,1,0)}
B[I,,I;] (010) span{(1,0,0),
000 (0,0,1)}

Self-spatial reuse/locality

» Dim(Rss) is dimensionality of reuse
vector space.

* If Rgs=0 = no reuse
* If Rgs=Rgt no extra reuse from spatial

- Reuse of each element is k/LsdimR_SS)
where, s is number of iters per dim.

* RgsnL is amount of reuse exploited,
therefore number of memory

references generated is:
k/L SdimR_STAL)

555555

Group Temporal

+ Two refs A[Hi+c] and A[Hj+d] can have
group temporal reuse in L iff

- they are from same uniformly generated
set

- Thereisanr e Ls.t. Hr=c-d

* if c-d = r,, then there is group temporal
reuse, Rgr = ker H+span{r,}

« However, there is no extra benefit if
RetnL=RsrnL

Example:

For 1 =1 ton
for j=1 to n
ALi, 31 = 0.2*(ALL, J1+ALi+1. 5]+
ALI-1, J1+ALT, J+1]1+AL1,3-11)

If L = span{j}, since ker H = &:
A[I,j]land A[TI,j-1] = (0,0)-(0,-1) espan{(0,1)} yes
A[L,j-11and A[i+1,j] > (0,-1)-(1,0) &span{(0,1)} no

Notice equivalence classes

Evaluating group temporal reuse

» Divide all references from a
uniformly generated set into equiv
classes that satisfy the R ¢

* For a particular L and g references

- Don't count any group reuse when
Rt L=RgsrnL
- number of equiv classes is gr.
- Number of mem references is g+ instead
of g

Total memory accesses

* For each uniformly generated set

555555

localized space, L
line size, z

9s+t(g1 - 95)/z
zegdim(R_SS N L)

wheree= [Oif RgtnL=RgsnL
1 otherwise

Next Time

- Complete example
« Unimodular transformations

- SRP

