
15-745
Introduction

Seth Copen Goldstein
Seth@cs.cmu.EduSeth@cs.cmu.Edu

CMU

Based in part on slides by

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 1

Based in part on slides by
Todd Mowry and Michael Voss

Introduction
• Why study compilers?

Ad i i t i• Administriva
• Structure of a Compilerp
• Optimization Example

Reference: Muchnick 1.3-1.5

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 2

Moore’s Law

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 3

Moore’s Law

Happy
B’d
Happy

Happy
B’D

Imagine: Computers that
B’day

ppyB ‘ Day
B’Day

g p
• Small enough to fit inside cells

h h b d blImagining it is hard enough • Cheap enough to be disposable
• Dense enough to embed a supercomputer

Imagining it is hard enough,
achieving it requires a rethink of

h l h
Dense enough to embed a supercomputer

• Smart enough to assemble themselves
the entire tool chain.

Computers from atomic scale components

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 4

What is Behind Moore’s Law?
• A lot of hard work!
• Two most important tools:• Two most important tools:

– Parallelism
• Bit level• Bit-level
• Pipeline
• Function unitFunction unit
• Multi-core

– Localityy

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 5

Performance: Ops/SecPerformance Ops/Sec
1000.00

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 6

Horowitz

Performance: Ops/Clk * Clks/SecPerformance Ops/Clk Clks/Sec
1000.00

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 7

Horowitz

SpecInt/Mhz

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 8

Horowitz

Another View of Moore’s Law
1.E+03

1 E+021.E+02

SRAM
DRAM
CPU l

1.E+01

CPU cycle

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 9

1.E+00

1980 1985 1990 1995 2000

The Computer System

ProcessorProcessor

h

Reg

Memory-I/O bus

Cache

Memory-I/O bus

Memory
I/O

controller
I/O

controller
I/O

controller

DiskDisk

Memory contro rcontroller contro r

Display Network

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 10

DDisk

The Memory Hierarchy

cache virtual memory

CPU
C
a Memory disk8 B 32 B 8 KB

regsregs c
h
e

y

Register Cache Memory Disk Memory
size:
speed:
$/Mbyte:

200 B
3 ns

Register Cache Memory Disk Memory
32 KB/4MB
6 ns
$100/MB

128 MB
60 ns
$ 30/MB

20 GB
8 ms
$0 005/MB$/Mbyte:

block size: 8 B
$100/MB
32 B

$.30/MB
8 KB

$0.005/MB

larger, slower, cheaper

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 11

Compiler Writer’s Job

• Improve locality
• Increase • Increase

parallelism
T l t l t n• Tolerate latency

• Reduce power

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 12

Why study compilers
Th ll i• They are really amazing

• Combines theory & practicey p
– CS is about abstraction

• Primary abstraction: programming language
• Compiler lowers PL to ISA (or further!)

– Compiler is a big system
• Crucial for performance

– especially for modern processorsp y p
– practically part of the architecture

• I bet: Everyone will write a compiler

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 13

I bet: Everyone will write a compiler

Why study compilers
Th ll i• They are really amazing

• Combines theory & practicey p
– CS is about abstraction

• Primary abstraction: programming language
• Compiler lowers PL to ISA (or further!)

– Compiler is a big system
• Crucial for performance

– especially for modern processorsp y p
– practically part of the architecture

• I bet: Everyone will write a compiler

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 14

I bet: Everyone will write a compiler

What this course is about

High-level Low-level

Front End Optimizerlanguage

(E.g., C)

language

(E.g., x86)

Code
Generator

Source code IR
(E.g., SSA)

IR ASM
(E g ,)

• Theory and practice of modern optimizing compilers

• No lexing or parsing• No lexing or parsing

• Focus on IR, back-end, optimizations

I l f d ’ (d ’) il

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 15

• Internals of today’s (and tomorrow’s) compilers

• Working with a real compiler

Prerequisites
• 211 & 213 or the equivalent
• Parts of 411 or the equivalent• Parts of 411 or the equivalent

– Basic compiler data structures
Fr m s c llin c nv nti ns d f us – Frames, calling conventions, def-use
chains, etc.
Don’t really care about front end– Don t really care about front-end

• Proficient in C/C++ programming
• Basic understanding of architecture

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 16

My Expectations
• You have the prerequisites

– If not come see me asapIf not come see me asap
• 3 assignments + a project

Cl ti i ti• Class participation
– THIS IS A MUST!
– Read text/papers before class
– Attendance is essentially mandatory

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 17

Grading
• Class participation ~20%

– Throughout the semesterThroughout the semester
– During paper presentations
– Project presentations– Project presentations

• assignments ~20%
P j 40%• Project ~40%

• Midterm ~20%

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 18

Assignments
• Intro to LLVM/Liveness
• Dependence analysis• Dependence analysis
• Locality/Parallel transformations

• All labs and the final project will be p j
done in a state-of-the-art research
compiler: LLVMp

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 19

The Text
• No assigned text. There are some on
reserve. Its really up to you.reserve. Its really up to you.

• Muchnick, Advanced Compiler Design & Impl., 1997
• Allen, et.al., Optimizing Compilers for Modern Archs, 2001

C t l E i i il 2003• Copper, et.al., Engineering a compiler, 2003
• Aho, et.al., Compilers: …, 2006

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 20

• Papers will be assigned

Before we get too bored
• More admin at the end, but first …

• What exactly is an optimizing compiler?
A i i i il f – An optimizing compiler transforms a program
into an equivalent, but “better” form.
Wh t i i l t?– What is equivalent?

– What is better?

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 21

Full Employment Theorem

• No such thing as “The optimizing compiler”
– Why not?Why not?

• There is always a better optimizing
compiler but compiler, but …
– Compiler must preserve correctness

O i X h X i– On average improve X, where X is:
• Performance
• Power• Power
• …

– Finish in your lifetime

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 22

Finish in your lifetime

How might performance be improved?

execution time = cycles per instructionΣ
instructions

• Reduce the number of instructions
• Replace “expensive” instructs with “cheap” ones
• Reduce memory costy

– Improve locality
– Reduce # of memory operations

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 23

• Increase parallelism

Ingredients to a compiler opt
Id if i• Identify opportunity
– Avail in many programs

O k (h h)– Occurs in key areas (what are these?)
– Amenable to “efficient” algorithm

• Formulate Problem
• Pick a Representationp
• Develop an Analysis

– Detect when legalDetect when legal
– And desirable

• Implement Code Transformation

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 24

Implement Code Transformation
• Evaluate (and repeat!)

Examples of Optimizations
• Machine Independent• Machine Independent

– Algebraic simplification
– Constant propagationConstant propagation
– Constant folding
– Common Sub-expression elimination
– Dead Code elimination
– Loop Invariant code motion

Inducti n v i bl limin ti n– Induction variable elimination
• Machine Dependent

– Jump optimizationJump optimization
– Reg allocation
– Scheduling

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 25

g
– Strength reduction
– Loop permutations

Really Powerful Opts we won’t do
• How to optimize:

Sumfrom1toN(int max) {
sum = 0;
for (i=1; i<=max; i++) sum+=i;
return sum;

}}

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 26

Really Powerful Opts we won’t do
• How to optimize:

Sumfrom1toN(int max) {
sum = 0;
for (i=1; i<=max; i++) sum+=i;
return sum;

}}
• What we should, but won’t do:

inline sumfrom1toN(int max) {inline sumfrom1toN(int max) {
return max > 0 ?
((max+max*max)>>1) : 0;

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 27

((max+max max)>>1) : 0;
}

Algebraic Simplifications
a*1; ⇒ a

a/1; ⇒ a

*0 0a*0; ⇒ 0

a+0; ⇒ aa 0; ⇒ a

a-0; ⇒ a

⇒ c = ba = b + 1
c = a - 1

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 28

Use algebraic identities to simplify computations

Jump Optimizations

cmp d0,d1
beq L1

cmp d0,d1
bra L2

L1: :
:

bne L2
L1: :

:
⇒

:
L2: :

:
:

L2: :
:

Simplify jump and branch instructions.

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 29

S mpl fy jump and branch nstruct ons.

Constant Propagation

a = 5;
b = 3;

a = 5;
b = 3;b = 3;

:
:

b 3;
:
:

n 5 + 3⇒n = a + b;
for (i = 0; i<n; ++i)
{

n = 5 + 3;
for (i = 0; i<n; ++i)
{

⇒

{
:

}
:

}

If the compiler can determine that the values
of a and b are constants, then it can replace

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 30

of a and b are constants, then it can replace
the variable uses with constant values.

Constant Folding
:
:
:
:

n = 5 + 3;8n 5 + 3;
for (i = 0 ; i < n ; ++i) {

:
}

8
8

• The compiler evaluates an expression (at
il i) d i h l i h d

}

compile time) and inserts the result in the code.
• Can lead to further optimization opportunities;

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 31

esp. constant propagation.

Common Subexpression Elimination
(C E)(CSE)

*d *da = c*d;
:
:

a = c*d;
:
:⇒

d = (c*d + t) * u d = (a + t) * u

If the compiler can determine that:
• an expression was previously computed
• and that the values of its variables have not

changed since the previous computation,

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 32

Then, the compiler can use the previously
computed value.

Strength Reduction
O th t f dditi i l • On some processors, the cost of an addition is less
than the cost of multiplication.
Th il l i lti li ti • The compiler can replace expensive multiplication
instructions by less expensive ones.

b * 2 b + b c = lsh(b);c = b * 2;
move $2000, d0
muls #2 d0

c = b + b;
move $2000, d0
add d0 d0

c = lsh(b);
move $2000, d0
lsl #1, d0muls #2, d0

move d0, $3000
add d0, d0
move d0, $3000

lsl #1, d0
move d0, $3000

c = -1*b;
move $2000, d0

c = negative(b);
move $2000, d0

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 33

move $2000, d0
muls #-1,d0
move d0, $3000

move $2000, d0
neg d0
move d0, $3000

Dead Code Elimination

debug = False;
::
:

if (debug) {
:
:

}
a = f(b);

If the compiler can determine that code will
never be executed or that the result of a

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 34

computation will never be used, then it can
eliminate the code or the computation.

Loop Invariant Code MotionLoop Invariant Code Motion
for (i=0; i<100 ; ++i) {
for (j=0; j<100 ; ++j) {

for (i=0; i<100 ; ++i) {
for (j=0; j<100 ; ++j) {for (j=0; j<100 ; ++j) {

for (k=0 ; k<100 ; ++k)
{

a[i][j][k] = i*j*k;

for (j=0; j<100 ; ++j) {
t1 = a[i][j];
t2 = i*j;
for (k=0 ; k<100 ; ++k)a[][j][] j ;

}
}

}

o (0 ; 00 ;)
{

t1[k] = t2*k;
}

}
}

• Loop invariant: expression evaluates to the same Loop n ar ant pr ss on a uat s to th sam
value each iteration of the loop.

• Code motion: move loop invariant outside loop.
V i t t b i t l t

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 35

• Very important because inner-most loop executes
most frequently.

Loop Invariant Code Motion
int *a;
int n;

int *a;
int n;

p

:
:

scanf(“%d”, &n);
f (i 0 i i) {

:
:

scanf(“%d”, &n);
f = q/p;for (i=0; i<n ; ++i) {

for (j=0; j<n ; ++j) {
for (k=0 ; k<n ; ++k)
{

f = q/p;
for (i=0; i<n ; ++i) {
for (j=0; j<n ; ++j) {
t1 = a[i][j];{

f = q/p;
a[i][j][k] = f*i*j*k;

}

t1 a[i][j];
t2 = i*j;
for (k=0 ; k<n ; ++k)
{}

}
}

t1[k] = f*t2*k;
}

}

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 36

} Oooops!!!!!

Cache Optimizations
for (j=0; j<n ; ++j) {

for (i=0; i<n ; ++i) {
x += a[i][j];

}
}

M

j

M

C
i

Loop permutation changes the order of the loops

P

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 37

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

Cache Optimizations
for (j=0; j<n ; ++j) {

for (i=0; i<n ; ++i) { for (i=0; i<n ; ++i) {
x += a[i][j];

}
}

for (j=0; j<n ; ++j) {
x += a[i][j];

}
}

M

}
j

M

C
i

Loop permutation changes the order of the loops

P

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 38

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

Example

A program that sorts 4-byte elements in an n-
element array of integers A[1 n] using element array of integers A[1..n] using
bubblesort.

for (i=n-1; i >= 1 ; --i) {
for (j = 1; j <= i ; ++j) {

A
1
2

0
4

if (A[j] > A[j+1]) {
temp = A[j];
A[j] = A[j+1];
A[j+1] t

3

:
8

addr(A) + (j-1)*4jA[j+1] = temp;
}

}
}

n-1
n

:
j

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 39

}
// i and j are not used later

A Generated IR

i = n-1 t10 = j+1
f i S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

j
t11 = t10-1
t12 = 4*t11
t13 = [A+t12]

A[j+1]

for j

for i

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
4 j 1

t14 = j-1
t15 = 4*t14
[A+t15] = t13
16 1

A[j]

A[j]=A[j+1]

A[j]

t4 = j+1
t5 = t4-1
t6 = 4*t5
t7 = [A+t6]

t16 = j+1
t17 = t16-1
t18 = 4*t17
[A+t18] = temp A[j+1]=temp

A[j+1]A[j+1]

if t7 = [A+t6]
if t3 <= t7 goto S3
t8 = j-1
t9 = 4*t8

[A+t18] = temp
S3: j = j+1

goto S4
for j

A[j+1]=temp

temp=

if

A[j]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 40

t9 4 t8
temp = [A+t9]

goto S4
S2: i = i-1

goto S5
Exit:

for i
A[j]

Optimizations I - Algebraic Simplifications

i = n-1
S5: if i < 1 goto Exit

t10 = j+1
t11 = t10-1

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

t12 = 4*t11
t13 = [A+t12]
t14 = j-1

t12 = 4*j

t2 = 4*t1
t3 = [A+t2]
t4 = j+1
t5 = t4-1

t14 = j 1
t15 = 4*t14
[A+t15] = t13
t16 = j+1

t18 = 4*j

t6 = 4*t5
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = j-1

t17 = t16-1
t18 = 4*t17
[A+t18] =

temp

t6 = 4*j

t8 j 1
t9 = 4*t8
temp = [A+t9]

temp
S3: j = j+1

goto S4
S2: i = i-1

t S5

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 41

goto S5
Exit:

Optimizations II - CSE

i = n-1
S5: if i < 1 goto Exit

t12 = 4*j
t13 = [A+t12]

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

t14 = j-1
t15 = 4*t14
[A+t15] = t13
t18 = 4*j

t14 = t1

t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

t18 = 4*j
[A+t18] = temp

S3: j = j+1
goto S4

if t3 <= t7 goto S3
t8 = j-1
t9 = 4*t8
temp = [A+t9]

S2: i = i-1
goto S5

Exit:
t8 = t1

temp [A+t9]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 42

Optimizations II - CSE

i = n-1
S5: if i < 1 goto Exit

t12 = 4*j
t13 = [A+t12]t12 = t6

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

t14 = t1
t15 = 4*t14
[A+t15] = t13
t18 = 4*jt18 = t6t2 = 4*t1

t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

t18 = 4*j
[A+t18] = temp

S3: j = j+1
goto S4

if t3 <= t7 goto S3
t8 = t1
t9 = 4*t8
temp = [A+t9]

S2: i = i-1
goto S5

Exit:
temp [A+t9]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 43

Optimizations III - Copy Propagation

i = n-1
S5: if i < 1 goto Exit

t12 = t6
t13 = [A+t12]

t13 = [A+t6]

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

t14 = t1
t15 = 4*t14
[A+t15] = t13
t18 = t6

t15 = 4*t1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

t18 = t6
[A+t18] = temp

S3: j = j+1
goto S4

[A+t6] = temp

if t3 <= t7 goto S3
t8 = t1
t9 = 4*t8
temp = [A+t9]

S2: i = i-1
goto S5

Exitt9 = 4*t1
temp [A+t9]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 44

Optimizations IV - CSE (2)
i = n-1

S5: if i < 1 goto Exit
t13 = [A+t6]
t15 = 4*t1

t13 = t7

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

[A+t15] = t13
[A+t6] = temp

S3: j = j+1
goto S4

t15 = t2
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

goto S4
S2: i = i-1

goto S5
Exit:t9 = t2

if t3 <= t7 goto S3
t9 = 4*t1
temp = [A+t9]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 45

Optimizations V - Copy Propagation (2)

i = n-1
S5: if i < 1 goto Exit

t13 = t7
t15 = t2

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

[A+t15] = t13
[A+t6] = temp

S3: j = j+1

[A+t2] = t7

t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

S3: j = j+1
goto S4

S2: i = i-1
goto S5

if t3 <= t7 goto S3
t9 = t2
temp = [A+t9]

Exit:
temp = [A+t2]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 46

Optimization VI - CSE (3)

i = n-1
S5: if i < 1 goto Exit

[A+t2] = t7
[A+t6] = temp

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

S3: j = j+1
goto S4

S2: i = i-1t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

S2: i = i 1
goto S5

Exit:temp = t3
if t3 <= t7 goto S3
temp = [A+t2]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 47

Optimization VII - Copy Propagation (3)

i = n-1
S5: if i < 1 goto Exit

[A+t2] = t7
[A+t6] = temp

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1

S3: j = j+1
goto S4

S2: i = i-1
[A+t6] = [t3]

t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]

S2: i = i 1
goto S5

Exit:

if t3 <= t7 goto S3
temp = [t3]

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 48

Optimizations VIII – IVE & Strength
Reductionuct on

i = n-1
S5: if i < 1 goto Exit

j = 1j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 49

t:

Optimizations VIII – IVE & Strength
Reductionuct on

i = n-1
S5: if i < 1 goto Exit

j = 1
i = n-1

S5: if i < 1 goto Exit
t2 = 0j = 1

S4: if j > i goto S2
t1 = j-1
t2 = 4*t1

t2 = 0
t6 = 4

S4: t19 = 4*i
if t6 > t19 goto S2

t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3

t3 = [A+t2]
t7 = [A+t6]
if t3 <= t7 goto S3

Loop Invariant
Code Motion…

if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: j = j+1

if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: t2 = t2+4
goto S4

S2: i = i-1
goto S5

Exit:

t6 = t6+4
goto S4

S2: i = i-1
goto S5

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 50

t: goto S5
Exit:

Done?

i = n-1
S5: if i < 1 goto Exit

t2 0
t19 = i*4

t2 = 0
t6 = 4

S4: t19 = 4*i
if t6 > t19 goto S2

t19 < 4

if t6 > t19 goto S2
t3 = [A+t2]
t7 = [A+t6]
if t3 <= t7 goto S3

[A-4+t6]
if t3 < t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: t2 = t2+4
t6 = t6+4
goto S4

S2: i = i-1 t19 = t19-4

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 51

goto S5
Exit:

Done?

i = n-1
t19 = i*4

S5 if t19 < 4 t E itS5: if t19 < 4 goto Exit
t6 = 4

S4: if t6 > t19 goto S2
t3 = [A+t6-4]t3 = [A+t6-4]
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t6-4] = t7[A+t6 4] t7
[A+t6] = t3

S3: t6 = t6+4
goto S4

Elimi t m ltS2: t19 = t19 - 4
goto S5

Exit:

Eliminate mult,
Use double load (if aligned?)

Unroll?

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 52

Eliminate jmp
…

Done For Now.

i = n-1
t19 = i<<2
if t19 < 4 t E itif t19 < 4 goto Exit

S5: t6 = 4
if t6 > t19 goto S2

S4: t3 = [A+t6-4]

Inner loop: 7 instructions
4 mem ops
2 branchesS4: t3 = [A+t6-4]

t7 = [A+t6]
if t3 <= t7 goto S3
[A+t6-4] = t7

1 addition

Original inner loop: 25 instructi
6 [A+t6 4] t7

[A+t6] = t3
S3: t6 = t6+4

if t6 <= t19 goto s4

6 mem ops
3 branches
10 addition
6 multiplicationS2: t19 = t19 - 4

if t19 >= 4 goto s5
Exit:

6 multiplication

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 53

Course Schedule
• www.cs.cmu.edu/afs/cs/academic/class/

15745-s08/www/15745 s08/www/

Th W b sit is it l s• The Web site is a vital resource

• (And, of course us too.)

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 54

Course Staff
• Seth Goldstein www…./~seth

• David Koes www…./~dkoes

• Marilyn Walgora
l @ dmwalgora@cs.cmu.edu

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 55

First Assignment
• Install llvm on your favorite machine
• Get familiar with llvm tools IR • Get familiar with llvm tools, IR,

structure
L ts f d s t ll m• Lots of docs at www.llvm.org

• First part of assignment 1 will be
d l dposted later today.

lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 56

