Register Allocation

Ajay Mathew

- Pereira and Palsberg. *Register allocation via coloring of chordal graphs*. APLOS'05
- Pereira and Palsberg. *Register allocation after classical SSA elimination is NP-complete*. FOSSACS'06
Register Allocation – Recap

• Interference graph
• Graph coloring
• NP Complete- Chaitin’s proof
• Heuristics- priority coloring, Kempe’s method

Some examples and graphics are borrowed from the ASPLOS’05 paper
George and Appel’s iterative spilling algorithm
• Drawback of George and Appel’s iterative spilling algorithm—spilling and coalescing very complex.
• The interference relations b/w temporary variables can form any possible graph—Chaitin
Chordal Graph

• **Chord**- an edge which is not part of the cycle but which connects two vertices on the cycle.

• A graph is chordal if *every cycle with four or more edges* has a chord.
useful properties

• Minimum coloring-- $O(E + V)$ time
• maximum clique
• maximum independent set
• minimum covering by cliques

All these NP complete problems in general graphs are now solvable in polynomial time.
Simplicial Elimination Ordering

• A vertex v is called simplicial if its neighborhood in G is a clique.

• A SEO of G is a bijection $V(G) \rightarrow \{1 \ldots V\}$, such that every vertex v_i is a simplicial vertex in the subgraph induced by $\{v_1 , \ldots , v_i \}$
\{b; a; c; d\} is a simplicial elimination ordering.
An undirected graph without self-loops is chordal if and only if it has a simplicial elimination ordering. (Dirac)
Algorithm
The maximum cardinality search algorithm (MCS)

```plaintext
procedure MCS
1    input: $G = (V, E)$
2    output: a simplicial elimination ordering $\sigma = v_1, \ldots, v_n$
3    For all $v \in V$ do $\lambda(v) \leftarrow 0$
4    For $i \leftarrow 1$ to $|V|$ do
5       let $v \in V$ be a vertex such that $\forall u \in V, \lambda(v) \geq \lambda(u)$ in
6       $\sigma(i) \leftarrow v$
7       For all $u \in V \cap N(v)$ do $\lambda(u) \leftarrow \lambda(u) + 1$
8       $V \leftarrow V - \{v\}$
```
The greedy coloring algorithm

procedure greedy coloring
1 \hspace{1em} input: \(G = (V, E) \), a sequence of vertices \(\nu \)
2 \hspace{1em} output: a mapping \(m, m(v) = c, 0 \leq c \leq \Delta(G) + 1, v \in V \)
3 \hspace{1em} For all \(v \in \nu \) do \(m(v) \leftarrow \bot \)
4 \hspace{1em} For \(i \leftarrow 1 \) to \(|\nu| \) do
5 \hspace{2em} let \(c \) be the lowest color not used in \(N(\nu(i)) \) in
6 \hspace{3em} \(m(\nu(i)) \leftarrow c \)
Algorithm
Post spilling

- polynomial algorithm-- $O(V^K)$
- the greedy coloring tends to use the lower colors first.
Coalescing

• For each instruction $a := b$, look for a color c not used in $N(a) \cup N(b)$,
• If such a color exists, then the temporaries a and b are coalesced into a single register with the color c.
procedure coalescing
1 \hspace{.2cm} input: list \(l \) of copy instructions, \(G = (V, E), K \)
2 \hspace{.2cm} output: \(G' \), the coalesced graph \(G \)
3 \hspace{.2cm} let \(G' = G \) in
4 \hspace{1cm} for all \(x := y \in l \) do
5 \hspace{2cm} let \(S_x \) be the set of colors in \(N(x) \)
6 \hspace{2cm} let \(S_y \) be the set of colors in \(N(y) \)
7 \hspace{2cm} if there exists \(c, c < K, c \notin S_x \cup S_y \) then
8 \hspace{3cm} let \(xy, xy \notin V \) be a new node
9 \hspace{3cm} add \(xy \) to \(G' \) with color \(c \)
10 \hspace{3cm} make \(xy \) adjacent to every \(v, v \in N(x) \cup N(y) \)
11 \hspace{3cm} replace occurrences of \(x \) or \(y \) in \(l \) by \(xy \)
12 \hspace{3cm} remove \(x \) from \(G' \)
13 \hspace{3cm} remove \(y \) from \(G' \)
Pre-spilling

• Maintains k-colorable property

• removes nodes to bring the size of the largest clique down to the number of available colors
procedure maximalCI
1 input: \(G = (V, E) \)
2 output: a list of cliques \(\xi = \langle Q_1, Q_2, \ldots, Q_n \rangle \)
3 \(\sigma \leftarrow \text{MCS}(G) \)
4 For \(i \leftarrow 1 \) to \(n \) do
5 \hspace{1em} Let \(v \leftarrow \sigma[i] \) in
6 \hspace{2em} \(Q_i \leftarrow \{v\} \cup \{u \mid (u, v) \in E, u \in \{\sigma[1], \ldots, \sigma[i-1]\}\} \)

procedure pre-spilling
1 input: \(G = (V, E) \), a list of subgraphs of \(G \): \(\xi = \langle Q_1, Q_2, \ldots, Q_n \rangle \), a number of available colors \(K \), a mapping \(\omega \)
2 output: a \(K \)-colorable subgraph of \(G \)
3 \(R_1 = Q_1; R_2 = Q_2; \ldots R_n = Q_n \)
4 while there is \(R_i \) with more than \(K \) nodes do
5 \hspace{1em} let \(v \in R_i \) be a vertex such that \(\forall u \in R_i, \omega(v) \geq \omega(u) \) in
6 \hspace{2em} remove \(v \) from all the graphs \(R_1, R_2, \ldots, R_n \)
7 return \(R_1 \cup R_2 \cup \ldots \cup R_n \)
iterated register coalescing algorithm.
Caveats

• entire run-time library of the standard Java 1.5 distribution
• Loop variables – spilling ?
• JoeQ compiler (John Whaley)
• IR- a set of instructions (quads- operator + 4 operands) organized into a control flow graph
• control flow can potentially exit from the middle of a basic block
Register Allocation after Classical SSA
Elimination is NP-complete

Sumit Kumar Jha

Some examples and graphics are borrowed from the FOSSACS’06 paper and talk by the author Fernando M Q Pereira.
Talk Outline

• Background on “old” complexity results in register allocation
• SSA form and the register allocation problem
• Circular Graphs and Post-SSA Circular Graphs
• The Reduction of coloring Circular graphs to register allocation after SSA elimination.
• The Big Picture
Core register allocation problem

• Instance: a program P and a number N of available registers.
• Problem: Can each of the temporaries of P be mapped to one of the N registers such that temporary variables with interfering live ranges are assigned to different registers?

NP Complete
Chaitin’s Proof

• Chaitin et al. showed in 1981 that the core register allocation problem is NP-complete.
• They used a reduction from the graph coloring problem.
 – The essence of Chaitin et al.'s proof is that every graph is the interference graph of some program.
Static Single Assignment (SSA)

• SSA form. Static single assignment (SSA) form is an intermediate representation used in many compilers like gcc 4.
• If a program is in SSA form, then every variable is assigned exactly once, and each use refers to exactly one definition.
Register Allocation for SSA Programs

- Bouchez and Hack (2006) proved the result that **strict programs** in **SSA** form have chordal interference graphs.

- Chordal graphs can be colored in **polynomial time**!

- **Strict** program: Every path from the initial block to the use of a variable v passes through a definition of v.
SSA and Chordal interference graphs

• The core register allocation problem is **NP-complete**. [Chaitin 1981]
• Also, a compiler can transform a given program into SSA form in cubic time.
• We can color a chordal graph in **linear time** so we can solve the core register allocation problem for programs in SSA form in linear time.
• A contradiction!! Not really.
Register Allocation after conversion to SSA may be easier.

• Given a program P, its SSA-form version P0, and a number of registers K,
• the core register allocation problem (P,K) is not equivalent to (P0,K).
 – we can map a (P;K)-solution to a (P0;K)-solution,
 – we can not necessarily map a (P0;K)-solution to a (P;K)-solution.
• The SSA transformation splits the live ranges of temporaries in P in such a way that P0 may need fewer registers than P.
Why Chatin’s proof does not work after SSA elimination?

(a) Chaitin et al.'s program to represent C4. (b) The interference graph of the original program
Chatin’s proof does not work after SSA elimination
What we learnt till now…

• Core Register Allocation is NP Complete.
• Chatin’s NP completeness proof does not work after classical SSA elimination.
• The solution obtained by analyzing a SSA form program [chordal graphs] in polynomial time can not be mapped back to the original program.
• So, the question if Register Allocation after SSA elimination is NP complete remains open.
The current approach

- The authors identify a subset of graphs called circular graphs such that
 - They are NP-hard to color
 - It is possible to write a program $P(C)$ such that is core register allocation uses $N+a$ registers after SSA elimination if and only if the circular graph C is N-colorable.

- The authors introduce an intermediate step SSA-Circular graphs to move from the circular graph C to the program $P(C)$
The current approach

Circular-arc graph \rightarrow Post-SSA graph \rightarrow Simple Post-SSA Program

Arcs to arcs \rightarrow Register To colors \leftarrow Register Assignment

int m(int a1, int e1, int t1, int i1) {
 int a = a1;
 int e = e1;
 int t = t1;
 int i = i1;
 while (i < 100) {
 int i2 = i + 1;
 a = a2;
 t = t2;
 e = e2;
 }
 return a;
}
Circular Graphs and SSA-Circular Graphs - I

Theorem: Finding a minimal coloring for a circular-arc graph is NP-complete.
Circular Graphs and SSA-Circular Graphs - II

\[
\begin{align*}
\mathbf{d}_1 &= \ldots ; \\
\mathbf{c}_1 &= \ldots ; \\
\begin{bmatrix}
\mathbf{d} \\
\mathbf{c}
\end{bmatrix} &=
\begin{bmatrix}
\mathbf{d}_1, \mathbf{d}_2 \\
\mathbf{c}_1, \mathbf{c}_2
\end{bmatrix} \\
\mathbf{a} &= \mathbf{c} ; \\
\mathbf{b} &= \mathbf{d} ; \\
\mathbf{c}_2 &= \mathbf{a} + 1 ; \\
\mathbf{d}_2 &= \mathbf{b} + 1 ;
\end{align*}
\]
SSA and Chordal interference graphs

(a) C5 represented as a set of intervals. (b) The set of intervals that represent $W = F(C5; 3)$. (c) W represented as a graph.
Circular Graphs and SSA-Circular Graphs - III

Post-SSA program

1) int d1 = ...;
2) int c1 = ...;
3) d = d1;
4) c = c1;
5) while (...) {
6) int a = c;
7) int b = d;
8) c2 = a+1;
9) d2 = b+1;
10) d = d2;
11) c = c2;
12) }

Post-SSA graph
Circular Graphs and SSA-Circular Graphs - IV

Result In Paper: Circular-arc graph has \(N \) coloring iff SSA-graph has \(N \) coloring.
Given a circular graph, can we find a program such that the program needs \(K \) registers iff the circular graph is \(k \)-colorable?
int m(int a, int e, int t, int i) {
 while (i < 100) {
 i = i + 1;
 if (t > 9) break;
 if (e > 10) break;
 int b = i + 11;
 if (a > 11) break;
 int c = i + 12;
 if (b > 12) break;
 int d = i + 13;
 if (c > 13) break;
 e = i + 14;
 if (d > 14) break;
 a = i + 15;
 t = i + 16;
 }
 return a;
}
After SSA-elimination ...

```c
int m(int a1, int e1, int t1, int i1) {
    int a = a1;
    int e = e1;
    int t = t1;
    int i = i1;
    while (i > 10) {
        int i2 = i + 1;
        // << main loop >>
        i = i2;
        a = a2;
        t = t2;
        e = e2;
    }
    return a;
}
```

N + a register assignment

⇒ N coloring
Current View – Register Allocation

Target program

NP Complete (Chatin 1981)

SSA-form

Polynomial RA

Classical SSA Elimination

NP Complete (Current Work)

Code

Code
Questions?
Thanks 😊