
15-745
Optimizing For Data Locality - 1

Seth Copen Goldstein
Seth@cs.cmu.EduSeth@cs.cmu.Edu

CMU

Based on “A Data Locality Optimizing Algorithm, 
Wolf & Lam  PLDI ‘91

15-745 © 2005 Seth Copen Goldstein 1

Wolf & Lam, PLDI 91

Outline
• The Problem
• Loop Transformations• Loop Transformations

– dependence vectors
Tr nsf rm ti ns– Transformations

– Unimodular transformations
L li  A l i• Locality Analysis

• SRP

15-745 © 2005 Seth Copen Goldstein 2

The Issue
• Improve cache reuse in nested loops
• Canonical simple case: Matrix Multiply• Canonical simple case: Matrix Multiply

for I1 := 1 to n
for I2 := 1 to n

f 1 tfor I3 := 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

I3 I3I2+1I3 I2
I3I2+1

=I1

I2

15-745 © 2005 Seth Copen Goldstein 3

In next iteration of I2 previous data that 
could be reused has been replaced in cache.

Tiling solves problemfor I1 := 1 to nf I 1 tfor I2 := 1 to nfor I3 := 1 to nC[I1,I3] += A[I1,I2] * B[I2,I3]
for II := 1 to n by sfor II2 := 1 to n by s

for II3 := 1 to n by s
for I1 := 1 to n

for I2 := II2 to min(II2 + s - 1,n)o 2 : 2 to ( 2 s , )
for I3 := II3 to min(II3 + s - 1,n)

C[I1,I3] += A[I1,I2] * B[I2,I3];
I3 I2

I2+1 I3

=I
I2

15-745 © 2005 Seth Copen Goldstein 4

I1



The Problem
• How to increase locality by transforming loop 

nest
• Matrix Mult is simple as it is both

– legal to tile
– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
( i d l f i )(unimodular transformations)

15-745 © 2005 Seth Copen Goldstein 5

Handy Representation: 
“Iteration Space”Iteration Space

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• each position represents an iteration
j

• each position represents an iteration

Visitation Order in Iteration 
SpaceSpace

0 1

i

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

• Note: iteration space is not data space

j

Note: iteration space is not data space

When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B
i i

j j



When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1j
A[i][j] = B[j][i];

A B

Hit
Miss

i i

j j

When Do Cache Misses Occur?

i

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj

When Do Cache Misses Occur?

i
Hit
Miss

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

jj

Optimizing the Cache Behavior 
of Array Accessesof Array Accesses

• We need to answer the following 
questions:
– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations 

(  l  d  l )  d   (or possibly data layout) to produce better 
behavior?

l t  th  t f i  lt ti• evaluate the cost of various alternatives
– does the new ordering/layout still produce 

correct results?correct results?
• use “dependence analysis”



Examples of Loop 
TransformationsTransformations

• Loop Interchange
Can improve locality

• Cache Blocking
• Skewing

Can improve locality

Skewing
• Loop Reversal Can enable above

• …

(we will briefly discuss the first two)

Loop Interchange

for i = 0 to N-1 for j = 0 to N-1for i = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;
i j Hit

Miss

• (assuming N is large relative to cache size)
j i

(assuming N is large relative to cache size)

Impact on Visitation Order 
in Iteration Spacein Iteration Space

for i = 0 to N-1 for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]);
for i  0 to N 1

for j = JJ to max(N-1,JJ+B-1) 
f(A[i],A[j]);

i i

j j

Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit locality

jjjj
now we can exploit locality



Cache Blocking (aka “Tiling”)

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for i = 0 to N-1for j = 0 to N-1

f(A[i],A[j]); for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit temporal locality

jjjj
now we can exploit temporal locality

Cache Blocking in Two 
DimensionsDimensions

for i = 0 to N-1
for j = 0 to N-1

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1
f j JJ t (N 1 JJ B 1)for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];
for j = JJ to max(N-1,JJ+B-1)

for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

• brings square sub-blocks of matrix “b” into g q
the cache

• completely uses them up before moving on

Predicting Cache Behavior 
through “Locality Analysis”through Locality Analysis

• Definitions:
R– Reuse:
accessing a location that has been accessed in the 
pastp

– Locality:
accessing a location that is now found in the cache

• Key Insights
– Locality only occurs when there is reuse!

BUT   d  t il  lt i  l lit– BUT, reuse does not necessarily result in locality.
– Why not?

Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be 

finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed p
by an iteration is expected to fit within 
the cache

3. Find data locality:
– reuse ⊇ localized iteration space ⊇ localityp y



Types of Data Reuse/Locality

for i = 0 to 2for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
Hit
Miss

i
A[i][j]

i
B[j][0]

i
B[j+1][0]

j j j

Spatial Temporal Group
(spatial)

Kinds of reuse and the factor

for i = 0 to N-1
for j = 0 to N-1

What kinds of reuse 
are there?
A[i]?for j  0 to N 1

f(A[i],A[j]); A[i]?

A[j]?

15-745 © 2005 Seth Copen Goldstein 22

Kinds of reuse and the factor

for I1 := 0 to 5
for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-745 © 2005 Seth Copen Goldstein 23

Kinds of reuse and the factor

for I1 := 0 to 5
for I2 := 0 to 62A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

self-temporal in 1, self-spatial in 2
Also, group spatial in 2
What is different about this and previous?

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

15-745 © 2005 Seth Copen Goldstein 24



Uniformly Generated references
• f and g are indexing functions: Zn Zd

– n is depth of loop nestn is depth of loop nest
– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are • Two references A[f(i)] and A[g(i)] are 
uniformly generated if

f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform
d  t t t• cf and cg are constant vectors

15-745 © 2005 Seth Copen Goldstein 25

Eg of Uniformly generated sets
h  f  ll l   h   

for I1 := 0 to 5
for I2 := 0 to 6

These references all belong to the same 
uniformly generated set: H = [ 0 1]

2A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])
A[I + 1] [ 0 1 ] + [ 1 ]I1A[I2 + 1] [ 0 1 ]      + [ 1 ]1I2

A[I2] [ 0 1 ]      + [ 0 ]I1I2

A[I + 2] [ 0 1 ] + [ 2 ]I1

15-745 © 2005 Seth Copen Goldstein 26

A[I2 + 2] [ 0 1 ]      + [ 2 ]I2

Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?

15-745 © 2005 Seth Copen Goldstein 27

Quantifying Reuse
• Why should we quantify reuse?
• How do we quantify locality?• How do we quantify locality?

    f  l  h • Use vector spaces to identify loops with 
reuse

• We convert that reuse into locality by 
making the “best” loop the inner loopg p p

• Metric: memory accesses/iter of 
innermost loop. No locality mem accessinnermost loop. No locality mem access

15-745 © 2005 Seth Copen Goldstein 28



Self-Temporal
• For a reference, A[Hi+c], there is 

self-temporal reuse between m and nself temporal reuse between m and n
when Hm+c=Hn+c, i.e., H(r)=0, where 
r=m-n.r m n.

• The direction of reuse is r.
Th  s lf t mp l s  t  sp  • The self-temporal reuse vector space 
is: RST = Ker H

h   l l  f   h  • There is locality if RST is in the 
localized vector space.

R ll h  f  i  

15-745 © 2005 Seth Copen Goldstein 29

Recall that for nxm matrix A,
the ker A = nullspace(A) = {xm|Ax = 0} 

Example of self-temporal reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access H ker H reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc ss H r H r us ? Loca ?
C[I1,I3] 1 0 0 span{(0,1,0)} n in I2

0 0 10 0 1
A[I1,I2] 1 0 0 span{(0,0,1)}

0 1 00 1 0
B[I2,I3] 0 1 0 span{(1,0,0)}

0 0 1

15-745 © 2005 Seth Copen Goldstein 30

Self-Spatial
• Occurs when we access in order

– A[i j]: best gain  LA[i,j]: best gain, L
– A[i,j*k]: best gain, L/k if |k| <= L

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?

15-745 © 2005 Seth Copen Goldstein 31

Self-Spatial
• Occurs when we access in order

– A[i j]: best gain  LA[i,j]: best gain, L
– A[i,j*k]: best gain, L/k if |k| <= L

• How do we get spatial reuse for UG: H?• How do we get spatial reuse for UG: H?
• Since all but row must be identical, set 

l t  i  H t  0  Hlast row in H to 0, Hs
self-spatial reuse vector space = RSS

R  k HRSS = ker HS

• Notice, ker H ⊆ ker Hs

• If, Rss ∩L = RST ∩L, then no additional 
benefit to SS15-745 © 2005 Seth Copen Goldstein 32



Example of self-spatial reuse
for I1 := 1 to n

for I2 := 1 to n
for I3 := 1 to n

Access Hs ker Hs reuse? Local?

for I3 : 1 to n
C[I1,I3] += A[I1,I2] * B[I2,I3]

cc ss Hs r Hs r us ? Loca ?
C[I1,I3] 1 0 0 span{(0,1,0), 1/l

0 0 0 (0 0 1)}0 0 0 (0,0,1)}
A[I1,I2] 1 0 0 span{(0,0,1),

0 0 0 (0 1 0)}0 0 0 (0,1,0)}
B[I2,I3] 0 1 0 span{(1,0,0),

0 0 0 (0,0,1)}

15-745 © 2005 Seth Copen Goldstein 33

Self-spatial reuse/locality
• Dim(RSS) is dimensionality of reuse 

vector space.vector space.
• If RSS=0 no reuse

If R R  xt  s  f m s ti l• If RSS=RST no extra reuse from spatial
• Reuse of each element is k/Lsdim(R_SS)

h     f  dwhere, s is number of iters per dim.
• RSS∩L is amount of reuse exploited, SS p

therefore number of memory 
references generated is:g

k/LSdim(R_ST∩L)

15-745 © 2005 Seth Copen Goldstein 34

Group Temporal
• Two refs A[Hi+c] and A[Hj+d] can have 

group temporal reuse in L iffgroup temporal reuse in L iff
– they are from same uniformly generated 

setset
– There is an r ∈ L s.t. Hr = c – d

• if c-d = r  then there is group temporal if c-d = rp, then there is group temporal 
reuse, RGT = ker H+span{rp}
However  there is no extra benefit if • However, there is no extra benefit if 
RGT ∩ L = RST ∩ L

15-745 © 2005 Seth Copen Goldstein 35

Example:
For i = 1 to n
for j=I to n
A[i,j] = 0.2*(A[i,j]+A[i+1,j]+

A[i-1,j]+A[i,j+1]+A[i,j-1])

If L = span{j}, since ker H = ∅:
A[I j] and A[I j-1] (0 0)-(0 -1) ∈span{(0 1)} yesA[I,j] and A[I,j 1] (0,0) (0, 1) ∈span{(0,1)} yes
A[I,j-1] and A[i+1,j] (0,-1)-(1,0) ∉span{(0,1)} no

Notice equivalence classes

15-745 © 2005 Seth Copen Goldstein 36



Evaluating group temporal reuse
• Divide all references from a 

uniformly generated set into equiv uniformly generated set into equiv 
classes that satisfy the RGT

• For a particular L and g references• For a particular L and g references
– Don’t count any group reuse when

R ∩ L = R ∩ LRGT ∩ L = RST ∩ L
– number of equiv classes is gT.

Number of mem references is g instead – Number of mem references is gT instead 
of g

15-745 © 2005 Seth Copen Goldstein 37

Total memory accesses
• For each uniformly generated set

localized space, Llocalized space, L
line size, z

gS+(gT – gS)/z
zesdim(R_SS ∩ L)z s

where e =    0 if RST ∩ L = RSS ∩ LST SS
1 otherwise

15-745 © 2005 Seth Copen Goldstein 38

Next Time
• Complete example
• Unimodular transformations• Unimodular transformations
• SRP

15-745 © 2005 Seth Copen Goldstein 39


