
Code Composer Studio v3.0
 Getting Started Guide

Literature Number SPRU509E
September 2004

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

vRead This First

Preface

��������	�
��	�

About This Manual

To get started with Code Composer Studio IDE, you must go through the first
two chapters of this book. The remaining chapters contain information that can
be useful to you, depending on your needs and the tools you are using. To de-
termine whether you can utilize the features in these chapters, please review
the online help provided with Code Composer Studio.

How to Use This Manual

This document contains the following chapters:

Chapter Title Description

1 Introduction Introduces TI’s eXpressDSP technol-
ogy initiative, and includes Code
Composer Studio’s simple and very
basic development flow.

2 Getting Started Quickly with
Code Composer Studio IDE v3

Provides an abridged overview of
some of the basic features and func-
tionalities in Code Composer Studio.

3 Target and Host Setup Provides information on how to de-
fine and set up your target configura-
tion, and how to customize several of
the general IDE options.

4 Code Creation Provides options available to create
code and build a basic Code Com-
poser Studio project.

5 Debug Reviews the debug tools and shows
you how to use them.

6 Analyze/Tune Discusses the various tools to help
developers analyze and tune their
applications.

7 Additional Tools, Tips Gives information on how to find
additional help for documentation,
updates, and with customizing your
Code Composer Studio installaton.

Notational Conventions

vi

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr −a /user/ti/simuboard/utilities

Related Documentation From Texas Instruments

For additional information on your target processor and related support tools,
see the online manuals provided with the CCStudio IDE.

To access the online manuals:

Help→CCStudio Documentation→Manuals

Related Documentation

You can use the following books to supplement this user’s guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989 , American National Standards Institute (ANSI
standard for C)

The C Programming Language (second edition) , by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C , Kochan, Steve G., Hayden Book Company

Trademarks

viiRead This First

Trademarks

Code Composer Studio, DSP/BIOS, Probe Point(s), RTDX, TMS320C6000,
and TMS320C5000 are trademarks of Texas Instruments Incorporated.

Pentium is a registered trademark of Intel Corporation.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

All trademarks are the property of their respective owners.

To Help Us Improve Our Documentation . . .

If you would like to make suggestions or report errors in documentation, please
email us. Be sure to include the following information that is on the title page:
the full title of the book, the publication date, and the literature number.

Email: support@ti.com

viii

Contents

ix

������	

1 Introduction 1-1.
1.1 Welcome to the World of eXpressDSP 1-2.
1.2 Development Flow 1-4.

2 Getting Started Quickly 2-1.
2.1 Launching Code Composer Studio 2-2.

2.1.1 Important Icons Used in Code Composer Studio v3 2-2.
2.2 Creating a New Project 2-2.
2.3 Building Your Program 2-4.
2.4 Loading Your Program 2-4.
2.5 Basic Debugging 2-4.

2.5.1 Go to Main 2-4.
2.5.2 Using Breakpoints 2-4.
2.5.3 Source Stepping 2-5.
2.5.4 Viewing Variables 2-5.
2.5.5 Output Window 2-5.
2.5.6 Symbol Browser 2-6.

2.6 Introduction to Help 2-6.

3 Target and Host Setup 3-1.
3.1 Define and Set Up Target 3-2.

3.1.1 Code Composer Studio Setup Utility 3-2.
3.1.2 Parallel Debug Manager Plus (PDM+) 3-8.
3.1.3 Connect/Disconnect 3-9.

3.2 Host Setup 3-9.
3.2.1 IDE Customization 3-9.

4 Code Creation 4-1.
4.1 Create and Configure Project 4-2.

4.1.1 Creating a Project 4-2.
4.1.2 Project Configurations 4-5.
4.1.3 Project Dependencies 4-6.
4.1.4 Makefiles 4-9.
4.1.5 Source Control Integration 4-10.

4.2 Configuring DSP/BIOS 4-12.
4.3 Editor 4-17.

Contents

x

4.3.1 Using the Code Composer Studio Editor 4-17.
4.3.2 Using an External Editor 4-18.

4.4 Code Generation Tools 4-19.
4.4.1 Code Development Flow 4-19.
4.4.2 Project Build Options 4-20.
4.4.3 Compiler Overview 4-21.
4.4.4 Assembly Language Development Tools 4-22.
4.4.5 Assembler Overview 4-23.
4.4.6 Linker Overview 4-23.
4.4.7 C/C++ Development Tools 4-24.

4.5 Building Your Code Composer Studio Project 4-26.
4.5.1 From Code Composer Studio 4-26.
4.5.2 External Make 4-27.
4.5.3 Command Line 4-27.

4.6 Available Foundation Software 4-29.
4.6.1 DSP/BIOS 4-29.
4.6.2 CSL 4-29.
4.6.3 BSL 4-30.
4.6.4 DSPLIB 4-30.
4.6.5 IMGLIB 4-31.
4.6.6 XDAIS Components 4-33.
4.6.7 Reference Frameworks 4-35.

4.7 Automation (for Project Management) 4-38.
4.7.1 Using General Extension Language (GEL) 4-38.
4.7.2 Scripting Utility 4-39.

5 Debug 5-1.
5.1 Setting Up Your Environment for Debug 5-2.

5.1.1 Setting Custom Debug Options 5-2.
5.1.2 Simulation 5-8.
5.1.3 Program Load 5-14.

5.2 Basic Debugging 5-16.
5.2.1 Running/Stepping 5-17.
5.2.2 Breakpoints 5-18.
5.2.3 Probe Points 5-21.
5.2.4 Watch Window 5-24.
5.2.5 Memory Window 5-27.
5.2.6 Register Window 5-29.
5.2.7 Disassembly/Mixed Mode 5-30.
5.2.8 Call Stack 5-31.
5.2.9 Symbol Browser 5-31.
5.2.10 Command Window 5-32.

5.3 Advanced Debugging Features 5-34.
5.3.1 Thread Level Debugging 5-34.

Contents

xiContents

5.3.2 Advanced Event Triggering (AET) 5-36.
5.4 Real-Time Debugging 5-40.

5.4.1 Real−Time Mode 5-40.
5.4.2 Real-Time Data Exchange (RTDX) 5-42.

5.5 Automation (for Debug) 5-49.
5.5.1 Using the General Extension Language (GEL) 5-49.
5.5.2 Scripting Utility for Debug 5-49.

5.6 Target Reset 5-50.
5.6.1 Reset Target 5-50.
5.6.2 Emulator Reset 5-50.

6 Analyze/Tune 6-1.
6.1 Appliction Code Analysis 6-2.

6.1.1 Data Visualization 6-2.
6.1.2 Simulator Analysis 6-3.
6.1.3 Emulator Analysis 6-4.
6.1.4 BIOS Real-Time Analysis (RTA) Tools 6-5.
6.1.5 Code Coverage and Multi-Event Profiler Tool 6-9.

6.2 Application Code Tuning 6-10.
6.2.1 Optimization Dashboard 6-10.
6.2.2 Compiler Consultant 6-14.
6.2.3 CodeSizeTune (CST) 6-15.
6.2.4 Cache Tune 6-16.

7 Additional Tools, Help, and Tips 7-1.
7.1 Component Manager 7-2.

7.1.1 Opening Component Manager 7-3.
7.1.2 Multiple Versions of the Code Composer Studio IDE 7-3.

7.2 Update Advisor 7-4.
7.2.1 Registering Update Advisor 7-4.
7.2.2 Checking for Tool Updates 7-4.
7.2.3 Automatically Checking for Tool Updates 7-5.
7.2.4 Uninstalling the Updates 7-5.

7.3 Additional Help 7-6.
7.3.1 Code Composer Studio Online Help 7-6.

Figures

xii

�����	

1−1 eXpressDSP] Software and Development Tools 1-3.
1−2 Simplified Code Composer Studio Development Flow 1-4.
4−1 Code Composer Studio IDE Basic Window 4-3.
4−2 Changing Active Project Configuration 4-5.
4−3 Source Control Pop-Up Menu 4-11.
4−4 DSP/BIOS Configuration Window 4-12.
4−5 View Source Code 4-17.
4−6 External Editor Icon 4-18.
4−7 Code Development Flow 4-19.
4−8 Build Options Dialog Box 4-20.
4−9 TMS320 DSP Algorithm Standard Elements 4-33.
4−10 Elements of a Reference Framework 4-36.
4−11 GEL script to open volume project 4-38
4−12 Custom GEL menu to open a project 4-39
5−1 Symbol Browser Window 5-32.
5−2 Command Window 5-33.
5−3 RTDX Data Flow 5-44.
5−4 RTDX Diagnostics Window 5-45.
5−5 RTDX Config Window 5-45.
5−6 RTDX Channel Viewer Window 5-46.
6−1 Emulator Analysis Window 6-5.
6−2 Real-Time Capture and Analysis 6-6.
6−3 DSP/BIOS Toolbar 6-7.
7−1 Component Manager 7-2.

1-1

������������

This chapter introduces TI’s eXpressDSP technology initiative. It also includes
Code Composer Studio’s simple and very basic development flow.

Topic Page

1.1 Welcome to the World of eXpressDSP 1-2.

1.2 Development Flow 1-4.

Chapter 1

Welcome to the World of eXpressDSP

 1-2

1.1 Welcome to the World of eXpressDSP

TI has a variety of development tools available that enable quick movement
through the DSP-based application design process − from concept, to code/
build, through debug analysis, tuning, and on to testing. Many of the tools are
part of TI’s real-time eXpressDSP Software and Development Tool strategy,
designed to enable innovators and inventors to speed new products to market
and turn ideas into reality. These tools prove very helpful in quickly getting
started as well as saving valuable time in the design process, allowing you to
concentrate on differentiating your product in the marketplace. TI’s real-time
eXpressDSP Software and Development Tool strategy includes three tightly
knit ingredients that will empower developers to tap the full potential of
TMS320 DSPs:

� The world’s most powerful DSP-integrated development tools: Code
Composer Studio Development Tools.

� eXpressDSP Software including:

� a scalable, real-time software foundation: DSP/BIOS kernel,

� standards for application interoperability and reuse: TMS320 DSP Al-
gorithm Standard, and

� design-ready code that is common to many applications to get you
started quickly on DSP design: eXpressDSP Reference Frameworks.

� A growing base of TI DSP-based products from TI’s DSP Third Party Net-
work, including eXpressDSP-compliant products that can be easily inte-
grated into systems.

Each element is designed to simplify DSP programming and move develop-
ment from a custom-crafted approach, to a new paradigm of interoperable
software from multiple vendors supported by a worldwide infrastructure.

There has been an explosive growth in real-time applications demanding the
real-time processing power of TI DSPs. eXpressDSP enables innovators and
inventors to speed new products to market and turn ideas into reality. Pre-
viously unimagined applications, including virtual reality, medical imaging,
auto navigation, digital audio, and Internet telephony now rely on the crucial
real-time computing power that can only be found in a DSP.

Welcome to the World of eXpressDSP

1-3Introduction

Figure 1−1. eXpressDSP� Software and Development Tools

Compliant
plug−in

Compliant
plug−in

Program
build debug

Program
analysis

Real−time

Code Composer StudioTM dev tools

XDS560TM emulator

Host computer

RTDXTM

JTAG

Compliant
algorithm software

Application

TMS320TM DSP Algorithm Standard

algorithm
Compliant Compliant

algorithm

Signal processing libraries

DriversDSP/BIOSTM

Application/developer kits

TMS320TM DSP

Embedded emulation
components

Reference Frameworks

Development Flow

 1-4

1.2 Development Flow

The development flow of most DSP−based applications consists of four basic
phases: application design, code creation, debug, and analyze/tune. Code
Composer Studio is the key element of TI’s eXpressDSP software and devel-
opment tools which integrate many of the tools needed to assist the developer
in the development flow. This user’s guide will provide basic procedures and
techniques in program development flow.

Figure 1−2. Simplified Code Composer Studio Development Flow

Design
conceptual
planning

Code & build
create project,

write source code,
configuration file

Syntax checking,

logging, etc.
probe points,

Debug

Analyze and Tune

2-1

������� ������� �������

This chapter provides an overview of some of the basic features and function-
alities in Code Composer Studio v3, to guide you in creating and building sim-
ple projects. Experienced users should skip this chapter and proceed to the
following chapters for more in-depth explanations of Code Composer Studio’s
various features.

Topic Page

2.1 Launching Code Composer Studio 2-2.

2.2 Creating a New Project 2-2.

2.3 Building Your Program 2-4.

2.4 Loading Your Program 2-4.

2.5 Basic Debugging 2-4.

2.6 Introduction to Help 2-6.

Chapter 2

Launching Code Composer Studio

 2-2

2.1 Launching Code Composer Studio

To launch Code Composer Studio IDE for the first time, click the icon (shown
below) on your desktop. A simulator is automatically configured by default. To
configure Code Composer Studio for a specific target, please refer to Chapter
3 for more information.

2.1.1 Important Icons Used in Code Composer Studio v3

This list of icons is important in helping you to traverse through the Code Com-
poser Studio IDE. These icons will be referred to throughout this manual.

Used to launch Code Composer Studio

Rebuilds the project

Builds the project incrementally

Halts execution

Toggle breakpoint toolbar button

Run toolbar button

Step into button

Step out of button

Step over button

2.2 Creating a New Project

You can create a working project by following these steps:

Step 1: If you installed Code Composer Studio in C:\CCStudio, create a fold-
er called practice in the C:\CCStudio\myprojects folder.

Step 2: Copy the contents of C:\CCStudio\tutorial\target\consultant folder to
this new folder. (Note: target refers to the current configuration of
Code Composer Studio. By default, the target is sim64xx LE. For

Creating a New Project

2-3Getting Started Quickly

more about Code Composer Studio configurations, please refer to
Chapter 3)

Step 3: From the Project menu, choose New.

Step 4: In the Project Name field, type practice .

Step 5: In the Location field, type or browse to the folder you created in step
1.

Step 6: By default, Project Type is set as Executable (.out) and Target is set
as the current configuration of Code Composer Studio.

Step 7: Click Finish. Code Composer Studio creates a project file called
practice.pjt This file stores your project settings and references the
various files used by your project.

Step 8: Add files to the project by choosing Add Files to Project from the Proj-
ect menu. You can also right-click the project in the Project View win-
dow on the left and then select Add Files to Project. Add main.c, Do-
Loop.c, and lnk.cmd (this is a linker command file that maps sections
to memory) from the folder you created. Browse to the C:\CCStu-
dio\c6000\cgtools\lib\ directory and add the rts.lib file for the target
you are configured for.

Step 9: You do not need to manually add include files to your project, be-
cause the program finds them automatically when it scans for depen-
dencies as part of the build process. After you build your project, the
include files appear in the Project View.

Building Your Program

 2-4

2.3 Building Your Program

Now that you have created a functional program, you can build it. Since this
is the first time the project is being built, it is recommended that you use the
Build All function. An output window appears to show the build in process.
When the build is finished, the output window will display “Build complete 0 er-
rors, 0 warnings.”

Rebuild All is mainly used to rebuild the project when project options have
been modified.

These build methods can also be accessed in the Project menu. For further
information, please go to Chapter 4.

2.4 Loading Your Program

After the program has been built successfully, load the program by going to
File→Load Program. By default, Code Composer Studio will create a subdi-
rectory called Debug within your project directory, and store the .out file in it.
Select practice.out and click Open to load the program.

Note: Remember to reload the program by choosing File→Reload Pro-
gram if you rebuild the project after making changes.

2.5 Basic Debugging

You can see Code Composer Studio’s versatile debugger in action by complet-
ing the following exercises. For more in-depth information, please refer to
Chapter 5.

2.5.1 Go to Main

To begin execution of the Main function, select Debug→Go main. The execu-
tion halts at Main.

2.5.2 Using Breakpoints

To set a breakpoint, place the cursor on the desired line and press F9. In addi-
tion, you can also set the breakpoint by selecting the toggle breakpoint toolbar
button. To remove the breakpoint, simply press F9 or the button again. When

Basic Debugging

2-5Getting Started Quickly

a breakpoint has been set, a red icon will appear at the selection margin to the
left of the code.

In main.c, set the breakpoint at the line “DoLoop(Input1, Input2, Weights, Out-
put, LOOPCOUNT);”. Since execution was halted at the main function, now
you can press F5, select Debug→Run or select the Run toolbar button to run
the program. As you can see, once execution reaches the breakpoint, it halts.

2.5.3 Source Stepping

Source stepping is only possible when program execution has been halted.
Since you halted at breakpoint, you can now execute the program line by line
using source stepping.

Step Into the DoLoop function by selecting the Step Into button. Step through
a few times to observe the executions.

The Step Over and Step Out Of functions are also available and those buttons
are right below the Step Into button.

Assembly stepping is also available. Whereas source stepping steps through
the lines of code, assembly stepping steps through the assembly instructions.
For more information on assembly stepping, please go to section 5.2.1.

2.5.4 Viewing Variables

In the debugging process, it is often necessary to view the value of the vari-
ables to ensure that the function executes properly. Variables can be viewed
in the watch window when the CPU has been halted. The watch window can
be accessed by View→Watch Window. In the watch locals tab, all the relevant
variables in the current execution will be shown.

As you continue to Step Into the while loop, you will see that the values of the
variables change through each execution. In addition, you can view the values
of specific variables by hovering the mouse pointer over the variable or by plac-
ing the variables in the Watch1 tab. For more information on variables and
watch windows, please go to section 5.2.4.

2.5.5 Output Window

The Output window is located at the bottom of the screen by default. It can also
be accessed by View→Output Window. By default, the printf function pro-
duces the same Output window. Information such as the contents of Stdout
and the build log is displayed in the Output Window.

Introduction to Help

 2-6

2.5.6 Symbol Browser

The symbol browser is a powerful tool that allows you to access all the compo-
nents in your project with a single click. Select it through View→Symbol Brows-
er. The symbol browser has multiple tabs: in this section we will discuss the
Files, Functions, and Globals tabs.

When you expand the tree in the Files tab, you will see the source files in your
project. A file is automatically accessed when you double-click on it; the same
holds true for the Functions tab. The Globals tab will allow you to access the
global symbols in your project.

For more information on the Symbol browser, please go to section 5.2.9.

These few steps have allowed you to successfully create, build, load and de-
bug your first Code Composer Studio program.

2.6 Introduction to Help

Code Composer Studio provides a multitude of help tools accessed through
the Help menu. Select Help →Contents to search by contents. Tutorials guide
you through the Code Composer Studio development process.

Select Help →Web Resources to obtain the most current help topics and other
guidance. User manuals are pdf files that provide information on specific fea-
tures or processes.

Access Code Composer Studio’s newest features through Help→Update Ad-
visor.

3-1

������ ��� ��	�

�����

This chapter provides information on how to define and set up your target con-
figuration for both single processor and multiprocessor configurations, and
how to customize several of the general IDE options.

Topic Page

3.1 Define and Set Up Target 3-2.

3.2 Host Setup 3-9.

Chapter 3

Define and Set Up Target

 3-2

3.1 Define and Set Up Target

3.1.1 Code Composer Studio Setup Utility

This section discusses how to use the Setup utility to define and set up your
target configuration, for both single processor and multiprocessor configura-
tions.

3.1.1.1 Importing an Existing Configuration

The Setup utility allows you to configure the software to work with different
hardware or simulator targets. You must select your own configuration in Set-
up before starting Code Composer Studio.

You can create a configuration using the provided standard configuration files,
or create a customized configuration using your own configuration files (see
the online help and/or the tutorial). For the purposes of this example, the stan-
dard configuration files are used.

To create a system configuration using a standard configuration file:

Step 1: Double-click on the Setup Code Composer Studio desktop icon.
Both the System Configuration dialog box and the Import Configura-
tion dialog boxes appear, but we are concerned with the Import Con-
figuration box for this step.

Step 2: Click the Clear button in the Import Configuration dialog box to re-
move any previously defined configuration.

Step 3: Click Yes to confirm the Clear command.

Step 4: From the list of Available Configurations, select the standard config-
uration that matches your system.

Define and Set Up Target

3-3Target and Host Setup

Standard
Configurations

Description of
highlighted
configuration

Determine if one of the available configurations matches your sys-
tem. If none are adequate, you can create a customized configura-
tion (see the online help and/or the tutorial).

Step 5: Click the Import button to import your selection to the system config-
uration currently being created. The configuration you selected now
displays under the My System icon in the System Configuration pane
of the Setup window.

If your configuration has more than one target, repeat steps 4 and
5 until you have selected a configuration for each board.

Step 6: Click the Save and Quit button to save the configuration.

Step 7: Click the Yes button to start the Code Composer Studio IDE with the
configuration you just created.

Define and Set Up Target

 3-4

You can now start a project. See Chapter 4 of this book, or the online help and
tutorial for information on starting a project.

3.1.1.2 Creating a New System Configuration

To set up a new system configuration you will be working from the Code Com-
poser Studio Setup dialog box, instead of the Import Configuration dialog box.

Start with a blank working configuration by selecting Clear from the File menu.
(You may also start with a standard or imported configuration that is close to
your desired system. In that case, begin at step three below after loading the
starting configuration.)

Step 1: Select the My System icon in the System Configuration pane.

Step 2: In the Available Board/Simulator Types pane, select a target board
or simulator that represents your system.

If you want to use a target board or simulator that is not listed in the Available
Board/Simulator Types pane, you must install a suitable device driver now.
(For example, you may have received a device driver from a third-party vendor

Define and Set Up Target

3-5Target and Host Setup

or you may want to use a driver from a previous version of Code Composer
Studio.) Proceed to Installing/Uninstalling Device Drivers (select Help→Con-
tents→Code Composer Studio Setup→How To…→Installing/Uninstalling De-
vice Drivers) and then return to this section to complete your system configura-
tion.

Step 3: Open the Board Properties dialog box using any of the following pro-
cedures:

� Double-click on the device driver in the Available Board/Simula-
tor Types pane.

� Click on the device driver in the Available Board/Simulator Types
pane and drag-and-drop the driver onto the System Configura-
tion pane.

� Select the device driver in the Available Board/Simulator Types
pane and then select the command, Add to System, in the Setup
Commands/Information pane.

� Select the device driver in the System Configuration pane and
then select the Properties command from the Edit menu.

Define and Set Up Target

 3-6

Step 4: Edit the information in the Board Properties dialog. Board Properties
is a tabbed dialog.

The tabs that appear and the fields that can be edited will differ de-
pending on the board that you have selected.

After filling in the information in each tab, you can click the Next but-
ton to go to the next tab, or simply click on the next tab itself. When
you are done, click the Finish button.

For more information on configuring the Board Properties dialog, see the on-
line help (Help→Contents→Code Composer Studio Setup→Custom Setup).

3.1.1.3 Creating Multiprocessor Configurations

The most common configurations include a single simulator or a single target
board with a single CPU. However, you can create more complicated configu-
rations in the following ways:

� Connect multiple emulators to your computer, each with its own target
board.

� Connect more than one target board to a single emulator, using special
hardware to link the scan paths on the boards.

� Create multiple CPUs on a single board, and the CPUs can be all of the
same kind or they can be of different types (e.g., DSPs and microcontrol-
lers).

Although a Code Composer Studio configuration is represented as a series of
boards, in fact, each board is either a single CPU simulator or a single emulator
scan chain that can be attached to one or more boards with multiple proces-
sors. The device driver associated with the board must be able to comprehend
all the CPUs on the scan chain. More information may be found in the online
help (Help→Contents→Code Composer Studio Setup→How To…→Config-
uring CCS for Heterogeneous Debugging).

3.1.1.4 Startup GEL Files

The general extension language (GEL) is an interpretive language, similar to
C. GEL functions can be used to configure the Code Composer Studio devel-
opment environment. They can also be used to initialize the target CPU. A rich
set of built-in GEL functions is available, or you can create your own
user-defined GEL functions.

Define and Set Up Target

3-7Target and Host Setup

The Startup GEL file(s) tab allows you to associate a GEL file (.gel) with each
processor in your system configuration.

When Code Composer Studio is started, each startup GEL file is scanned and
all GEL functions contained in the file are loaded. If the GEL file contains a
StartUp() function, the code within that function is also executed. For example,
the GEL mapping functions can be used to create a memory map that de-
scribes the processor’s memory to the debugger.

StartUp(){ /*Everything in this function will be executed
on startup*/ GEL_MapOn(); GEL_MapAdd(0, 0, 0xF000, 1,
1); GEL_MapAdd(0, 1, 0xF000, 1, 1);}

For more information, see the Code Composer Studio online help. Select
Help→Contents→Creating Code and Building Your Project→Automating
Tasks with General Extension Language).

3.1.1.5 Device Drivers

Special software modules called device drivers, are used to communicate with
the target. Each driver file defines a specific target configuration: a target
board and emulator, or simulator. Device drivers may either be supplied by
Texas Instruments or by third-party vendors.

Each target board or simulator type listed in the Available Board/Simulator
Types pane is physically represented by a device driver file. Code Composer

Define and Set Up Target

 3-8

Studio does not support creating device drivers, but TI or third parties may ship
device drivers separately from those which are pre-installed.

3.1.2 Parallel Debug Manager Plus (PDM+)

In multiprocessor configurations, invoking Code Composer Studio starts a
special control known as the Parallel Debug Manager Plus (PDM+).

The PDM+ allows you to open a separate Code Composer Studio session for
each target device. Activity on the specified devices can be controlled in paral-
lel using the PDM control.

The 3.0 version of Parallel Debug Manager (PDM+) has several changes from
earlier versions:

� Users can connect or disconnect from targets “on the fly” by right-clicking
the processor on the right pane of PDM+

� The interface allows an expanded view of processors, with several drop-
down filters to reveal a list by group, by CPU or by board.

� Red highlighting on the processor icon (on the left pane) indicates that the
processor is not connected to the system or that it has updated status in-
formation.

� Your can now put processors into loosely-coupled groups, (i.e., where the
processors are not all on the same physical scan chain). Choosing Group
View from the second dropdown menu and System on PDM’s left pane
shows which groups are synchronous and which are not.

Global breakpoints work only when processors in a group belong to the same
physical scan chain.

For further details on the PDM+, see the Code Composer Studio online help
under Help→Contents→Debug→Advanced Debugging Features→Parallel
Debug Manager(PDM).

Host Setup

3-9Target and Host Setup

3.1.3 Connect/Disconnect

Code Composer Studio IDE now makes it easier to connect and disconnect
with the target dynamically, by using a new functionality called Connect/Dis-
connect. Connect/Disconnect allows you to disconnect from your hardware
target and even to restore the previous debug state when connecting again.

By default, Code Composer Studio will not attempt to connect to the target
when the control window is opened. Connection to the target can be estab-
lished by going to Debug→Connect. The default behavior can be changed in
the Debug Properties tab under Options→Customize.

The Status Bar will briefly flash a help icon to indicate changes in the target’s
status. When the target is disconnected, the status bar will indicate this fact,
as well as the last known execution state of the target (i.e., halted, running, free
running or error condition). When connected, the Status Bar will also indicate
if the target is stepping (into, over or out), and the type of breakpoint that
caused the halt (software or hardware).

After a connection to the target (except for the first connection), a menu option
entitled Restore Debug State, will be available under the Debug Menu. Select-
ing this option will enable every breakpoint that was disabled at disconnect.
You can also reset them normally by pressing F9 or selecting Toggle Break-
points from the right-click menu. Breakpoints from cTools jobs and emu analy-
sis will not be enabled.

If the PDM+ is open, you can connect to a target by right-clicking on the cell
corresponding to the target device underneath the column marked, Name.

For further details on Connect/Disconnect, see the Code Composer Studio on-
line help under Debugging→Connect/Disconnect.

3.2 Host Setup

3.2.1 IDE Customization

Once Code Composer Studio has been properly configured and the IDE
launched, you can customize several of the general IDE options to adhere to
your personal needs.

3.2.1.1 Setting Custom General IDE Options

Color

The color of various screen elements can be changed to suit your taste. All col-
or changes are saved in the workspace.

Host Setup

 3-10

To change the color of screen elements:

Step 1: Select Option→Customize, or right-click in a document window or
Disassembly window and select Properties→Colors.

Step 2: In the Customize dialog box, select the Color tab.

The color dialog offers the following options:

Screen Element . Click the drop-down list and select the screen element to
change.

Color. The color field displays the current color of the selected screen element.

Palette. Select a different color from the palette. The color field is updated with
the selected color.

Step 1: Click Apply to accept your selection.

Step 2: Click OK to exit the dialog box. Click Cancel to exit the dialog box
without accepting your changes.

Host Setup

3-11Target and Host Setup

Keyboard

The default keyboard shortcuts can be changed and new keyboard shortcuts
can be created for any editing or debugging commands that can be invoked
from a document window.

To assign keyboard shortcuts:

Step 1: Select Option→Customize, or right−click in a document window and
select Properties→Keyboard.

Step 2: In the Customize dialog box, select the Keyboard tab.

The Customize → Keyboard dialog offers the following options:

Filename. By default, the file that contains the standard keyboard shortcuts
is displayed. To load a previously saved keyboard configuration file (*.key), en-
ter the path and filename, or use the browse button (…) to navigate to the file.

Commands. Select the command you want to assign to a keyboard shortcut.

Assigned Keys. Displays the keyboard shortcuts that are assigned to the se-
lected command.

Add. Click the Add button to assign a new key sequence for invoking the se-
lected command. In the Assign Shortcut dialog box, enter the new key se-
quence, and then click OK.

Host Setup

 3-12

Remove. To remove a particular key sequence for a command, select the key
sequence in the Assigned Keys list and click the Remove button.

Default Keys. Immediately revert back to the default keyboard shortcuts by
clicking the Default Keys button.

Save As. Click the Save As button to save your custom keyboard configuration
in a file. In the Save As dialog box, navigate to the location where you want to
save your configuration. Enter a name for your keyword configuration file
(*.key). Click Save.

Step 3: Click OK to exit the dialog box.

Control Window Display

To set display options:

Step 1: Select Option→Customize.

Step 2: In the Customize dialog box, select the Control Window Display tab.

The Control Window Display dialog offers the following options.

Host Setup

3-13Target and Host Setup

Title bar displays

The following options control the information that is displayed in the title bar
of the Control window:

Current Workspace. Displays the name of the current workspace. If selected,
you can choose to display just the filename or display the full path.

Board name. Displays the name of the target board. This option is selected
by default.

Processor name. Displays the name of the target processor. This option is
selected by default.

Processor type. Displays the type of target processor. This option is selected
by default.

Current loaded program. Displays the name of the current loaded program.
If selected, you can choose to display just the output filename or display the
full path.

Current Project. Displays the name of the active project. If selected, you can
choose to display just the project filename or display the full path.

Device Driver Name. Displays the name of the device driver. If selected, you
can choose to display just the device driver filename or display the full path.

Product Name. Displays the name of the Code Composer Studio product. By
default, this option is selected.

Source file names

The following option controls the information that is displayed in the title bar
of document windows and the Build Options dialog box:

Display full path. Displays the full path and filename. By default, only the file-
name is displayed.

Project close

Close all windows on Project Close. When a project is closed, close all doc-
ument windows associated with the project. If a file has been modified, you will
be prompted to save your changes. By default, associated windows are not
closed.

Close projects

Close projects on exit Control W indow. This option is only significant when
using a multiprocessor setup. Starting Code Composer Studio with a multipro-

Host Setup

 3-14

cessor setup opens the Parallel Debug Manager (PDM). From the PDM, you
can launch a control window for each defined processor.

With this option disabled, projects remain open even when the control window
is closed. For example, if you open a control window from the PDM, load a proj-
ect, exit the control window, and then reopen the control window, you will see
that the project is still open.

With this option enabled, projects that are opened within a control window are
closed when you exit the control window.

Without a multiprocessor setup, closing the control window exits Code Com-
poser Studio, which always closes all projects.

Step 1: Click OK to accept your selections and close the Customize dialog
box.

File Access

The number of files and the format of the file names listed in the recent files
list within the Code Composer Studio interface can be changed to suit your
taste.

To Change the File Access Options:

Step 1: Select Option→Customize.

Step 2: In the Customize dialog box, select the File Access tab. Use the
scroll arrows at the top of the dialog box to locate the tab.

The File Access dialog offers the following options:

Source files. Enter the maximum number of recent source files (File→Recent
Source Files) to display. The value must be an integer in the range 1 to 10. The
default value is 4.

Programs. Enter the maximum number of recent program files (File→Recent
Program Files) to display. The value must be an integer in the range 1 to 10.
The default value is 4.

Symbols. Enter the maximum number of recent symbol files (File→Recent
Symbol Files) to display. The value must be an integer in the range 1 to 10.
Default value is 4.

GEL files . Enter the maximum number of recent GEL files (File→Recent GEL
Files) to display. The value must be an integer in the range 1−10. Default value
is 4.

Host Setup

3-15Target and Host Setup

Projects . Enter the maximum number of recent project files (Project→Recent
project files) to display. The value must be an integer in the range 1 to 10. The
default value is 4.

Workspaces . Enter the maximum number of recent workspaces (File →Re-
cent Workspaces) to display. The value must be an integer in the range 1 to
10. The default value is 4.

Reset file directories when opening a project . If you choose this option,
when you try to open a file, Code Composer Studio will start you inside the di-
rectory of your active project. If you don’t choose this option, Code Composer
Studio will start you inside the last directory you used, regardless of which proj-
ect you are in now.

Show time stamp for program files in recent file list . Enabling this option
will display the time stamp along with the file name of each program file in the
recent file list.

Step 3: Click OK to exit the Customize dialog box.

Font

The typeface, style, size, and color of the default font can be changed to suit
your preference.

To restore the original font and font characteristics, select Courier font, Regu-
lar style, size 12.

To change fonts and font characteristics:

Host Setup

 3-16

Step 1: Select Option→Font, or right-click in a document window or Disas-
sembly window and select Properties→Fonts.

The Font dialog box offers the following options.

Font. Select a font from the list.

Font style. Select a style for the chosen font. The styles that are displayed
vary depending on the selected font.

Size. Select a font size from the list. The sizes vary depending on the selected
font.

Sample. The Sample field displays the selected font and font characteristics
as they will appear within the IDE.

Script. Select a language script from the drop-down list.

Step 2: Click OK.

4-1

����
�������

This chapter gives a brief look at the options available to create code and build
a basic Code Composer Studio project.

Topic Page

4.1 Create and Configure Project 4-2.

4.2 Configuring DSP/BIOS 4-12.

4.3 Editor 4-17.

4.4 Code Generation Tools 4-19.

4.5 Building Your Code Composer Studio Project 4-26.

4.6 Available Foundation Software 4-29.

4.7 Automation (For Project Management) 4-38.

Chapter 4

Create and Configure Project

 4-2

4.1 Create and Configure Project

A project stores all the information needed to build an individual program or
library.

� Filenames of source code and object libraries

� Code generation tool options

� Include file dependencies

4.1.1 Creating a Project

The following procedure allows you to create single or multiple new projects
(multiple projects can be open simultaneously). Each project’s filename must
be unique.

The information for a project is stored in a single project file (*.pjt).

Step 1: From the Project menu, choose New.
The Project Creation wizard window displays.

Step 2: In the Project Name field, type the name you want for your project.

Step 3: In the Location field, specify the directory where you want to store the
project file, Object files generated by the compiler and assembler are
also stored here.
You can type the full path in the Location field or click the Browse
button and use the Choose Directory dialog box. It is a good idea to
use a different directory for each new project.

Step 4: In the Project Type field, select a Project Type from the drop-down
list.
Choose either Executable (.out) or Library (lib). Executable indicates
that the project generates an executable file. Library indicates that
you are building an object library.

Create and Configure Project

4-3Code Creation

Step 5: In the Target field, select the target family that identifies your CPU.
This information is necessary when tools are installed for multiple
targets.

Step 6: Click Finish.
A project file called projectname.pjt is created. This file stores all files
and project settings used by your project.

The new project and first project configuration (in alphabetical order) become
the active project, and inherit TI-supplied default compiler and linker options
for debug and release configurations.

Figure 4−1. Code Composer Studio IDE Basic Window

DSP/BIOS
Toolbar

Build Toolbar

Active
project

Project View
Window

After creating a new project file, add the filenames of your source code, object
libraries, and linker command file to the project list.

4.1.1.1 Adding Files to a Project

You can add several different files or file types to your project. The types are
shown in the graphic below. To add files to your project:

Step 1: Select Project→Add Files to Project, or right-click on the project’s
filename in the Project View window and select Add Files.

Create and Configure Project

 4-4

The Add Files to Project dialog box displays.

Drop-down list of
file types

Step 2: In the Add Files to Project dialog box, specify a file to add. If the file
does not exist in the current directory, browse to the correct location.
Use the Files of Type drop-down list to set the type of files that appear
in the File name field.

Note:

Do not try to manually add header/include files (*.h) to the project. These files
are automatically added when the source files are scanned for dependen-
cies as part of the build process.

Step 3: Click Open to add the specified file to your project.

The Project View (see Figure 4−1) is automatically updated when a file is
added to the current project.

The project manager organizes files into folders for source files, include files,
libraries, and DSP/BIOS configuration files. Source files that are generated by
DSP/BIOS are placed in the Generated Files folder. Code Composer Studio
IDE finds files by searching for project files in the following path order when
building the program:

� The folder that contains the source file.

Create and Configure Project

4-5Code Creation

� The folders listed in the Include search path for the compiler or assembler
options (from left to right).

� The folders listed in the definitions of the optional DSP_C_DIR (compiler)
and DSP_A_DIR (assembler) environment variables (from left to right).

Removing a File

If you need to remove a file from the project, right-click on the file in the Project
View and choose Remove from Project in the pop-up menu.

4.1.2 Project Configurations

A project configuration defines a set of project level build options. Options
specified at this level apply to every file in the project.

Project configurations enable you to define build options for the different
phases of program development. For example, you can define a Debug
configuration to use while debugging your program and a Release
configuration for building the finished product.

Each project is created with two default configurations: Debug and Release.
Additional configurations can be defined. Whenever a project is created or an
existing project is initially opened, the first configuration (in alphabetical order)
is set to active and is preserved the Code Composer Studio workspace.

When you build your program, the output files generated by the software tools
are placed in a configuration-specific subdirectory. For example, if you have
created a project in the directory MyProject, the output files for the Debug
configuration are placed in MyProject\Debug. Similarly, the output files for the
Release configuration are placed in MyProject\Release.

Changing the Active Project Configuration

Click on the Select Active Configuration field in the Project toolbar and select
a configuration from the drop-down list.

Figure 4−2. Changing Active Project Configuration

Select Active
Project

Select Active
Configuration

Create and Configure Project

 4-6

Adding a New Project Configuration

Step 1: Select Project→Configurations, or right-click on the project’s
filename in the Project View window and select Configurations.

Step 2: In the Project Configurations dialog box, click Add.

The Add Project Configuration window displays.

Step 3: In the Add Project Configuration dialog box, specify the name of the
new configuration in the Create Configuration field, and choose to
Use Default Settings (build options) or Copy Settings from an
existing configuration to populate your new configuration.

Step 4: Click OK to accept your selections and exit the Add Project
Configuration dialog.

Step 5: Click Close to exit the Project Configurations dialog.

Step 6: Modify your new configuration using the build options dialog found
in the Project menu.

4.1.3 Project Dependencies

The project dependencies tool provides an easy way to manage and build
more complex projects. Project dependencies allow you to break a large
project into multiple smaller projects and to subsequently create the final
project using dependencies between projects. Note: Subprojects are always
built first, since the main project depends on them.

Create and Configure Project

4-7Code Creation

Adding/Creating a sub−project

The three ways to create a subproject, or, to be more specific, to create a
project dependency relationship are discussed in the following topics.

First Method: Drag−and−drop from the project view windows.

You can drop the sub-project to the target project icon or to the Dependent
Projects icon under the target project. You can drag and drop from within the
same project view window, or you can you drag and drop between project view
windows of two Code Composer Studios running simultaneously.

Second Method: Drag−and−drop from Windows File Explorer.

Step 1: Choose the .pjt file from the project you want to be a subproject.

Step 2: Open Windows Explorer so that both Explorer and Code Composer
Studio are visible at the same time.

Step 3: In Windows Explorer, select the .pjt file of the project you want to be
a subproject.

Step 4: Drag this .pjt file to the Project Window of Code Composer Studio.
A plus sign should appear on the .pjt file that you were dragging.

Step 5: Drop it into the Project Dependency folder of the main project.

Third Method: Use the Context Menu

In the project view, right-click on the Dependent Projects icon under a loaded
project, select Add Dependent Projects. In the pop-up dialog, browse and
select another project .pjt file. The selected .pjt file will be a sub-project of the
loaded project. If the selected .pjt file is not yet loaded, it will be automatically
loaded.

Project Dependencies Settings

Sub-projects each have their own configuration settings. In addition, the main
project has configuration settings for each sub-project. All of these settings
can be accessed from the Project Dependencies dialogue. The dialogue can
be accessed by the project menu as well as the context menu of the project.
You simply click on Project Dependencies… to access the dialogue.

Modifying Project Configurations

In the Project Dependencies dialogue, it is possible to modify the
subprojectsettings. As mentioned previously, the dialogue can be accessed by

Create and Configure Project

 4-8

Project→Project Dependencies.

As shown by Figure 4−3, you can choose to exclude certain subprojects from
your configuration. In the example shown, the myConfig configuration for
volume. pjt excludes sinewave.pjt from the build. In addition, you can also
select a particular subproject configuration for this configuration. In myConfig,
echo.pjt is built using a user-created configuration echoConfig rather than the
default, myConfig subproject configuration.

Sub−project configurations

Each sub-project has its own set of build configurations. For each main project
configuration, you can choose to build each sub-project using a particular
configuration. To modify the sub-project setting, use the dropdown box
besides the project (under the settings column). Take the example shown in

Create and Configure Project

4-9Code Creation

Figure 4−4, you can change the subproject echo.pjt configuration to
globsConfig in the Debug configuration of volume.pjt.

4.1.4 Makefiles

The Code Composer Studio IDE supports the use of external makefiles
(*.mak) and an associated external make utility for project management and
build process customization.

To enable the Code Composer Studio IDE to build a program using a makefile,
a Code Composer Studio project must be created that wraps the makefile.
After a Composer Composer Studio project is associated with the makefile,
the project and its contents can be displayed in the Project View window and
the Project→Build and Project→Rebuild All commands can be used to build
the program.

Step 1: Double-click on the name of the makefile in the Project View window
to open the file for editing.

Step 2: Modify your makefile build commands and options.

Special dialogs enable you to modify the makefile build commands
and makefile options. The normal Code Composer Studio Build
Options dialogs are not available when working with makefiles.

Multiple configurations can be created, each with its own build commands and
options.

Create and Configure Project

 4-10

Limitations and Restrictions

Source files can be added to or removed from the project in the Project View.
However, changes made in the Project View do not change the contents of the
makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does
not change the contents in the Project View. File-specific options for source
files that are added in the Project View are disabled. The Project→Compile
File command is also disabled. However, when the project is saved, the
current state of the Project View is preserved.

Note:

Before using Code Composer Studio IDE commands to build your program
using a makefile, it is necessary to set the necessary environment variables.
To set environment variables, run the batch file

DosRun.bat

The batch file is located in the directory c:\CCStudio. If you installed Code
Composer Studio IDE in a directory other than c:\ti, the batch file will be lo-
cated in the directory you specified during installation.

4.1.5 Source Control Integration

The project manager enables you to connect your projects to a variety of
source control providers. The Code Composer Studio IDE automatically
detects compatible providers that are installed on your computer.

Step 1: From the Project menu, choose Source Control.

Step 2: From the Source Control submenu, choose Select Provider...

Create and Configure Project

4-11Code Creation

Step 3: Select the Source Control Provider that you want to use and press
OK.

NOTE: If no source control providers are listed, please ensure that
you have correctly installed the client software for the provider on
your machine.

Step 4: Open one of your projects and select Add to Source Control from
Project→Source Control.

Step 5: Add your source files to Source Control.

You can check files in and out of source control by selecting a file in the Project
View window and right clicking on the file.

Figure 4−3. Source Control Pop-Up Menu

Configuring DSP/BIOS

 4-12

4.2 Configuring DSP/BIOS

The DSP/BIOS Configuration Tool enables developers to select and deselect
kernel modules, and control a wide range of configurable parameters
accessed by the DSP/BIOS kernel at run-time as shown in the figure below.
A file of data tables generated by the tool ultimately becomes an input to the
program linker.

Program
build

Program
debug

BIOS II
kernel

tools
Plug−in

Code Composer Studio

Real−time analysis

Host computer

RTDX

Target program

DSP/BIOS

TMS320 DSP

Frameworks
algorithms
kernels
driversComponents

Application

Figure 4−4. DSP/BIOS Configuration Window

Configuring DSP/BIOS

4-13Code Creation

The DSP/BIOS Configuration Tool (see Figure 4−4) serves as a
special-purpose visual editor for creating and assigning attributes to individual
run-time kernel objects (threads, streams, etc.) used by the target application
program in conjunction with DSP/BIOS API calls. The Configuration Tool
provides developers the ability to statically declare and configure DSP/BIOS
kernel objects during program development rather than during program
execution. Declaring these kernel objects through the Configuration Tool
produces static objects which exist for the duration of the program. DSP/BIOS
kernel also allows dynamic creation and deletion for many of the kernel objects
during program execution. However, dynamically created objects require
additional code to support the dynamic operations. Statically declared objects
minimize memory footprint since they do not include the additional create
code.

Another important benefit of static configuration is the potential for static
program analysis by the DSP/BIOS Configuration Tool. In addition to
minimizing the target memory footprint, the DSP/BIOS Configuration Tool
provides the means for early detection of semantic errors through the
validation of object attributes, prior to program execution. When the
configuration tool is aware of all target program objects prior to execution, it
can accurately compute and report such information as the total amount of
data memory and stack storage required by the program.

Configuring DSP/BIOS

 4-14

Creating DSP/BIOS Configuration Files

To create DSP/BIOS configuration files:

Step 1: Within Code Composer Studio, choose File→New→DSP/BIOS
Configuration.

The New Configuration window displays.

Available DSP/BIOS
configurations for your
platform

Description of the
selected configu-
rationView list as large icons

View list as small icons
View detailed list

Step 2: Select a Configuration template.

If your board is not listed, you can create and add a custom template
to this list.

Configuring DSP/BIOS

4-15Code Creation

Step 3: Click OK to create the new configuration.

The Configuration window displays.

Step 4: In the Configuration window, perform the following tasks as required
by your application:

� Create objects to be used by the application.

� Name the objects.

� Set global properties for the application.

� Modify module manager properties.

� Modify object properties.

� Set priorities for software interrupts and tasks.

See Help→Contents→DSP/BIOS→DSP/BIOS API Modules for
details on implementation of APIs.

Step 5: Save the configuration.

Step 6: Add the DSP/BIOS configuration file(s) to your project as described
in the next procedure.

Configuring DSP/BIOS

 4-16

Adding DSP/BIOS Configuration Files to Your Project

After you save a DSP/BIOS configuration file, follow these steps to add files
to your Code Composer Studio project.

Step 1: If it is not already open, use Project→Open to open the project with
Code Composer Studio.

Step 2: Choose Project→Add Files to Project. In the Files of type box, select
Configuration File (*.cdb). Select the .cdb file you saved and click
Open.

Adding the .cdb file to a project automatically adds the following file
to the Project View folders:

� program.cdb in the DSP/BIOS Config folder

� programcfg.s62 in the Generated Files folder

� programcfg_c.c in the Generated Files folder

Step 3: Choose Project→Add Files to Project again. In the Files of type box,
select Linker Command File (*.cmd). Select the *cfg.cmd file the
Configuration Tool generated when you saved the configuration file
and click Open.

Step 4: If your project already contained a linker command file, you may
want to modify the file or remove it from your project. It may duplicate
or conflict with some of the linker commands in the file generated by
DSP/BIOS.

Step 5: If your project includes the vectors.asm source file, right-click on the
file and choose Remove from project in the shortcut menu. Hardware
interrupt vectors are automatically defined in the configuration file.

Step 6: If your project includes the rtsxxxx.lib file (where xxxx is your device
or device’s generation), right−click on the file and choose Remove
from project in the shortcut menu. This file is automatically included
by the linker command file created from your configuration.

These steps can be used whenever you want to convert an existing program
to one that can call DSP/BIOS API functions.

Editor

4-17Code Creation

4.3 Editor

4.3.1 Using the Code Composer Studio Editor

Double-click on the filename.c file in the Project View to display the source
code in the right half of the Code Composer Studio window.

Figure 4−5. View Source Code

Selection
Margin

Bookmarks Mixed Mode (As-
sembly and C
source)

Program
Counter

Divider

� Selection Margin. By default, a Selection Margin is displayed on the
left-hand side of integrated editor and Disassembly windows. Colored
icons in the Selection Margin indicate that a breakpoint (red) or Probe
Point (blue) is set at this location. A yellow arrow identifies the location of
the Program Counter (PC).

TIP: The Selection Margin can be resized by dragging the divider.

� Keywords. The integrated editor features keyword highlighting.
Keywords, comments, strings, assembler directives, and GEL commands
are highlighted in different colors.

TIP: In addition, new sets of keywords can be created, or the default
keyword sets can be customized and saved in keyword files (*.kwd).

Editor

 4-18

� Keyboard Shortcuts. The default keyboard shortcuts can be changed
and new keyboard shortcuts can be created for any editing or debugging
commands that can be invoked from a document window. Keyboard
shortcuts can be modified through the customize dialog box in the Options
menu.

� Bookmarks. Use bookmarks to find and maintain key locations within
your source files. A bookmark can be set on any line of any source file.

Editor Properties

Customize the editor properties to suit your personal preferences. For
example, you can choose to open files as read-only, or always save your
source code before starting a build, or change the way keywords appear in the
editor. You can customize the editor by going to Options→Customize→Editor
properties.

4.3.2 Using an External Editor

The Code Composer Studio IDE supports the use of an external (third-party)
text editor in place of the default integrated editor. After an external editor is
configured and enabled, it is launched whenever a new blank document is
created or an existing file is opened. You can configure an external editor by
selecting Options→Customize→Editor Properties.

An external editor can only be used to edit files. The integrated editor must be
used to debug your program.

Figure 4−6. External Editor Icon

External Editor icon: toggle between
an external editor and the Code Com-
poser Studio integrated editor

Code Generation Tools

4-19Code Creation

4.4 Code Generation Tools

4.4.1 Code Development Flow

Code generation tools include an optimizing C/C++ compiler, an assembler,
a linker, and assorted utilities. The figure below shows you how these tools and
utilities work together when you generate code.

Figure 4−7. Code Development Flow

Assembler
source

.asm files

(optional)
Optimizer

Parser

C/C++ compiler

Assembler

COFF

(.obj) files
object

preprocessor
Assembly

Assembly
optimizer:

ONLY applies
to C6000

C or C/C++
source files

Linker

.out file
COFF file

Executable

With the linker
option (−z)

Code
generator

Code Generation Tools

 4-20

4.4.2 Project Build Options

A graphical interface is provided for using the code generation tools.

A Code Composer Studio project keeps track of all information needed to build
a target program or library. A project records:

� Filenames of source code and object libraries
� Compiler, assembler, and linker options
� Include file dependencies

When you build a project, the appropriate code generation tools are invoked
to compile, assemble, and/or link your program.

The compiler, assembler, and linker options can be specified within the Build
Options dialog box (Figure 4−8). Nearly all command line options are
represented within this dialog box. Options that are not represented can be
specified by typing the option directly into the editable text box that appears
at the top of the dialog box.

Figure 4−8. Build Options Dialog Box

You can set the compiler and linker options that are used during the build
process.

Code Generation Tools

4-21Code Creation

Your build options can be set at two different levels, depending on how
frequently or in what configuration they are needed. First, you can define a set
of project-level options that apply to all files in your project. Then, you can
optimize your program by defining file-specific options for individual source
code files.

TIP: For options that are commonly used together, you can set project-level
configurations, rather than setting the same individual options repeatedly. You
can also look for this information in the online help and tutorial.

Setting Project Level Options

Step 1: Select Project→Build Options.

Step 2: In the Build Options Dialog Box, select the appropriate tab.

Step 3: Select the options to be used when building your program.

Step 4: Click OK to accept your selections.

Setting File-Specific Options

Step 1: Right-click on the name of the source file in the Project View window
and select File Specific Options from the context menu.

Step 2: Select the options to be used when compiling this file.

Step 3: Click OK to accept your selections.

4.4.3 Compiler Overview

The C and C++ compilers (for C5000 and C6000) are full-featured
optimizing compilers that translate standard ANSI C programs into assembly
language source. The following subsections describe the key features of the
compilers.

Interfacing with Code Composer Studio

The following features pertain to interfacing with the compiler:

� Compiler shell program

The compiler tools include a shell program that you use to compile,
assembly optimize, assemble, and link programs in a single step. For
more information, see the About the Shell Program section in the
Optimizing Compiler User’s Guide appropriate for your device.

Code Generation Tools

 4-22

� Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write
assembly and C functions that call each other. For more information, see
Chapter 8, Run-Time Environment, in the Optimizing Compiler User’s
Guide appropriate for your device.

4.4.4 Assembly Language Development Tools

The following is a list of the assembly language development tools:

� Assembler. The assembler translates assembly language source files
into machine language object files. The machine language is based on
common object file format (COFF).

� Archiver. The archiver allows you to collect a group of files into a single
archive file called a library. Additionally, the archiver allows you to modify
a library by deleting, replacing, extracting, or adding members. One of the
most useful applications of the archiver is building a library of object
modules.

� Linker. The linker combines object files into a single executable object
module. As it creates the executable module, it performs relocation and
resolves external references. The linker accepts relocatable COFF object
files and object libraries as input.

� Absolute Lister. The absolute lister accepts linked object files as input
and creates .abs files as output. You can assemble these .abs files to
produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and
would require many manual operations.

� Cross-reference Lister. The cross-reference lister uses object files to
produce a cross-reference listing showing symbols, their definitions, and
their references in the linked source files.

� Hex-conversion Utility. The hex-conversion utility converts a COFF
object file into TI-Tagged, ASCII-hex, Intel, Motorola-S, or Tektronix object
format. You can download the converted file to an EPROM programmer.

� With the TMS320C54x device, the mnemonic-to-algebraic translator
utility converts assembly language source files. The utility accepts an
assembly language source file containing mnemonic instructions. It
converts the mnemonic instructions to algebraic instructions, producing
an assembly language source file containing algebraic instructions.

Code Generation Tools

4-23Code Creation

4.4.5 Assembler Overview

The assembler translates assembly language source files into machine
language object files. These files are in common object file format (COFF).

The two-pass assembler does the following:

� Processes the source statements in a text file to produce a relocatable
object file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintains a section
program counter (SPC) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

4.4.6 Linker Overview

The linker allows you to configure system memory by allocating output
sections efficiently into the memory map. As the linker combines object files,
it performs the following tasks:

� Allocates sections into the target system’s configured memory

� Relocates symbols and sections to assign them to final addresses

� Resolves undefined external references between input files

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression
assignment and evaluation. You configure system memory by defining and
creating a memory module that you design. Two powerful directives,
MEMORY and SECTIONS, allow you to:

� Allocate sections into specific areas of memory

� Combine object file sections

� Define or redefine global symbols at link time

Code Generation Tools

 4-24

4.4.6.1 Text-Based Linker

The text linker combines object files into a single executable COFF object
module. Linker directives in a linker command file allow you to combine object
file sections, bind sections or symbols to addresses or within memory ranges,
and define or redefine global symbols. For more information on the TI linker,
see the Code Generation Tools online help.

4.4.7 C/C++ Development Tools

The following is a list of the C/C++ development tools:

� C/C++ Compiler. The C/C++ compiler accepts C/C++ source code and
produces assembly language source code. A shell program , an
optimizer , and an interlist utility are parts of the compiler.

� The shell program enables you to compile, assemble, and link source
modules in one step. If any input file has a .sa extension, the shell
program invokes the assembly optimizer.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interweaves C/C++ source statements with
assembly language output.

� Assembly Optimizer (C6000 � only). The assembly optimizer allows you
to write linear assembly code without being concerned with the pipeline
structure or with assigning registers. It accepts assembly code that has not
been register-allocated and is unscheduled. The assembly optimizer
assigns registers and uses loop optimization to turn linear assembly into
highly parallel assembly that takes advantage of software pipelining.

� Library-build Utility. You can use the library-build utility to build your own
customized run-time-support library. Standard run-time-support library
functions are provided as source code in rts.src and rstcpp.src. The object
code for the run-time-support functions is compiled for little-endian mode
versus big-endian mode and C code versus C++ code into standard
libraries.

The run-time-support libraries contain the ANSI standard
run-time-support functions, compiler-utility functions, floating-point
arithmetic functions, and C I/O functions that are supported by the
compiler.

Code Generation Tools

4-25Code Creation

� C++ Name Demangling Utility. The C++ compiler implements function
overloading, operator overloading, and type-safe linking by encoding a
function’s signature in its link-level name. The process of encoding the
signature into the linkname is often referred to as name mangling. When
you inspect mangled names, such as in assembly files or linker output, it
can be difficult to associate a mangled name with its corresponding name
in the C++ source code. The C++ name demangler is a debugging aid that
translates each mangled name it detects to its original name found in the
C++ source code.

Building Your Code Composer Studio Project

 4-26

4.5 Building Your Code Composer Studio Project

4.5.1 From Code Composer Studio

To build and run a program, follow these steps:

TIP: You can use the supplied “timake.exe” utility to build a project from the
DOS shell.

Step 1: Choose Project→Rebuild All or click the Rebuild All toolbar button.
All the files in your project are recompiled, reassembled, and
relinked. Messages about this process are shown in a frame at the
bottom of the window.

Step 2: By default, the .out file is built into a debug directory located under
your current project folder. To change this location, select a different
one from the toolbar.

Step 3: Choose File→Load Program.
Select the program you just rebuilt, and click Open.
The program is loaded onto the target DSP and opens a
Dis-Assembly window that shows the disassembled instructions that
make up the program. (Notice that a tabbed area at the bottom of the
window is automatically opened. It shows the output that the
program sends to stdout.)

Step 4: Choose View→Mixed Source/ASM.
This allows you to simultaneously view your c source and the
resulting assembly code .

Step 5: Click on an assembly instruction in the mixed-mode window. (Click
on the actual instruction, not the address of the instruction or the
fields passed to the instruction.)

Press the F1 key. The Code Composer Studio IDE searches for help
on that instruction. This is a good way to get help on an unfamiliar
assembly instruction.

Step 6: Choose Debug→Go Main to begin execution from the main function.
The execution halts at Main.

Step 7: Choose Debug→Run or click the Run toolbar button to run the
program.

Step 8: Choose Debug→Halt to quit running the program.

Building Your Code Composer Studio Project

4-27Code Creation

4.5.2 External Make

Code Composer Studio supports the use of external makefiles (*.mak) and an
associated external make utility for project management and build process
customization.

To build a program using a makefile, a project must be created that wraps the
makefile. After a project is associated with the makefile, the project and its
contents can be displayed in the Project View window and the Project→Build
and Project→Rebuild All commands can be used to build the program.

Step 1: Double-click on the name of the makefile in the Project View window
to open the file for editing.

Step 2: Modify your makefile build commands and options.

Special dialogs enable you to modify the makefile build commands
and makefile options. The normal Build Options dialogs are not
available when working with makefiles.

Multiple configurations can be created, each with its own build commands and
options.

Limitations and Restrictions

Source files can be added to or removed from the project in the Project View.
However, changes made in the Project View do not change the contents of the
makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does
not change the contents in the Project View. File-specific options for source
files that are added in the Project View are disabled. The Project→Compile
File command is also disabled. However, when the project is saved, the
current state of the Project View is preserved.

4.5.3 Command Line

Using the timake utility from the command line

The timake.exe utility located in the <install dir>\cc\bin directory provides a
way to build projects (*.pjt) outside of the Code Composer Studio environment
from a command prompt. This utility can be used to accomplish batch builds.

To invoke the timake Utility:

Step 1: Open a DOS Command prompt

Building Your Code Composer Studio Project

 4-28

Step 2: Set up the necessary environment variables by running the batch file
Dos-Run.bat. This batch file must be run before using timake. If you
installed the Code Composer Studio product in c:\CCStudio, the
batch file is located at:

C:\CCStudio\DosRun.bat

Step 3: Run the timake utility.

Please refer to the online help topic Using the timake Utility for more
information.

Makefiles

In addition to the option of using external makefiles within the Code Composer
Studio IDE, you can also export standard Code Composer Studio project file
(*.pjt) to a standard makefile that can be built from the command line using any
standard make utility. Code Composer Studio comes with a standard make
utility (gmake) that can be run after running the DosRun.bat file.

To Export a Code Composer Studio Project to a Standard Makefile

Step 1: Make the desired project active by selecting the project name from
theSelect Active Project dropdown list on the Project toolbar.

Step 2: Select Project Export to Makefile.

Step 3: In the Exporting <filename>.pjt dialog box, specify the configurations
to export, the default configuration, the host operating system for
your make utility, and the file name for the standard makefile.

Step 4: Click OK to accept yor selections and generate a standard makefule.

Pleae refer to the online help topic, Exporting a Project to a Makefile.

Available Foundation Software

4-29Code Creation

4.6 Available Foundation Software

4.6.1 DSP/BIOS

DSP/BIOS is a scalable real-time kernel, designed specifically for the
TMS320C5000 , TMS320C2000, and TMS320C6000 DSP platforms.
DSP/BIOS enables you to develop and deploy sophisticated applications
more quickly than with traditional DSP software methodologies and eliminates
the need to develop and maintain custom operating systems or control loops.
Because multithreading enables real-time applications to be cleanly
partitioned, an application using DSP/BIOS is easier to maintain and new
functions can be added without disrupting real-time respnse. DSP/BIOS
provides standardized APIs across C2000, C5000, and C6000 DSP platforms
to support rapid application migration.

4.6.2 CSL

The Chip Support Library(CSL) provides C-program functions to configure
and control on-chip peripherals. It is intended to simplify the process of running
algorithms in a real system. The goal is peripheral ease of use, shortened
development time, portability, hardware abstraction, and a small level of
standardization and compatibility among devices.

4.6.2.1 Benefits of CSL

The CSL benefits you in the following ways:

� Standard Protocol to Program Peripherals

CSL provides a higher-level programming interface for each on-chip
peripheral. This includes data types and macros to define peripheral
register configuration, and functions to implement the various operations
of each peripheral.

� Basic Resource Management

Basic resource management is provided through the use of open and
close functions for many of the peripherals. This is especially helpful for
peripherals that support multiple channels.

� Symbol Peripheral Descriptions

As a side benefit to the creation of CSL, a complete symbolic description of
all peripheral registers and register fields has been created. It is suggested
that you use the higher-level protocols described in the first two bullets, as
these are less device specific, making it easier to migrate your code to
newer versions of DSPs.

Available Foundation Software

 4-30

4.6.3 BSL

The TMS320C6000 DSK Board Support Library (BSL) is a set of C-language
application programming interfaces (APIs) used to configure and control all
on-board devices, which is intended to make it easier for developers to get
algorithms up and running in a real system. The BSL consists of discrete
modules that are built and archived into a library file. Each module represents
an individual API and is referred to simply as an API module. The module
granularity is constructed such that each device is covered by a single API
module except the I/O Port module, which is divided into two APU modules:
LED and DIP.

4.6.3.1 Benefits of BSL

Some of the advantages offered by the BSL include: device ease of use, a level
of compatibility between devices, shortened development time, portability,
some standardization, and hardare abstraction. In general, BSL makes it
easier for you to get yoru algorithms up and running in the shortest length of
time.

4.6.4 DSPLIB

The DSP Library (DSPLIB) includes many C-callable, assembly-optimized,
general-purpose signal-processing and image/video processing routines.
These routines are typically used in computationally intensive real-time
applications where optimal execution speed is critical. By using these routines,
you can achieve execution speeds considerably faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP and image/video processing functions, DSPLIB and IMGLIB can
significantly shorten your application development time.

For more information on DSPLIB see:

� TMS320C54x DSP Library Programmer’s Reference (SPRU518)
� TMS320C55x DSP Library Programmer’s Reference (SPRU422)
� TMS320C62x DSP Library Programmer’s Reference (SPRU402)
� TMS320C64x DSP Library Programmer’s Reference (SPRU565)

Available Foundation Software

4-31Code Creation

4.6.4.1 Benefits of DSPLIB

DSPLIB includes commonly used routines. Source code is provided that
allows you to modify functions to match your specific needs.

Features include:

� Optimized assembly code routines
� C and linear assembly source code
� C-callable routines fully compatible with the TI Optimizing C compiler
� Benchmarks (cycles and code size)
� Tested against reference C model

4.6.4.2 DSPLIB Functions Overview

DSPLIB provides a collection of C-callable high performance routines that can
serve as key enablers for a wide range of signal and image/video processing
applications. These functions are representative of the high performance
capabilities of the C5000 and C6000 DSPs.

The routines contained in the DSPLIB are organized into the following
functional categories:

� Adaptive filtering
� Correlation
� FFT
� Filtering and convolution
� Math
� Matrix functions
� Miscellaneous

4.6.5 IMGLIB

The Image/Video Processing Library (IMGLIB) includes many C-callable,
assembly-optimized, general-purpose signal-processing and image/video
processing routines. These routines are typically used in computationally
intensive real-time applications where optimal execution speed is critical. By
using these routines, you can achieve execution speeds considerably faster
than equivalent code written in standard ANSI C language. In addition, by
providing ready-to-use DSP and image/video processing functions, DSPLIB
and IMGLIB can significantly shorten your application development time.

Available Foundation Software

 4-32

For more information on IMGLIB see:

� TMS32C55x Imaging/Video Processing Library Programmer’s Reference
Guide (SPRU037)

� TMS320C62x Image/Video Processing Library Programmer’s Reference
(SPRU400)

� TMS320C64x Image/Video Processing Library Programmer’s Reference
(SPRU023).

4.6.5.1 Benefits of IMGLIB

IMGLIB includes commonly used routines. Source code is provided that
allows you to modify functions to match your specific needs.

Features include:

� Optimized assembly code routines
� C and linear assembly source code
� C-callable routines fully compatible with the TI Optimizing C compiler
� Benchmarks (cycles and code size)
� Tested against reference C model

4.6.5.2 IMGLIB Functions Overview

IMGLIB provides a collection of C-callable high performance routines that can
serve as key enablers for a wide range of signal and image/video processing
applications. These functions are representative of the high performance
capabilities of the C6000 DSPs.

The set of software routines included in the IMGLIB (available for the C6000
platform only) are organized into three different functional categories as
follows:

� Image/video compression and decompression
� Image Analysis
� Picture filtering/format conversions

Available Foundation Software

4-33Code Creation

4.6.6 XDAIS Components

DSPs are programmed in a mix of C and assembly language, directly access
hardware peripherals, and for performance reasons, almost always have little
or no standard operating system support. Unlike general-purpose embedded
microprocessors, DSPs are designed to run sophisticated signal processing
algorithms and heuristics, but because of the lack of consistent standards, it
is not possible to use an algorithm in more than one system without significant
reengineering. Since reuse of DSP algorithms is so labor intensive, the
time-to-market for a new DSP-based product is measured in years rather than
months.

The TMS320 DSP Algorithm Standard (known as XDAIS) defines a set of
requirements for DSP algorithms that, if followed, allow system integrators to
quickly assemble production-quality systems from one or more such
algorithms.

Scope of XDAIS

The TMS320 DSP Algorithm Standard defines three levels of guidelines.

Figure 4−9. TMS320 DSP Algorithm Standard Elements

Rules for C62xx

Level 1

Level 2

Interrupt usageLevel 3

Level 4

Memory usage
Register usage
etc.

Telecom
vocoders
echo cancel
etc.

Rules for C54xx
Interrupt usage
Memory usage
Register usage
etc.

Rules for C2xxx
Interrupt usage
Memory usage
Register usage
etc.

Imaging
JPEG
etc.

Audio
coders
etc.

Automotive
etc.

Other

Algorithm Component Model
Modules Packaging
Generic Interfaces etc.

General Programming Guidelines
C callable Reentrant
No hard coded addresses etc.

Level 1 contains programming guidelines that apply to all algorithms on all
DSP architectures regardless of application area. Almost all recently

Available Foundation Software

 4-34

developed software modules follow these common sense guidelines already,
so this level just formalizes them.

Level 2 contains rules and guidelines that enable all algorithms to operate
harmoniously within a single system. Conventions are established for an
algorithm’s use of data memory and names for external identifiers, as well as
simple rules for how algorithms are packaged.

Level 3 contains the guidelines for specific families of DSPs. Today, there are
no agreed-upon guidelines for algorithms with regard to the use of processor
resources. These guidelines will provide guidance on the dos and don’ts for
the various architectures. There is always the possibility that deviations from
these guidelines will occur, but then the algorithm vendor can explicitly draw
attention to the deviation in the relevant documentation or module headers.

The shaded boxes in Figure 4−9 represent the areas that are covered in this
version of the specification.

Level 4 contains the various vertical markets. Due to the inherently different
nature of each of these businesses, it seems appropriate for the stakeholders
in each of these markets to define the interfaces for groups of algorithms based
on the vertical market. If each unique algorithm were specified with an
interface, the standard would never be able to keep up and thus not be
effective. It is important to note that at this level, any algorithm that conforms
to the rules defined in the top three levels is considered
eXpressDSP-compliant.

Rules and Guidelines

The TMS320 DSP Algorithm Standard specifies both rules and guidelines.
Rules must be followed in order for software to be eXpressDSP-compliant.
Guidelines, on the other hand, are strongly suggested recommendations that
should be obeyed, but are not required, in order for software to be
eXpressDSP-compliant.

Requirements of the Standard

The required elements of XDAIS:

� Algorithms from multiple vendors can be integrated into a single system.

� Algorithms are framework-agnostic. That is, the same algorithm can be
efficiently used in virtually any application or framework.

� Algorithms can be deployed in purely static as well as dynamic run-time
environments.

Available Foundation Software

4-35Code Creation

� Algorithms can be distributed in binary form.

� Integration of algorithms does not require recompilation of the client
application; reconfiguration and relinking may be required however.

Goals of the Standard

The goals of XDAIS are:

� Easy to adhere to the standard
� Possible to verify conformance to standard
� Enable system integrators to easily migrate between TI DSPs
� Enable host tools to simplify a system integrator’s tasks, including

configuration, performance modeling, standard conformance, and
debugging.

� Incur little or no “overhead” for static systems

4.6.7 Reference Frameworks

Reference Frameworks for eXpressDSP software are provided as
starterware for applications that use DSP/BIOS and the TMS320 DSP
Algorithm Standard. Developers first select the Reference Framework that
best approximates their system and its future needs, and then adapt the
framework and populate it with eXpressDSP-compliant algorithms. As
common elements such as device drivers, memory management, and
channel encapsulation are already pre-configured in the frameworks,
developers can focus on their sys

Reference Frameworks contain design-ready, reusable, C language source
code for TMS320C5000 and TMS320C6000 digital signal processors
(DSPs). Developers can build on top of the framework, confident that the
underlying pieces are robust and appropriate for the characteristics of the
target application.

Reference Frameworks software and documentation are available for
download from the TI website. It is not included in the Code Composer Studio
installation.

Figure 4−10 shows the elements that make up a Reference Framework on the
target DSP.

Available Foundation Software

 4-36

abstraction
Channel

Algorithm
manager

Framework components

eXpressDSP
alg. 1

eXpressDSP
alg. 2

Application level code

DSP/BIOS Chip support library

Device driver adapter

Device driver controller

TMS320 DSP hardware

Memory
management
and overlays

Figure 4−10. Elements of a Reference Framework

Here are the elements, starting from the bottom up:

• Device controller and device adapter. The device drivers used in reference
frameworks are based on a standard driver model, which provides device
adapters and specifies a standard device controller interface. If you have
unique external hardware, the device controller is likely to need customization,
but the device adapter probably needs little or no modification.

• Chip Support Library (CSL). The device controller uses chip support library
modules to support peripheral hardware.

• DSP/BIOS. This extensible software kernel is a good example of how each
reference framework leverages different amounts of the eXpressDSP

Available Foundation Software

4-37Code Creation

infrastructure, depending on its needs. The low-end RF1 framework uses
relatively few DSP/BIOS modules. In addition to providing an obvious footprint
savings, reducing the number of modules helps clarify design choices for a
designer who may not fully appreciate the ramifications of module selections.

• Framework Components. These elements provide overall system resource
management, such as channel abstraction. Every reference framework needs
some kind of channel management; but, design optimizations can be made
based on knowledge of the number of channels likely to be in use. For simple
systems with 1 to 3 channels, channel scheduling is handled with the
low-overhead DSP/BIOS HWI and IDL modules. For larger numbers of
channels, it is wiser to use the SWI module, although it comes with some extra
footprint. For large systems with channels that change dynamically, the TSK
module is most appropriate. In each reference framework, design decisions
such as these let designers get systems running both more quickly and in the
way most suited to the system.

Similar to channel managers are the algorithm managers, which manage some
number of eXpressDSP-compliant algorithms. Other framework components
are modules that handle memory overlay schemes—a critical technique in most
memory constrained systems. Simply starting with the appropriate framework
simplifies many choices that need to be made when developing from scratch.

• eXpressDSP-compliant Algorithms. Each algorithm follows the rules and
guidelines of the TMS320 DSP Algorithm Standard Rules and Guidelines
(SPRU352). To be compliant with the standard, algorithms must not directly
access any hardware peripherals and must implement standard resource
management interfaces known as IALG (for memory management) and
optionally, IDMA (for DMA resource management). In the examples that TI
provides, the algorithms are generally simple ones like finite impulse response
(FIR) filters and volume controllers. It is relatively easy to substitute more
significant eXpressDSP-compliant algorithms for the TI-provided ones. It is this
substitution that starts the process of making a generic reference framework
application-specific.

• Application-level code. The last step is to modify the application-level code.
This code applies unique and value-added application-specific knowledge,
allowing for real product differentiation. Clearly the application code required for
a single-channel MP3 player is quite different than that required for a digital
hearing aid.

Automation (for Project Management)

 4-38

4.7 Automation (for Project Management)

4.7.1 Using General Extension Language (GEL)

The General Extension Language (GEL) is an interpretive language, similar
to C, that lets you create functions to extend Code Composer Studio IDE’s
usefulness. You create your GEL functions by using the GEL grammar, and
then by loading them into Code Comoser Studio IDE. There is subset of GEL
functions that may be used to automate building of projects with CCStudio
environment. Custom GEL menus may be created to automatically open and
build a project.

Figure 4−11.GEL script to open volume project.

/*
 * Copyright 1998 by Texas Instruments Incorporated.
 * All rights reserved. Property of Texas Instruments
Incorporated.
 * Restricted rights to use, duplicate or disclose this
code are
 * granted through contract.
 */
/*
 * ======== PrjOpen.gel ========
 * Simple gel file to demonstrate project managment
capabilities of GEL
 */

menuitem ”MyProjects”

hotmenu OpenVolume()
{
 // Open Volume tutorial example

GEL_ProjectLoad(”C:\\ti\\tutorial\\sim55xx\\volume1\\volum
e.pjt”);

 // Set currently active configuration to debug

GEL_ProjectSetActiveConfig(”c:\\ti\\tutorial\\sim55xx\\vol
ume1\\volume.pjt”,
”Debug”);

 // Build the project.
 GEL_ProjectBuild();
}

Automation (for Project Management)

4-39Code Creation

Figure 4−12. Custom GEL menu to open a project.

4.7.2 Scripting Utility

The Scripting Utility is a set of Code Composer Studio commands that are
integrated into a VB or perl scripting languages. You may utilize full capabilities
of a scripting language such as perl or VB and combine it with automation tasks
that need to be performed in Code Composer Studio. The Scripting utility may
be used to configure a test scenario, open and build a corresponding project
and load it for execution. There are a number of scripting commands that may
be used to build and manage projects.

The Scripting Utility is an add-on capability available through Update Advisor.

5-1

�����

This chapter applies to all platforms using Code Composer Studio  IDE.
However, not all devices have access to all of the tools discussed in this
chapter. For a complete listing of the tools available to you, see the online help
and online documentation provided with the Code Composer Studio IDE.

The Code Composer Studio IDE comes with a number of tools that help you
debug your programs. This chapter discusses these tools and shows you how
to use them.

Topic Page

5.1 Setting Up Your Environment for Debug 5-2.

5.2 Basic Debugging 5-16.

5.3 Advanced Debugging Features 5-34.

5.4 Real-Time Debugging 5-40.

5.5 Automation (for Debug) 5-49.

5.6 Target Reset 5-50.

Chapter 5

Setting Up Your Environment for Debug

 5-2

5.1 Setting Up Your Environment for Debug

Before you can successfully debug an application, the environment must be
configured. The following sections tell how this can be accomplished.

5.1.1 Setting Custom Debug Options

Several debugging options are customizable within Code Composer Studio.
You can configure these options to help with the debug process or to suit your
desired preferences.

5.1.1.1 Debug Properties Tab

This debug properties dialog is on the Customize Tab under
Options→Customize→Debug. It allows you to turn off certain default
behaviors when debugging.

Program load/reload/restart actions

Open the Disassembly W indow automatically: Unchecking this will prevent
the Disassembly Window from appearing after a program is loaded. This
option is enabled by default.

Perform Go Main Automatically. Enabling this option will instruct the
debugger to automatically run to the symbol ‘main’ for the application loaded.
This option is disabled by default.

Setting Up Your Environment for Debug

5-3Debug

Target Connection actions

Connect to the Target When a Contr ol Window is Opened: Control Window
simply refers to the entire IDE interface for Code Composer Studio. You can
have multiple instances of this open when running PDM+. You can turn this off
when you are experiencing target connection problems or don’t need the
actual target to be connected (i.e., when writing source code, etc.). This option
is disabled by default.

Remove Remaining Debug State at Connect. When Code Composer
Studio disconnects from the target, it typically tries to remove breakpoints by
default. If for some reason there are errors when trying to remove breakpoints,
Code Composer Studio will try again to remove breakpoints when
reconnecting to the target. However, this second attempt to remove
breakpoints can potentially put some targets into a bad state. For this reason,
users are urged to disable this second attempt to remove breakpoints when
reconnecting. To disable this second attempt, uncheck this option.

Animation Speed. Animation Speed is the minimum time (in seconds)
between breakpoints. Program execution does not resume until the minimum
time has expired since the previous breakpoint. See section 5.2.1 for more
details.

5.1.1.2 Directories

To open up the source file where the application is halted, the debugger needs
its location. The debugger includes source path information for:

� All the files in a project that is open in the project view

� Files in the current directory

� Paths specified by the user to Code Composer Studio

The paths specified to Code Composer Studio by the user are empty by
default. Thus, if the application being debugged has used source files that are
not in the two former options, then the path to these files need to be specified.
If not, the debugger will not be able to automatically open the file when
execution halts at a location that references that source file (but will prompt the
user to manually find it). A common example of source files not being part of
the open project is when including libraries in a build.

The Directories dialog box enables you to specify additional search paths that
the debugger uses to find the source files included in a project.

Setting Up Your Environment for Debug

 5-4

To Specify Search Path Directories

Step 1: Select Option→Customize.

Step 2: In the Customize dialog box, select the Directories tab. Use the scroll
arrows at the top of the dialog box to locate the tab.

The Directories dialog offers the following options.

� Directories. The Directories list displays the defined search path.
The debugger searches the listed directories in order from top to
bottom.

If two files have the same name and are located in different
directories, the file located in the directory that appears highest in
the Directories list takes precedence.

� New. To add a new directory to the Directories list, click New.
Enter the full path or browse […] to the appropriate directory. By
default, the new directory is added to the bottom of the list.

� Delete. Select a directory in the Directories list, then click Delete
to remove that directory from the list.

� Up. Select a directory in the Directories list, then click Up to move
that directory higher in the list.

Setting Up Your Environment for Debug

5-5Debug

� Down. Select a directory in the Directories list, then click Down to
move that directory lower in the list.

� Look in subfolders. You can instruct the debugger to search in
the subfolders of the listed paths by enabling the Look in
subfolders option.

� Default File I/O directory. In addition to setting source file
directories, you can now set a default directory for File I/O files.
Simply enable the Default File I/O directory option and then use
the browse button to find the path you wish to select as the default
directory.

Step 3: Click OK to exit the Customize dialog box.

5.1.1.3 Program Load Options

The Program Load dialog box enables you to select actions that will occur
automatically when you load a program or load symbols.

To Set Program Load Options

Step 1: Select Option→Customize.

Step 2: In the Customize dialog box, select the Program Load Options tab.

The Program Load Options dialog offers the following options.

� Perform verification after Program Load. By default, this
checkbox is selected. This means that Code Composer Studio
will verify (by reading back selected memory) that the program
was loaded correctly. If you remove the check from this option, this
verification will not be performed.

� Load Program After Build. When this option is selected, the
executable is loaded immediately upon building the project. This
ensures that the target contains the most up-to-date symbolic
information generated after a build.

� Open Dependent Projects When Loading Projects. By default,
if your program has subprojects upon which a main project is
dependent, all the subprojects are opened along with the main
project. If this option is disabled, then the subprojects will not be
opened.

� Do Not Scan Dependencies When Loading Projects. To
determine which files must be compiled during an incremental
build, the project must maintain a list of include file dependencies

Setting Up Your Environment for Debug

 5-6

for each source file. A dependency tree is created whenever you
build a project. To create the dependency tree, all the source files
in the project list are recursively scanned for #include, .include,
and .copy directives, and each included file name is added to the
project list. By default, when a project is opened, all files in the
project are scanned for dependencies. If this option is disabled, it
will not automatically scan for dependencies upon opening a
project. This may result in quicker times for opening a project.

� Do Not Set CIO Breakpoint At Load. By default, if your program
has been linked using a TI runtime library (rts*.lib), a C I/O
breakpoint (C$$IO$$) is set when the program is loaded. This
option enables you to choose not to set the C I/O breakpoint.

The C I/O breakpoint is necessary for the normal operation of C
I/O library functions such as printf and scanf. The C I/O breakpoint
is not needed if your program does not execute CIO functions.

When C I/O code is loaded in RAM, Code Composer Studio sets a
software breakpoint. However, when C I/O code is loaded in
ROM, Code Composer Studio uses a hardware breakpoint. Since
most processors support only a small number of hardware
breakpoints, using even one can have a significant impact when
debugging.

Note: You can also avoid using the hardware breakpoint when C
I/O code is loaded in ROM by embedding a breakpoint in your
code and renaming the label C$$IO$$ to C$$IOE$$ to indicate
that this is an embedded breakpoint.

� Do Not Set End of Program Breakpoint At Load. By default, if
your program has been linked using a TI runtime library (rts*.lib),
an End of Program breakpoint (C$$EXIT) is set when the program
is loaded. This option allows you to choose not to set the End of
Program breakpoint.

The End of Program breakpoint is used to halt the processor when
your program exits following completion. The End of Program
breakpoint is not needed if your program executes an infinite loop.

When End of Program code is loaded in RAM, Code Composer
Studio sets a software breakpoint. However, when End of
Program code is loaded in ROM, Code Composer Studio uses a
hardware breakpoint. Since most processors support only a small

Setting Up Your Environment for Debug

5-7Debug

number of hardware breakpoints, using even one can have a
significant impact when debugging.

Note: You can also avoid using the hardware breakpoint when
End of Program code is loaded in ROM by embedding a
breakpoint in your code and renaming the label C$$EXIT to
C$$EXITE$$ to indicate that this is an embedded breakpoint.

� Disable All Breakpoints When Loading New Programs.
Enabling this option will remove all existing breakpoints before
loading a new program.

Step 3: Click OK.

5.1.1.4 Disassembly Style

Several options are available for changing the way you view information in the
Disassembly window. The Disassembly Style Options dialog box allows you
to input specific viewing options for your debugging session.

To Set Disassembly Style Options

Step 1: Select Option→Disassembly Style, or right−click in the Disassembly
window and select Properties→Disassembly Options.

Step 2: Enter your choices in the Disassembly Style Options dialog box.

Step 3: Click OK.
The contents of the Disassembly window are immediately updated
with the new style.

Setting Up Your Environment for Debug

 5-8

5.1.1.5 Default File I/O Directory

In addition to setting source file directories, you can now set a default directory
for File I/O files. Simply enable the Default File I/O Directory option and then
use the browse button to find the path you wish to select as the default
directory.

5.1.2 Simulation

Debugging on simulation may require additional steps in order to configure the
simulator to behave closer to the actual HW target.

5.1.2.1 Memory Mapping

The memory map tells the debugger which areas of memory it can and cannot
access. Memory maps vary depending on the application.

When a memory map is defined and memory mapping is enabled, the
debugger checks every memory access against the memory map. The
debugger will not attempt to access an area of memory that is protected by the
memory map

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger cannot
prevent your program from attempting to access nonexistent memory.

Memory Mapping with Simulation

The simulator utilizes pre-defined memory map ranges to allow the most
generic representation of valid memory settings for DSP targets being
simulated. The memory map settings can be altered to some degree; however,
this is not a recommended practice as simulator performance may be affected
if extensive changes to valid memory ranges are employed.

Using the Debugger

The memory map can be defined interactively while using the debugger. This
can be inconvenient because, in most cases, you will set up up one memory
map before you begin debugging, and will then use this memory map for all
other debugging sessions.

Setting Up Your Environment for Debug

5-9Debug

To Add a New Memory Map Range

Step 1: Select Option→Memory Map.

Note that the memory map can be chnaged externally

and these settings can be overridden.

Step 2: If your actual or simulated target memory configuration supports
multiple pages, the Memory Map dialog box contains a separate tab
for each type of memory page (e.g., Program, Data, and I/O). Select
the appropriate tab for the type of memory that you want to modify.
Tabs do not appear for processors that have only one memory page.

The Memory Map dialog offers the following options.

� Enable Memory Mapping. Make sure that the Enable Memory
Mapping checkbox is checked. Otherwise, all addressable
memory (RAM) on your target is assumed to be valid by the
debugger.

� Starting Address. Enter the start address of the new memory
range in the Starting Address input field.

� Length. Enter the length of the new memory range in the Length
input field.

� Attributes . Select the read/write characteristics of the new
memory range in the Attributes field.

Setting Up Your Environment for Debug

 5-10

� Access Size (bits). Specify the access size for your target
processor. You can select an access size from the drop−down list,
or you can type a value in the Access Size field.

It is not necessary to specify a size for processors that support
only one access size.

� Volatile Memory. Normally, a write access consists of Read,
Modify, and Write operations. When the Volatile Memory option is
set on a segment of memory, any write access to that memory is
completed by using only a Write operation.

� Memory Map List. Displays the list of memory−mapped ranges.

� Add. Click the Add button to add the new memory range to the
Memory Map List.

� Delete. In the Memory Map List, select the memory map range
that you want to delete and click the Delete button.

You can also delete an existing memory map range by changing
the Attributes field to “None − No Memory/Protected”. This means
you can neither read nor write to this memory location.

� Reset. Resets the default values in the Memory Map List.

Step 3: Click Done to accept your selections.

The debugger allows you to enter a new memory range that overlaps existing
ones. The new range is assumed to be valid, and the overlapped range’s
attributes are changed accordingly.

After you have defined a memory map, you may wish to modify its read/write
attributes. You can do this by defining a new memory map (with the same
Starting Address and Length) and clicking the Add button. The debugger
overwrites the existing attributes with the new ones.

Setting Up Your Environment for Debug

5-11Debug

Using GEL

The memory map can also be defined using the general extension language
(GEL) built-in functions. GEL provides a complete set of memory-mapping
functions. The easiest method of implementing a memory map is to put the
memory−mapping functions in a GEL text file and execute the GEL file at start
up.

When you first invoke Code Composer Studio, the memory map is turned off.
You can access any memory location; the memory map does not interfere. If
you invoke Code Composer Studio with an optional GEL filename specified as
a parameter, the Gel file is automatically loaded. If the file contains the GEL
function StartUp(), the GEL functions in the file are executed. You can specify
GEL mapping functions in this file to automatically define the memory mapping
requirements for your environment.

Use the following GEL functions to define your memory map:

GEL_MapAdd() Memory map add

GEL_MapDelete() Memory map delete

GEL_MapOn() Enable memory map

GEL_MapOff() Disable memory map

GEL_MapReset() Reset memory map

The GEL_MapAdd() function defines a valid memory range and identifies the
read/write characteristics of the memory range. The following is a sample of
a GEL file that can be used to define two blocks of length 0xF000 that are both
readable and writeable:

StartUp()

{

 GEL_MapOn();

 GEL_MapReset();

 GEL_MapAdd(0, 0, 0xF000, 1, 1);

 GEL_MapAdd(0, 1, 0xF000, 1, 1);

}

When you have set up your memory map, you can use the Option→Memory
Map command to view it.

Setting Up Your Environment for Debug

 5-12

5.1.2.2 Pin Connect

The Pin Connect tool enables you to specify the interval at which selected
external interrupts occur.

To simulate external interrupts:

Step 1: Create a data file that specifies interrupt intervals.

Step 2: Start the Pin Connect tool. From the Tools menu, choose Pin
Connect.

Step 3: Select the Pin name and click Connect.

Step 4: Load your program.

Step 5: Run your program.

For detailed information on the Pin Connect tool, see the Pin Connect topics
provided in the online help: Help→Contents→Pin Connect.

5.1.2.3 Port Connect

You can use the Port Connect tool to access a file through a memory address.
Then, by connecting to the memory (port) address, you can read data in from
a file, and/or write data out to a file.

Setting Up Your Environment for Debug

5-13Debug

To connect a memory (port) address to a data file, follow these steps:

Step 1: From the Tools menu, select Port Connect.

This action displays the Port Connect window and starts the Port
Connect tool.

Step 2: Click the Connect button.

This action opens the Connect dialog box.

Step 3: In the Port Address field, enter the memory address.

This parameter can be an absolute address, any C expression, the
name of a C function, or an assembly language label. If you want to
specify a hex address, be sure to prefix the address number with 0x;
otherwise, it is treated as a decimal address.

Step 4: In the Length field, enter the length of the memory range.

The length can be any C expression.

Setting Up Your Environment for Debug

 5-14

Step 5: In the Page field (C5000 only), choose type of memory (program or
data) that the address occupies:

To identify this page. . . use this value.

Program memory Prog

Data memory Data

I/O space I/O

Step 6: In the Type field, select the Write or Read radio button, depending
on whether you want to read data from a file or write data to a file.

Step 7: Click OK.

This action displays the Open Port File window.

Step 8: Select the data file to which you want to connect and click Open.

Step 9: Select the No Rewind feature to prohibit the file from being rewinded
when the end-of-file (EOF) is reached. For read accesses made after
EOF, the value 0xFFFFFFFF is read and the file pointer is kept
unchanged.

The file is accessed during an assembly language read or write of the
associated memory address. Any memory address can be connected to a file.
A maximum of one input and one output file can be connected to a single
memory address; multiple addresses can be connected to a single file.

For detailed information on the Port Connect tool, see the Port Connect topics
provided in the online help: Help→Contents→Port Connect.

5.1.3 Program Load

The COFF file (*.out) produced by building your program must be loaded onto
the actual or simulated target board prior to execution.

Program code and data are downloaded onto the target at the addresses
specified in the COFF file.

Symbols are loaded into a symbol table maintained by the debugger on the
host. The symbols are loaded at the code and data addresses specified in the
COFF file.

A COFF file can be loaded by selecting File→Load Program...from the main
menu and then using the Load Program dialog box to select the desired COFF
file.

Setting Up Your Environment for Debug

5-15Debug

5.1.3.1 Loading Symbols Only

It is useful to load only symbol information when working in a debugging
environment where the debugger cannot or need not load the object code,
such as when the code is in ROM.

Symbols can be loaded by selecting File→Load Symbols→Load Symbols
Only… from the main menu and then using the Load Symbols dialog box to
select the desired COFF file.

The debugger deletes any previously loaded symbols from the symbol table
maintained on the host. The symbols in the symbol file are then loaded into the
symbol table. Symbols are loaded at the code and data addresses specified
in the symbol file.

This command does not modify memory or set the program entry point.

You can also specify a code offset and a data offset that the debugger will apply
to every symbol in the specified symbol file.

For example, suppose you have a symbol file for an executable that contains
code addresses starting at 0x100 and data addresses starting at 0x1000.
However, in the program loaded on the target the corresponding code starts
at 0x500100 and the data is located at 0x501000.

To specify the code and data offset, select File→Load Symbols→Load
Symbols with Offsets… from the main menu and then use the Load Symbols
dialog box to select the desired COFF file. Once a COFF file is selected, an
additional Load Symbols with Offsets dialog box will appear for the user to
enter the actual addresses where code and data start.

The debugger automatically offsets every symbol in that symbol file by the
given value.

Adding Symbols Only

Symbol information can also be appended to the existing symbol table. This
command differs from the Load Symbol command in that it does not clear the
existing symbol table before loading the new symbols.

Basic Debugging

 5-16

The steps for adding symbol information, with (File→Load Symbols→Load
Symbols with Offsets…) or without offsets (File→Load Symbols→Load
Symbols Only…), is similar to the steps outlined above for loading symbols.

5.2 Basic Debugging

Several components are available and many times necessary for basic
debugging in the Code Composer Studio IDE. The chart below provides a list
of the icons used for debugging; they will be used throughout this chapter.

Step into (source mode)

Step over (source mode)

Step into (assembly mode)

Step out (assembly mode)

Step out (source and assembly mode)

Sync run

Sync halt

Animate

Toggle breakpoint

Toggle probe point

Expression

Basic Debugging

5-17Debug

5.2.1 Running/Stepping

Both source and assembly stepping are available only when the execution has
been halted. By accessing a mixed Source/ASM mode through View→Mixed
Source/ASM, you can view both source and assembly code simultaneously.

There are three types of stepping.

1) Step-Into executes one single statement and then execution is halted.

2) Step-Over executes the function and then halts after the function returns.

3) Step-Out executes the current subroutine and then returns to the calling
function. Execution is then halted after returning to the calling function.

5.2.1.1 Source Stepping

Source stepping steps through the lines of code displayed on your source
editor.

5.2.1.2 Assembly Stepping

Assembly stepping steps through the lines of instructions that can be
displayed on your dis-assembly window.

Run

The following commands allow you to run the program.

� Main − You can begin your debugging at main by Debug→Go
Main. This action will take your execution to your main function.

� Run − After execution has been halted, you can continue to run by
pressing the run button.

� Run to Cursor − If you want the program to run to a specific
location, you can simply place the cursor at the said location and
then pressing this button .

� Set PC to Cursor − You can also set the program counter to a
certain location by placing the cursor at the location and then
pressing the button .

� Animate − This action runs the program until a breakpoint is
encountered. At the breakpoint, execution stops and all windows
not connected to any probe points are updated. Program
execution then resumes until the next breakpoint. You can
animate execution by pressing the button.

Basic Debugging

 5-18

Note: Animate speed can be modified under the options menu,
Customize... section.

� Halt − Lastly, you can halt execution at any time by pressing the
halt button .

5.2.1.3 Multiprocessor Broadcast Commands (PDM+ only)

When using the Parallel Debug Manager (PDM), all run/step commands are
broadcast to all target processors in the current group. If the device driver
supports synchronous operation, each of the following commands is
synchronized to start at the same time on each processor.

� You can use Step into to single step all processors that are not already
running.

� You can use Step Over to execute a step over on all processors that are
not already running.

� If all the processors are inside a subroutine, you can use Step Out to
execute the step-out command on all the processors that are not already
running.

� Sync Run sends a global run command to all processors that are not
already running.

� Sync Halt halts all processors simultaneously.

� Animate starts animating all the processors that are not already running.

5.2.2 Breakpoints

Breakpoints are essential components of any debugging session.

Breakpoints stop the execution of the program. While the program is stopped,
you can examine the state of the program, examine or modify variables,
examine the call stack, etc. Breakpoints can be set on a line of source code
in an Editor window or a disassembled instruction in the Disassembly window.
After a breakpoint is set, it can be enabled or disabled.

For breakpoints set on source lines it is necessary that there be an associated
line of dissassembly code. When compiler optimization is turned on, many
source lines cannot have breakpoints set. To see allowable lines, use mixed
mode in the editor window.

Basic Debugging

5-19Debug

Note:

Code Composer Studio IDE tries to relocate a breakpoint to a valid line in
your source window and places a breakpoint icon in the selection margin be-
side the line on which it locates the breakpoint. If an allowable line cannot be
determined, it reports an error in the message window.

Note:

Code Composer Studio briefly halts the target whenever it reaches a probe
point. Therefore, the target application may not meet real-time deadlines if
you are using probe points. At this stage of development, you are testing the
algorithm. Later, you can analyze real-time behavior using RTDX and
DSP/BIOS.

Software Breakpoints

Breakpoints can be set in any Disassembly window or document window
containing C/C++ source code. There is no limit to the number of software
breakpoints that can be set, provided they are set at writable memory locations
(RAM). Software breakpoints operate by modifying the target program to add
a breakpoint instruction at the desired location.

The fastest way to set a breakpoint is to simply double-click on the desired line
of code.

Step 1: In a document window or Disassembly window, move the cursor
over the line where you want to place a breakpoint.

Step 2: Double-click in the Selection Margin immediately preceding the line
when you are in a document window.

In a Disassembly window, double-click on the desired line.

A breakpoint icon in the Selection Margin indicates that a breakpoint has been
set at the desired location.

The Toggle Breakpoint command and the Toggle Breakpoint button also
enable you to quickly set and clear breakpoints.

Step 1: In a document window or Disassembly window, put the cursor in the
line where you want to set the breakpoint.

Step 2: Right-click and select Toggle Breakpoint, or click its icon on the
Project toolbar.

Basic Debugging

 5-20

Hardware Breakpoints

Hardware breakpoints differ from software breakpoints in that they do not
modify the target program; they use hardware resources available on the chip.
Hardware breakpoints are useful for setting breakpoints in ROM memory or
breaking on memory accesses instead of instruction acquisitions. A
breakpoint can be set for a particular memory read, memory write, or memory
read or write. Memory access breakpoints are not shown in the source or
memory windows.

Hardware breakpoints can also have a count, which determines the number
of times a location is encountered before a breakpoint is generated. If the count
is 1, a breakpoint is generated every time. Hardware breakpoints cannot be
implemented on a simulated target.

To set a hardware breakpoint:

Step 1: Select Debug→Breakpoints. The Break/Probe Points dialog box
appears with the Breakpoints tab selected.

Step 2: In the Breakpoint type field, choose “H/W Break at location” for
instruction acquisition breakpoints or choose “Break on <bus>
<Read|Write|R/W>” at location for a memory access breakpoint.

Step 3: Enter the program or memory location where you want to set the
breakpoint. Use one of the following methods:

� For an absolute address, you can enter any valid C expression,
the name of a C function, or a symbol name.

� Enter a breakpoint location based on your C source file. This is
convenient when you do not know where the C instruction is
located in the executable. The format for entering in a location
based on the C source file is as follows: fileName line
lineNumber.

Step 4: Enter the number of times the location is hit before a breakpoint is
generated, in the Count field. Set the count to 1 if you wish to break
every time.

Step 5: Click the Add button to create a new breakpoint. This causes a new
breakpoint to be created and enabled.

Step 6: Click OK.

Basic Debugging

5-21Debug

5.2.3 Probe Points

In this section, you add a probe point, which reads data from a file on your PC.
Probe Points are a useful tool for algorithm development. You can use probe
points to:

� Transfer input data from a file on the host PC to a buffer on the target for
use by the algorithm.

� Transfer output data from a buffer on the target to a file on the host PC for
analysis.

� Update a window, such as a graph, with data.

More Information About Probe Points

Probe points are similar to breakpoints in that they both halt the target to
perform their action. However, probe points differ from breakpoints in the
following ways:

� Probe Points halt the target momentarily, perform a single action, and
resume target execution.

� Breakpoints halt the CPU until execution is manually resumed and cause
all open windows to be updated.

� Probe points permit automatic file input or output to be performed;
breakpoints do not.

This section shows how to use a probe point to transfer the contents of a PC
file to the target for use as test data. It also uses a breakpoint to update all the
open windows when the Probe Point is reached.

Step 1: Choose File→Load Program. Select filename.out, and click Open.

Step 2: Double-click on the filename.c file in the Project View.

Step 3: Put your cursor in a line of the main function to which you want to add
a probe point.

Step 4: Click the Toggle Probe Point toolbar button.

Basic Debugging

 5-22

Step 5: From the File menu, choose File I/O. The File I/O dialog appears so
that you can select input and output files.

Step 6: In the File Input tab, click Add File.

Step 7: Browse to your project folder, select filename.dat and click Open.

A control window for the filename.dat file appears. When you run the
program, you can use this window to start, stop, rewind, or fast
forward within the data file.

Step 8: In the File I/O dialog, change the Address and the Length values.
Also, put a check mark in the Wrap Around box.

Basic Debugging

5-23Debug

� The Address field specifies where the data from the file is to be
placed.

� The Length field specifies how many samples from the data file
are read each time the Probe Point is reached.

� The Wrap Around option enables the data to start being read
from the beginning of the file when it reaches the end of the file.
This allows the data file to be treated as a continuous stream of
data.

Step 9: Click Add Probe Point. The Probe Points tab of the Break/Probe
Points dialog appears.

Step 10: In the Probe Point list, highlight a line.

Step 11: In the Connect To field, click the down arrow and select a file from
the list.

Basic Debugging

 5-24

Step 12: Click Replace. The Probe Point list changes to show that this Probe
Point is connected to the sine.dat file.

Step 13: Click OK. The File I/O dialog shows that the file is now connected to
a Probe Point.

Step 14: Click OK to close the File I/O dialog.

5.2.4 Watch Window

When debugging a program, it is often helpful to understand how the value of
a variable changes during program execution. The Watch window allows you
to monitor the values of local and global variables and C/C++ expressions.

To open the Watch window:

Step 1: Select View→Watch Window, or click the Watch Window button on
the Watch toolbar.

Open Quick WatchOpen the Watch window

The Watch window, contains two tabs labeled: Watch Locals and Watch.

� In the Watch Locals tab, the debugger automatically displays the Name,
Value, and Type of the variables that are local to the currently executing
function.

� In the Watch tab, the debugger displays the Name, Value, and Type of the
local and global variables and expressions that you specify.

� For detailed information on the Watch Window, see the Watch Window
topics provided in the online help: Help→Contents→Watch Window.

� When you are developing and testing programs, you often need to check
the value of a variable during program execution. You use breakpoints and
the Watch Window to view such values.

Basic Debugging

5-25Debug

Step 2: Choose File→Load Program.

Step 3: Double−click on the filename.c file in the Project View.

Step 4: Put your cursor in a line that allows breakpoints.

Step 5: Click the Toggle Breakpoint toolbar button or press F9.

The selection margin indicates that a breakpoint has been set (red
icon). If you disable the selection margin (Options→Customize) the
line is highlighted in magenta.

Step 6: Choose View→Watch Window.

A separate area in the lower−right corner of the window appears. At
run time, this area shows the values of watched variables.
By default, the Locals tab is selected and displays variables that are
local to the function being executed.

Step 7: If not at main, choose Debug→Go Main.

Step 8: Choose Debug→Run, or press F5, or press the Icon.

Step 9: Select the Watch tab.

Step 10: Click on the Expression icon in the Name column and type the name
of the variable to watch.

Basic Debugging

 5-26

Step 11: Click on the white space in the watch window to save the change.
The value should immediately appear, similar to this example.

Step 12: Click the Step Over toolbar button or press F10 to step over the call
to your watched variable.

In addition to watching the value of a simple variable, you can watch the values
of the elements of a structure.

Step 1: Select the Watch tab.

Step 2: Click on the Expression icon in the Name column and type the name
of the expression to watch.

Step 3: Click on the white space in the watch window to save the change.

Step 4: Click once on the + sign. The line expands to list all the elements of
the structure and their values. (The address shown for Link may
vary.)

Step 5: Double-click on the Value of any element in the structure to edit the
value for that element.

Basic Debugging

5-27Debug

Step 6: Change the value of a variable.

Notice that the value changes in the Watch Window. The value also
changes color to red, indicating that you have changed it manually.

5.2.5 Memory Window

The Memory window allows you to view the contents of memory starting at a
specified address. Options enable you to format the Memory window display.
You can also edit the contents of a selected memory location.

The Memory Window Options dialog box allows you to specify various
characteristics of the Memory window.

The Memory Window Options dialog offers the following options:

� Title. Enter a meaningful name for the Memory window. When the
Memory window is displayed, the name appears in the title bar. This
feature is especially useful when multiple Memory windows are
displayed.

Basic Debugging

 5-28

� Address. Enter the starting address of the memory location you
want to view.

� Q Value. You can display integers using a Q value. This value is
used to represent integer values as more precise binary values. A
decimal point is inserted in the binary value; its offset from the
least significant bit (LSB) is determined by the Q value as follows:

New_integer_value = integer / (2^(Q value))

A Q value of xx indicates a signed 2s complement integer whose
decimal point is displaced xx places from the least significant bit
(LSB).

� Format. From the drop−down list, select the format of the
memory display. More information on the different formats can be
found in the on−line help.

� Enable Reference Buffer. Save a snapshot of a specified area
of memory that can be used for later comparison.

� Start Address. Enter the starting address of the memory
locations you want to save in the Reference Buffer. This field only
becomes active when Enable Reference Buffer is selected.

� End Address. Enter the ending address of the memory locations
you want to save in the Reference Buffer. This field only becomes
active when Enable Reference Buffer is selected.

� Update Reference Buffer Automatically. Select this checkbox
to automatically overwrite the contents of the Reference Buffer
with the current contents of memory at the specified range of
addresses. When this option is selected, the Reference Buffer is
updated whenever the Memory window is refreshed (for example,
Refresh Window is selected, a breakpoint is hit, or execution on
the target is halted). If this checkbox is not selected, the contents
of the Reference Buffer are not changed. This option only
becomes active when Enable Reference Buffer is selected.

� Bypass Cache Differences. This option forces the memory to
always read memory contents from physical memory. Normally, if
a memory’s contents were in cache, the returnedmemory value
would display the value from cache, not from physicalmemory. If
this option is turned on, Code Composer Studio will ignore or
bypass the cached memory contents.

� Highlight Cache Differences. This option highlights the value of
memory locations when the cached value and physical value

Basic Debugging

5-29Debug

differ. It is also possible to use colors tohighlight the cache
difference. Go to Options→Customize→Color and select the
Cache Bypass Differences option under the Screen element
dropdown box.

Please refer to the online section on the Memory Window for more detailed
information.

5.2.6 Register Window

The Register window enables you to view and edit the contents of various
registers on the target.

To access the Register Window:

� Select View→Registers and select the register set that you would like to
view/edit

To Edit the Contents of a Register:

� Select Edit→Edit Register, or from the Register window, double-click a
register, or right-click in the Register window and select Edit Register.

Basic Debugging

 5-30

5.2.7 Disassembly/Mixed Mode

Disassembly

When you load a program onto your actual or simulated target, the debugger
automatically opens a Disassembly window.

The Disassembly window displays disassembled instructions and symbolic
information needed for debugging. Disassembly reverses the assembly
process and allows the contents of memory to be displayed as assembly
language code. Symbolic information consists of symbols and strings of
alphanumeric characters that represent addresses or values on the target.

As you step through your program using the stepping commands, the PC
advances to the appropriate instruction. For the sections of your program code
that are written in C, you can choose to view mixed C source and assembly
code.

Mixed Mode

In addition to viewing disassembled instructions in the Disassembly window,
the debugger enables you to view your C source code interleaved with
disassembled code, allowing you to toggle between source mode and mixed
mode.

To change your selection, toggle View→Mixed Source/ASM; or right-click in
the source window and select Mixed Mode or Source Mode, depending on
your current selection.

Basic Debugging

5-31Debug

5.2.8 Call Stack

Use the Call Stack window to examine the function calls that led to the current
location in the program that you are debugging.

To Display the Call Stack:

Step 1: Select View→Call Stack, or click the View Stack button on the Debug
toolbar.

Step 2: Double-click on a function listed in the Call Stack window. The
source code containing that function is displayed in a document
window. The cursor is set to the current line within the desired
function.

Once you select a function in the Call Stack window, you can observe
local variables that are within the scope of that function.

The call stack only works with C programs. Calling functions are determined
by walking through the linked list of frame pointers on the runtime stack. Your
program must have a stack section and a main function; otherwise, the call
stack displays the message: C source is not available. Also note that the Call
Stack Window displays only the first 100 lines of output. Any amount of lines
over 100 will be omitted from the display.

5.2.9 Symbol Browser

The Symbol Browser window (Figure 5−1) displays five tabbed windows:

� All associated files;
� functions;
� global variables;
� types; and
� labels of a loaded COFF output file (*.out).

Each tabbed window contains nodes representing various symbols. A plus
sign (+) preceding a node indicates that the node can be further expanded. To

Basic Debugging

 5-32

expand the node, simply click the + sign. A minus sign (−) precedes an
expanded node. Click the − sign to hide the contents of that node.

To open the Symbol Browser window, select Tools→Symbol Browser.

Figure 5−1. Symbol Browser Window

For detailed information on the Symbol Browser tool, see the Symbol Browser
topics provided in the online help: Help→Contents→Symbol Browser.

5.2.10 Command Window

The Command Window enables you to specify commands to the debugger
using the TI Debugger command syntax.

Many of the commands accept C expressions as parameters. This allows the
instruction set to be relatively small, yet powerful. Because C expressions can
have side effects (that is, the evaluation of some types of expressions can
affect existing values) you can use the same command to display or change
a value.

To open the Command Window:

Select Tools→Command Window from the menu bar.

Basic Debugging

5-33Debug

Figure 5−2. Command Window

For detailed information on the Command Window, see the Command
Window topics provided in the online help: Help→Contents→Command
Window.

Advanced Debugging Features

 5-34

5.3 Advanced Debugging Features

5.3.1 Thread Level Debugging

Thread level debugging means that the debugger halts when the thread it is
associated with reaches it. Target execution commands such as stepping,
halting, and running can also be specific to a selected thread. Also, information
displayed by certain debug windows can pertain to the thread it is related to
– such as variable information displayed in the watch window, or values of
context-saved registers for non−executing threads.

To enable Thread Level Debugging:

Step 1: Specify the target OS to the debugger. This can be done by going to
Tools→OS Selector to launch the OSSelector dialog box.

Note: DSP/BIOS has been configured as the default OS upon installation
of Code Composer Studio. If the target OS is DSP/BIOS then the user can
skip to step 4.

Step 2: Select the target OS from a list of currently installed drivers in the
drop down menu list. Note that DSP/BIOS is configured as the
default OS. If the OS of choice is not available then it must be added
to the list by selecting ‘Add/Remove’ and then browsing for the OS
TLI driver provided by Code Composer Studio or a third−party
vendor depending on the OS.

Step 3: Close the OS Selector dialog box

Step 4: Select File→Load Program and select the program you wish to
debug

Step 5: Select Debug→Go Main. Wait until the application reaches ‘main’

Advanced Debugging Features

5-35Debug

Step 6: Select Debug→Enable Thread Level Debugging…

Thread Level Debugging has now been enabled for the debug session. The
developer can now access the options under View→Threads.

The Threads menu will contain an alphabetical list of all tasks and SWI’s in the
system. The list can include both statically and dynamically created threads
and the list can change depending on the creation and destruction of threads
in the system. The list is automatically updated whenever the target is halted.
The Refresh Threads option will also refresh the list of threads. Selecting a
listed thread for the first time will launch a Thread Control Window (TCW). The
subsequent selections of the threads in the list will select the Thread Control
Window of the thread. This is an easy way to switch between multiple Thread
Control Windows. There is also an option in the menu called Current Thread,
which will allow for easy access to the current running thread.

The Thread Control Window is the main interface for debugging a particular
thread. It has the same look and feel as the Main Control Window; however,

Advanced Debugging Features

 5-36

it contains context information for the thread associated with a thread control
window. Debug commands and information are only in context of that thread.

More information on Task Control Windows and Task Level Debugging in
general can be found in the online help.

5.3.2 Advanced Event Triggering (AET)

Advanced Event Triggering (AET) is supported by a group of tools that makes
hardware analysis easier than before. AET uses Event Analysis and Event
Sequencer to simplify hardware analysis.

Event Analysis uses a simple interface to help you configure common
hardware debug tasks called jobs. You can easily set breakpoints, action
points, and counters by using a right-click menu and performing a simple
drag-and-drop. You can access Event Analysis from the tools menu, or by
right-clicking in a source file.

Event Sequencer allows you to look for conditions that you specify in your
target program and initiates specific actions when these conditions are
detected. While the CPU is halted, you define the conditions and actions, then
run your target program. The sequence program then looks for the condition
you specified and performs the action you requested.

Event Analysis

The following jobs can be performed using Event Analysis:

� Setting Breakpoints
� Hardware Breakpoint
� Hardware Breakpoint With Count
� Chained Breakpoint
� Global Hardware Breakpoint

� Setting Action/Watch Points
� Data Actionpoint
� Program Actionpoint
� Watchpoint
� Watchpoint With Data

� Setting Counters
� Data Access Counter
� Profile Counter
� Watchdog Timer
� Generic Counter

Advanced Debugging Features

5-37Debug

� Other
� Benchmark to Here
� Emulation Pin Configuration

For detailed information on the Event Analysis tool, see the Event Analysis
topics provided in the online help: Help→Contents→Advanced Event
Triggering.

To configure a job using the Event Analysis Tool, Code Composer Studio IDE
must be configured for a target processor that contains on-chip analysis
features. You can use Event Analysis by selecting it from the Tools menu or
by right-clicking in a source file. Once you configure a job, it is enabled and will
perform analysis when you run code on your target. For information about how
to enable or disable a job that is already configured, see the Advance Event
Triggering online help.

Step 1: Select Tools→Advanced Event Triggering→Event Analysis.

The Event Analysis window displays.

Step 2: Right-click in the Event Analysis Window and choose Event
Triggering→Job Type→Job.

Advanced Debugging Features

 5-38

The job menu is dynamically built and dependent on the target
configuration. If a job is not supported on your target, the job is
grayed out.

Step 3: Type your information in the Job dialog box.

Step 4: Click Apply to program the job and save your changes.

Event Sequencer

The Event Sequencer allows you to look for conditions that you specify in your
target program and initiates specific actions when these conditions are
detected. While the CPU is halted, you define the actions, then run your target
program. The sequencer program then looks for the condition that you
specified and performs the action you requested.

To use the Event Sequencer, Code Composer Studio IDE must be configured
for a target processor that contains on-chip analysis features. You can use the
Event Sequencer by selecting it from the Tools menu. Once you create an
Event Sequencer program, it is enabled and performs analysis when you run
code on your target. For information on creating an Event Sequencer program,
see the Advanced Event Triggering online help.

To enable the Event Sequencer:

Step 1: Select Tools→Advanced Event Triggering→Event Sequencer.

The Event Sequencer window displays.

Advanced Debugging Features

5-39Debug

Add a Global
Action

Add a Global
If statement

Add a state

Add a boolean
“and” operator

Add open and close
parenthesis

Erase the Sequencer
program

Launch online help

Step 2: Right-click in the Event Sequencer window or use the Event
Sequencer toolbar buttons to create a sequencer program.

Real-Time Debugging

 5-40

5.4 Real-Time Debugging

Traditional debugging approaches (Stop Mode) require that programmers
completely halt their system, which stops all threads and prevents interrupts
from being handled. Stop Mode can exclusively be used for debug as long as
the system/application does not have any real-time constraints. However
there will be times when the developer will want a better gauge of their
application’s real-world system behavior. Code Composer Studio offers
several options to help with this effort.

5.4.1 Real−Time Mode

Real-Time Mode debug support provides a better gauge of real−world system
behavior by enabling programmers to halt and examine the application while
allowing user specified time critical interrupts to be handled. You can suspend
program execution in multiple locations, which allows you to break within one
time−critical interrupt while still servicing others.

Enabling Real-Time Mode Debug:

Step 1: Select Debug→Real-Time Mode. The status bar at the bottom of the
Code Composer Studio window now indicates POLITE REALTIME.

Step 2: Configure the real−time refresh options by selecting
View→Real-Time Refresh Options…

Configure the options if desired. The first option will specify how often the
Watch Window is updated. Checking the Global Continuous Refresh
checkbox will continuously refresh all windows that display target data,
including memory/graph/watch windows. To continuously update only a
certain window, uncheck this box and select Continuous Refresh from the
window’s context menu.

Step 3: Click OK to close the dialog box.

Real-Time Debugging

5-41Debug

Step 4: Select View→Registers→CPU Registers to open the CPU Register
Display.

The DIER is used to designate a single, a specific subset, or all
interrupts that are user selected via the IER as Real-Time
(time-critical) interrupts. DIER mirrors the architecturally specified
Interrupt Enable Register (IER)

Step 5: Right-click on a register and select Edit Register… and enter the new
register value that will specify which interrupts to designate
interrupts as real−time interrupts:

Step 6: Click Done to close the Edit Registers dialog box.

Step 7: Code Composer Studio has been configured for Real-Time Mode
debug.

Rude Real−Time Mode

High priority interrupts, or other sections of code can be extremely time-critical,
and the number of cycles taken to execute them must be kept at a minimum
or to an exact number. This means debug actions (both execution control and
register/memory accesses) may need to be prohibited in some code areas or
targeted at a specific machine state. In real-time mode, by default the
processor runs in ‘polite’ mode by absence of privileges, i.e., debug actions
will respect the appropriate delaying of the action and not intrude in the debug
sensitive windows.

However, debug commands (both execution control and register/memory
access) can fail if they are not able to find a window that is not marked debug
action-sensitive. In order to have the debugger gain control, you must change
real−time debug from ‘polite’ to ‘rude’ mode. In rude real-time mode, the
possession of privileges allows a debug action to override any protection that

Real-Time Debugging

 5-42

may prevent debug access and be executed successfully without delay. Also,
the user can not debug critical code regions until they are switched into rude
real−time mode.

To enable Rude Real-Time mode, perform one of the following:

� Select Perform a Rude Retry from the display window when a debug
command failed.

� Select Enable Rude Real-Time Mode from Debug menu when Real-Time
is turned on.

When Rude Real-Time is enabled, the status bar at the bottom of the main
program window displays RUDE REALTIME. To disable Rude Real-Time,
deselect the Enable Rude Real-Time Mode item in the Debug menu. The
status bar now reads POLITE REALTIME.

If Rude Real-Time is enabled and you halt the CPU, there is a good chance
that the CPU will halt even when debug accesses are blocked, which might be
within a time-critical ISR. This prevents the CPU from completing that ISR in
the appropriate amount of time, as the CPU cannot do anything until you
respond to the breakpoint. To prevent this problem, you must switch back to
Polite real-time mode by deselecting Enable Rude Real-Time Mode.

Please refer to the online help section Debugging→Real Time Debugging for
more detailed information on Real-Time Mode.

5.4.2 Real-Time Data Exchange (RTDX)

DSP/BIOS Real-Time Analysis (RTA) facilities utilize the Real-Time Data
Exchange (RTDX) link to obtain and monitor target data in real-time. You can
utilize the RTDX link to create your own customized interfaces to the DSP
target by using the RTDX API Library.

Real-time data exchange (RTDX) allows system developers to transfer data
between a host computer and target devices without interfering with the target
application. This bi-directional communication path provides for data
collection by the host as well as host interaction with the running target
application. The data collected from the target may be analyzed and visualized
on the host. Application parameters may be adjusted using host tools, without
stopping the application. RTDX also enables host systems to provide data
stimulation to the target application and algorithms.

RTDX consists of both target and host components. A small RTDX software
library runs on the target application. The target application makes function
calls to this library’s API in order to pass data to or from it. This library makes

Real-Time Debugging

5-43Debug

use of a scan-based emulator to move data to or from the host platform via a
JTAG interface. Data transfer to the host occurs in real-time while the target
application is running.

On the host platform, an RTDX Host Library operates in conjunction with Code
Composer Studio IDE. Data visualization and analysis tools communicate with
RTDX through COM APIs to obtain the target data and/or to send data to the
DSP application.

The host library supports two modes of receiving data from a target
application: continuous and non-continuous. In Continuous mode, the data is
simply buffered by the RTDX Host Library and is not written to a log file.
Continuous mode should be used when the developer wants to continuously
obtain and display the data from a target application, and does not need to
store the data in a log file. In Non Continuous mode, data is written to a log file
on the host. This mode should be used when developers want to capture a
finite amount of data and record it in a log file.

For details on using RTDX, see the Help→Contents→RTDX or
Help→Tutorial→RTDX Tutorial.

RTDX Data Flow

RTDX forms a two-way data pipe between a target application and a host
client. This data pipe consists of a combination of hardware and software
components as shown below.

Real-Time Debugging

 5-44

Figure 5−3. RTDX Data Flow

User
interface

RTDX

library
host

Code
composer

Host
client

interface
COM

Target

Host

JTAG interface

RTDX
target
library

Target
application

log file
Optional

Configuring RTDX Graphically

The RTDX tools allow you to configure RTDX graphically, set up RTDX
channels, and run diagnostics on RTDX. These tools allow you to enhance
RTDX functionality when transmitting data.

RTDX has three menu options:

� Diagnostics Control
� Configuration Control
� Channel Viewer Control

Diagnostics Control

RTDX provides the RTDX Diagnostics Control to verify that RTDX is working
correctly on your system. The diagnostic tests test the basic functionality of
target−to−host transmission and host−to−target transmission.

To open the RTDX Diagnostics Control, select Tools→RTDX→Diagnostics
Control.

Real-Time Debugging

5-45Debug

Figure 5−4. RTDX Diagnostics Window

Configuration Control

Configuration Control is the main RTDX window. It allows you to do the
following:

� View the current RTDX configuration settings
� Enable or disable RTDX
� Access the RTDX Configuration Control Properties page to reconfigure

RTDX and select port configuration settings

To open the RTDX Configuration Control, select Tools→RTDX→Configuration
Control.

Figure 5−5. RTDX Config Window

Channel Viewer Control

The RTDX Channel Viewer Control is an Active X control that automatically
detects target-declared channels and adds them to the viewable list. The
RTDX Channel Viewer Control also allows you to:

� Remove a target-declared channel from the viewable list
� Re-add a target−declared channel to the viewable list
� Enable or disable a channel that is in the list

To open the RTDX Channel Viewer Control in Code Composer Studio, select
Tools→RTDX→Channel Viewer Control. The Channel Viewer Control window
displays.

Real-Time Debugging

 5-46

Figure 5−6. RTDX Channel Viewer Window

Click on the Input and Output Channels tabs to display a list of those channels.
Both the Output and Input Channels windows allow you to view, delete, and
re-add channels.

Checking the Auto-Update feature enables you to automatically update
information for all channels without refreshing the display. If you are not using
the Auto Update feature, from the right-click menu, select Refresh to update
information for all channels.

Note: For the RTDX Channel View Control to receive extended channel
information for a specific channel, a RTDX client must have the channel of
interest open.

Transmit a Single Integer to the Host

The basic function of RTDX is to transmit a single integer to the host. The
following steps provide an overview of the process of sending data from the
target to the host and from the host to the target. For specific commands and
details on transmitting different types of data, see the Help→Contents→RTDX
or Help→Tutorial→RTDX Tutorial.

To send data from your target application to the host:

Step 1: Prepare your target application to capture real-time data.

This involves inserting specific RTDX syntax into your application
code to allow real-time data transfer from the target to the host.
Although the process for preparing a target application is the same
for all data types, different data types require different function calls
for data transfer. Therefore, sending an integer to the host requires
you to add a function call that is specific to only transmitting a single
integer as compared to sending an array of integers to the host.

Real-Time Debugging

5-47Debug

Step 2: Prepare your host client to process the data.

This involves instantiating one RTDX object for each desired
channel, opening a channel for the objects specified, and calling any
other desired functions.

Step 3: Start Code Composer Studio IDE.

Step 4: Load your target application onto the TI processor.

Step 5: Enable RTDX: Tools→RTDX→Configuration Control.

The Configuration Control window displays.

Step 6: Run your target application to capture real-time data and send it to
the RTDX Host Library.

Step 7: Run your host client to process the data.

For details on using RTDX, see the Help→Contents→RTDX or
Help→Tutorial→RTDX Tutorial.

Transmit Data from the Host to the Target

A client application can send data to the target application by writing data to
the target. Data sent from the client application to the target is first buffered in
the RTDX Host Library. The data remains in the RTDX Host Library until a
request for data arrives from the target. Once the RTDX Host Library has
enough data to satisfy the request, it writes the data to the target without
interfering with the target application.

The state of the buffer is returned into the variable buffer state. A positive value
indicates the number of bytes the RTDX Host Library has buffered, which the
target has not yet requested. A negative value indicates the number of bytes
that the target has requested, which the RTDX Host Library has not yet
satisfied.

To send data from a host client to your target application:

Step 1: Prepare your target application to receive data.

This involves writing a simple RTDX target application that reads
data from the host client.

Real-Time Debugging

 5-48

Step 2: Prepare your host client to send data.

This involves instantiating one RTDX object for each desired
channel, opening a channel for the objects specified, and calling any
other desired functions.

Step 3: Start Code Composer Studio IDE.

Step 4: Load your target application onto the TI processor.

Step 5: Enable RTDX: Tools→RTDX→Configuration Control.

The Configuration Control window displays.

Step 6: Run your target application.

Step 7: Run your host client.

For details on using RTDX, see the Help→Contents→RTDX or
Help→Tutorial→RTDX Tutorial.

Automation (for Debug)

5-49Debug

5.5 Automation (for Debug)

5.5.1 Using the General Extension Language (GEL)

As mentioned earlier, GEL scripts can be used to create custom GEL menus
and automate steps in Code Composer Studio. In section 4.7.1, we saw
examples of using built-in GEL functions to automate steps related to project
management. There are also many built-in GEL functions that can be used to
automate steps during the debug process. Activities such as: set breakpoints,
add variables to the Watch Window, begin execution, halt execution, and set
up File I.O are just some of the actions that can be run from a GEL script.

5.5.2 Scripting Utility for Debug

The scripting utility as mentioned in section 4.7.2 also has comands that can
greatly aid in automating many debug steps. You can also refer to the online
help that comes with the Scripting Utility.

Target Reset

 5-50

5.6 Target Reset

There will be times when it is necessary to perform a reset of the target or the
emulator. Commands to perform these resets are integrated in the Code
Composer Studio IDE. The availability to perform these reset commands are
dependent on whether the IDE is connected to the target or not. Please refer
to section 3.1.3 (Connect/Disconnect) for more information on connecting or
disconnecting the target.

5.6.1 Reset Targ et

Target reset initializes the contents of all registers to their power-up state, and
halts execution of the program. If the target board does not respond to this
command and you are using a kernel-based device driver, the CPU kernel may
be corrupt. In this case, you must reload the kernel.

The simulator initializes the contents of all registers to their power−up state,
according to target simulation specifications.

To reset the target processor, select Debug→Reset CPU.

Note: Connection must be established with the target for the Debug→Reset
CPU option to be available.

5.6.2 Emulator Reset

Some processors require putting the processor into its functional run state
before a hard reset will work. In this case, the only way to force the processor
back into this functional run state is to reset the emulator. An emulator reset
will pull the TRST pin active, forcing the device to the functional run mode.

The Reset Emulator option becomes enabled whenever Code Composer
Studio is disconnected from the target. To reset the emulator, choose Debug
Menu→Reset Emulator. Upon running Reset Emulator, the hardware is left in
a free running state and you can now manually reset the target hardware by
pressing the reset button or by selecting Debug→Reset CPU. Note that this
is not true on ARM.

6-1

�����!�"����

Providing value to customers is often the main objective for a DSP developer.
A valuable customer experience can stem from an efficient application. To
create such an application, a developer may focus on performance, power,
code size, or cost. Managing tradeoffs between these factors is a vital part of
a DSP developer’s role.

Application Code Analysis is the process of gathering and interpreting data
about the factors that influence an application’s efficiency. Application Code
Tuning is the modification of code to improve its efficiency. DSP developers
can analyze and tune their application as often as necessary to meet the
efficiency goals defined by their customers, application, and hardware.

Code Composer Studio provides various tools to help developers analyze and
tune their applications.

Topic Page

6.1 Application Code Analysis 6-2.

6.2 Application Code Tuning 6-10.

Chapter 6

Appliction Code Analysis

 6-2

6.1 Appliction Code Analysis

An analysis of application code can reveal many opportunities to improve
efficiency, especially when knowing where to look. The tools offered by Code
Composer Studio have been designed to gather important data and usefully
present it to aid the DSP developer in the tuning process.

6.1.1 Data Visualization

Data visualization is useful when developing applications for communications,
wireless, image processing, as well as general applications.

There are a variety of ways in Code Composer Studio to graph data processed
by your program. The following classes of graphs are available:
time/frequency, constellation diagram, eye diagram, and image.

All the graphs can be accessed by going to View→Graph and selecting the
desired graph and specifying the graph properties in the graph properties box
that appears. In this example below, a Single Time (Time/Frequency) graph
is being configured:

Appliction Code Analysis

6-3Analyze/Tune

Once the properties are configured, hitting the OK button will open a graph
window and plot the data specified in the graph properties.

Please refer to the online help under Graphing Windows for more detailed information on this topic.

6.1.2 Simulator Analysis

The Simulator Analysis tool reports the occurrence of particular system events
so you can accurately monitor and measure the performance of your program.

User Options:

� Enable/disable analysis
� Count the occurrence of selected events
� Halt execution whenever a selected event occurs
� Delete count or break events
� Create a log file
� Reset event counter

To use the Simulator Analysis tool:

Step 1: Load your program.

Step 2: Start the analysis tool. Select Tools→Simulator Analysis for your
device.

Appliction Code Analysis

 6-4

Step 3: Right-click in the Simulator Analysis window and then select Enable
analysis.

Step 4: Specify your analysis parameters (count events or break events).

Step 5: Run or step through your program.

Step 6: Analyze the output of the analysis tool.

For detailed information on the Simulator Analysis tool, see the Simulator
Analysis topics provided in the online help: Help→Contents→Simulator
Analysis.

6.1.3 Emulator Analysis

The Emulator Analysis tool allows you to set up, monitor, and count events and
hardware breakpoints.

To start the Emulator Analysis tool:

Step 1: Load your program.

Step 2: Select Tools→Emulator Analysis for your device from the menu bar.

The Emulator Analysis window (Figure 6−1) contains the following
information:

Appliction Code Analysis

6-5Analyze/Tune

This column. . . displays. . .

Event the event name.

Type whether the event is a break or count event.

Count the number of times the event occurred before the
program halted.

Break Address the address at which the break event occurred.

Routine the routine in which the break event occurred.

Figure 6−1. Emulator Analysis Window

Note:

You cannot use the analysis features while you are using the profiling clock.

For detailed information on the Emulator Analysis tool, see the Emulator
Analysis topics provided in the online help: Help→Contents→Emulator
Analysis.

6.1.4 BIOS Real-Time Analysis (RTA) Tools

The DSP/BIOS Real-Time Analysis (RTA) features, shown in Figure 6−2,
provide developers and integrators unique visibility into their application by
allowing them to probe, trace, and monitor a DSP application during its course
of execution. These utilities, in fact, piggyback upon the same physical JTAG
connection already employed by the debugger, and utilize this connection as
a low-speed (albeit real-time) communication link between the target and host.

Appliction Code Analysis

 6-6

Figure 6−2. Real-Time Capture and Analysis

DSP/BIOS kernel interface

Host command
server

Host
data

channels

Statistics
accumulators

Software
event
logs

Target DSP platform

Real−
time
data
link

Host computer

Development

Execution trace
Timing analysis
Regression testing
Parametric variation

Deployment

System console
Activity monitoring
Live signal capture
Diagnostic modules

DSP/BIOS RTA requires the presence of the DSP/BIOS kernel within the
target system. In addition to providing run-time services to the application,
DSP/BIOS kernel provides support for real-time communication with the host
through the physical link. By simply structuring an application around the
DSP/BIOS APIs and statically created objects that furnish basic multitasking
and I/O support, developers automatically instrument the target for capturing
and uploading the real-time information that drives the visual analysis tools
inside CCStudio IDE. Supplementary APIs and objects allow explicit
information capture under target program control as well. From the
perspective of its hosted utilities, DSP/BIOS affords several broad capabilities
for real-time program analysis.

The DSP/BIOS Real-Time Analysis tools can be accessed through the
DSP/BIOS toolbar.

Appliction Code Analysis

6-7Analyze/Tune

Figure 6−3. DSP/BIOS Toolbar

Message Log

Statistics View

Host Channel Control

RTA Control Panel

Execution Graph

CPU Load Graph

Kernel/Object View

� Message Log: Displays time-ordered sequences of events written to
kernel log objects by independent real-time threads. This is useful for
tracing the overall flow of control in the program. There are two ways in
which the target program logs events:

1) Explicitly, through DSP/BIOS API calls. For example, this can be done
through “LOG_printf(&trace, “hello world!”);”, where “trace” is the name of
the log object.

2) Implicitly, by the underlying kernel when threads become ready,
dispatched, and terminated. An example of this would be log events in the
“Execution Graph Details.”

You can output the log to a file by right-clicking in the Message Log window and
selecting Property Page.

� Statistics View: Displays summary statistics amassed in kernel
accumulator objects, reflecting dynamic program elements ranging from
simple counters and time-varying data values, to elapsed processing
intervals of independent threads. The target program accumulates
statistics explicitly through DSP/BIOS API calls or implicitly by the kernel,
when scheduling threads for execution or performing I/O operations. You
can change settings such as units for the statistics by right-clicking in the
Statistics View window and selecting Property Page.

Appliction Code Analysis

 6-8

� Host Channel Control: Displays host channels defined by your program.
You can use this window to bind files to these channels, start the data
transfer over a channel, and monitor the amount of data transferred.
Binding kernel I/O objects to host files provides the target program with
standard data streams for deterministic testing of algorithms. Other
real−time target data streams managed with kernel I/O objects can be
tapped and captured on-the-fly to host files for subsequent analysis.

� RTA Control Panel: Controls the real-time trace and statistics
accumulation in target programs. In effect, this allows developers to
control the degree of visibility into the real-time program execution. By
default, all types of tracing are enabled. You must check the “Global host
enable” check box in order for any of the tracing types to be enabled. Your
program can also change the settings in this window. The RTA Control
Panel checks for any programmatic changes at the rate set for the RTA
Control Panel in the Property Page. In the Property Page, you can also
change refresh rates for any RTA tool, such as the Execution Graph.

� Execution Graph: Displays the execution of threads in real−time.
Through the execution graph you can see the timing and the order in which
threads are executed. Thick blue lines indicate the thread that is currently
running, that is, the thread using the CPU. More information about
different lines in the graph can be accessed by right-clicking in the
Execution Graph window and selecting Legend. If you display the
Execution Graph Details in a Message Log window, you can double-click
on a box (a segment of a line) in the Execution Graph to see details about
that event in text form. You can also hide threads in the graph by
right-clicking in the Execution Graph window and selecting Property Page.

� CPU Load Graph: Displays a graph of the target CPU processing load.
The most recent CPU load is shown in the lower−left corner and the
highest CPU load reached so far is shown in the lower−right corner. The
CPU load is defined as the amount of time not spent performing the
low-priority task that runs when no other thread needs to run. Thus, the
CPU load includes any time required to transfer data from the target to the
host and to perform additional background tasks. The CPU load is
averaged over the polling rate period. The longer the polling period, the
more likely it is that short spikes in the CPU load is not shown in the graph.
To set the polling rate, open the RTA Control Panel window and right-click
in the window. Select Property Page, and in the Host Refresh Rates tab,
set the polling rate with the Statistics View / CPU Load Graph slider and
click OK.

Appliction Code Analysis

6-9Analyze/Tune

� Kernel/Object View: Displays the configuration, state, and status of the
DSP/BIOS objects currently running on the target. This tool shows both
the dynamic and statically configured objects that exist on the target. You
can right-click in the window and select Save Server Data to save the
current data.

Note:

When used in tandem with the Code Composer Studio IDE standard debug-
ger during software development, the DSP/BIOS real-time analysis tools
provide critical visibility into target program behavior at exactly those inter-
vals where the debugger offers little or no insight − during program execu-
tion. Even after the debugger halts the program and assumes control of the
target, information already captured through DSP/BIOS can provide invalu-
able insights into the sequence of events that led up to the current point of
execution.

Later in the software development cycle, regular debuggers become
ineffective for attacking more subtle problems arising from time-dependent
interaction of program components. The DSP/BIOS real-time analysis tools
subsume an expanded role as the software counterpart of the hardware logic
analyzer.

This dimension of DSP/BIOS becomes even more pronounced after software
development concludes. The embedded DSP/BIOS kernel and its companion
host analysis tools combine to form the necessary foundation for a new
generation of manufacturing test and field diagnostic tools. These tools will be
capable of interacting with application programs in operative production
systems through the existing JTAG infrastructure.

The overhead cost of using DSP/BIOS is minimal, therefore instrumentation
can be left in to enable field diagnostics, so that developers can capture and
analyze the actual data that caused the failures.

6.1.5 Code Coverage and Multi-Event Profiler Tool

The Code Coverage and Multi-event Profiler tool provides two distinct
capabilities:

� Code coverage provides visualization of source line coverage to facilitate
developers in constructing tests to ensure adequate coverage of their
code.

� Multi-event profiling provides function profile data collected over multiple
events of interest – all in a single simulation run of the application. Events

Application Code Tuning

 6-10

include CPU cycles, instructions executed, pipeline stalls, cache hits,
misses and so on. This tool helps identify hotspots, and possible factors
affecting performance.

See the Code Coverage and Multi-event Profiler User’s Guide (SPRU624) for
further details.

6.2 Application Code Tuning

The tuning process begins where the analysis stage ends. When application
code analysis is complete, the DSP developer should have identified
inefficient code. The tuning process consists of determining whether inefficient
code can be improved, setting efficiency objectives, and attempting to meet
those goals by modifying code. Code Composer Studio links several tools
together into an organized method of tuning as well as providing a single point
for analyzing tuning progress. The Tuning tool suite is a cohesive set of tuning
tools, logically formed to attack the key areas in which DSP developers need
high efficiency.

6.2.1 Optimization Dashboard

The Dashboard is a central focal point for the tuning process. It displays build−
and run-time profile data suggestions for which tuning tool to use, and it can
launch each of the tools. The Dashboard is the main interface during the tuning
phase of the development cycle.

6.2.1.1 Advice Window

The Advice window is an area of the Dashboard that displays tuning
information. It guides the user through the tuning process, explaining and
detailing the appropriate steps to take, and displaying helpful information for
using tools, links to other tools and documentation, and important messages.

The Advice window should be consulted when first using a tool, or to determine
the appropriate action to take at any point in the tuning procedure.

Code Composer Studio initially starts in Debug layout. To open the Advice
window, switch to Tuning layout by clicking the tuning fork icon on the toolbar.
Alternatively, the user can choose Advice from the Profile→Tuning menu item.
The Advice window will open at the left of the Code Composer Studio screen
and display the following Welcome information:

Application Code Tuning

6-11Analyze/Tune

At the top of the Advice Window there is a toolbar that provides buttons for
Internet−style navigation of advice pages as well as buttons for opening the
main advice pages. Click on the arrows in the toolbar to navigate back and
forth through the history of advice pages for that tab. Below the pane that
contains the advice pages, there are one or more tabs. These tabs let several
advice pages remain open, allowing DSP developers carry out more than one
task at once. Click on the tabs at the bottom of the Advice Window to switch
between open pages. To close the active tab, right-click on the Advice Window
and choose Close Active Tab from the pop−up menu.

The Welcome advice page contains links to descriptions of each of the major
tuning tools. At the bottom of the Welcome advice page, there is a blue box
containing suggestions for the next step in the tuning process. These blue
Action boxes are found throughout the Advice Window pages.

When navigating through the Advice Window pages, red warning messages
may appear. These messages often serve as helpful reminders while tuning
but may contain valuable solutions if problems are encountered along the way.

When you have launched a tool, such as CodeSizeTune, an advice tab for that
tool appears at the bottom of the Advice window. The page contains

Application Code Tuning

 6-12

information about the tool, including its function, when it should be used, and
how to apply the tool effectively for optimum tuning efficiency.

If the user follows the information presented on each page, the Advice Window
can be a useful handbook when getting started with Application Code Tuning.

6.2.1.2 Profile Setup

As the Advice Window indicates, Code Composer Studio must know what
code elements the DSP developer is interested in tuning before tuning begins.
This can be accomplished using Profile Setup. The Profile Setup window
should be used at the beginning of the Tuning process to specify the data to
be collected and the requisite sections of code.

The Profile Setup window can be opened using the Advice Window. In the blue
Action box at the bottom of the Welcome page, click the link to open the Setup
Advice page. The first Action box will contain a link to open the Profile Setup
window. Profile Setup can also be launched from the main menu topic
Profile→Setup.

To configure the collected data, use the Activities tab of the Profile Setup
window. Check off each desired activity corresponding to the element of the
application that is being tuned. For a more detailed explanation of each activity,
click on the activity and view its description in the window below.

The Ranges tab is used to tune specific sections of code. Functions, loops, and
arbitrary segments of code can be added to the Ranges tab for collection of
tuning information. Code Composer Studio must be notified when to stop data
collection by using the Control tab to add exit points to the code. When an exit
point is reached, Code Composer Studio will stop collecting tuning
information. The Control can also be used to add Halt and Resume Collection
points to the code in order to isolate different sections of code. The Custom tab
can be used to collect custom data, such as cache hits or CPU idle cycles.

6.2.1.3 Goals Window

Tuning an application is about setting and reaching efficiency goals, so Code
Composer Studio provides a method of recording numerical goals and
tracking progress towards reaching them.

The Goals Window displays a summary of application data, including values
for the size of the code and number of cycles, that can be updated each time
the code is run. It also compares this data to the data for the last run, as well
as the goals that the DSP developer has defined.

Application Code Tuning

6-13Analyze/Tune

1) To open the Goals Window, first open the Advice Window.

2) On the Advice Window toolbar, click on the View General Tuning Advice
icon at the top of the window to open the General tab.

3) In the blue Action box, click on the Launch the Goals Window icon. The
Goals Window will open on the left side of the screen.

If an application has been loaded and profiling has been set up, the Goals
Window can be populated with data simply by running the application. To
record objectives for tuning, click in the Goals column, type in the goal and
press Enter. If a goal has been reached, the data will be displayed in green and
in parentheses. Otherwise, the data will appear in red. When the application
is restarted and run, the Current values in the Goals Window will move to the
Previous column and the difference will be displayed in the Delta column. The
Goals Window also allows a DSP developer to save or view the contents in a
log at any time, by using the logging icons at the left side of the window.

6.2.1.4 Profile Viewer

The Profile Viewer displays collected data during the Application Code Tuning
process. It consists of a spreadsheet-like grid with each row corresponding to
the elements of code selected in the Ranges tab of the Profile Setup window.
The columns in the grid store the collected data for each profiled section of
code, as selected in the Activities and Custom tabs of the Profile Setup
window.

The Profile Viewer provides a single location for the display of all collected
information during the tuning process. Ranges can be sorted by different data
values. Data sets displayed in the Profile Viewer can be saved, restored, and
compared with other data sets.

The Profile Viewer can be used to pinpoint sections of code that require the
most tuning. For instance, to determine which function results in the most
cache stalls, the cache stall data in the Profile Viewer can be sorted from
largest to smallest. Sections of the function can then be profiled to determine
exactly what code is generating cache stalls.

To open the Profile Viewer, navigate to the Setup tab in the Advice Window.
At the bottom of the Setup Advice page, click on the Profile Data Viewer link

Application Code Tuning

 6-14

to display the Profile Viewer in the lower portion of the screen. Alternatively,
Profile Viewer can be launched from the main menu topic Profile→Viewer. If
tuning has been set up using the Profile Setup window, running the application
will display data in the Profile Viewer. The view can be customized by dragging
and dropping rows and columns. The data can be saved and restored using
the Profile Viewer buttons, and it can be sorted by double-clicking on the title
of a column. In addition, several Profile Viewers can be opened
simultaneously.

6.2.2 Compiler Consultant

The Compiler Consultant Tool analyzes your application and makes
recommendations for changes to optimize the compiler cycle time. The tool
displays two types of information: Compile Time Loop Information and Run
Time Loop Information. Compile Time Loop Information is created by the
compiler. Run Time Loop Information is data gathered by profiling your
application. Each time you compile or build your code, Consultant will analyze
the code and create suggestions for different optimization techniques to
improve code efficiency. You then have the option of implementing the advice
and building the project again.

When you analyze Compiler Consultant information, sort information by:

Estimated Cycles Per Iteration if you want to view Compile Time Loop
Information.

cycle.CPU:Excl.Total if you are analyzing Run Time Loop Information.

This sorting will bring the rows to the top of the Profile Viewer that consume
the most CPU cycles and which should gain the most performance benefit by
tuning.

You can then work on tuning one loop at a time. Double−clicking on the Advice
Types entry for any loop row will bring up the full advice for that loop in the
Consultant tab of the Advice window.

After you have applied the advice to fix individual loops, it is useful to hide that
row in the Profile Viewer window. Hiding rows reduces the amount of
information present in the Profile Viewer window. Rows can always be
unhidden.

To find out more about using the Compiler Consultant, see Consultant in the
online help under Application Code Tuning.

Application Code Tuning

6-15Analyze/Tune

6.2.3 CodeSizeTune (CST)

CodeSizeTune (CST) is a tool that enables you to easily optimize the trade-off
between code size and cycle count for your application. Using a variety of
profiling configurations, CodeSizeTune will profile your application, collect
data on individual functions, and determine the best combinations of compiler
options. CST will then produce a graph of these function-specific option sets,
allowing you to graphically choose the configuration that best fits your needs.

Previous users of Code Composer Studio will recognize CST as a
replacement for the Profile-Based Compiler (PBC).

1) How do I begin? CST starts with your debugged application. Check out
CodeSizeTune in the online help under Application Code Tuning to make
sure your application meets the criteria for CST profiling.

2) CST will use several profile collection options sets to build and profile your
application. Using the profile information it gains on how each function
performed under several different profile collection options, CST pieces
together collection options that contain compiler options at the function
level. To find out more about how to build and profile, see Build & Profile
under CodeSizeTune in the online help.

3) The best profile collection options sets are then plotted on a
two−dimensional graph of code size vs. performance, which allows you to
graphically select the optimum combination of size and speed to meet
your system needs. For more on selecting a desired collection options set,
see the topic Select Desired Speed and Code Size under CodeSizeTune
in the online help.

4) Finally, you will save your selected collection options set to the Code
Composer Studio project. See Save Settings and Close under
CodeSizeTune in the online help.

The Advice window guide you though the steps of the process. When you
launch CodeSizeTune, the CodeSizeTune tab of the advice window will be
displayed automatically. See CodeSizeTune Advice Window in the online help
for more information.

Application Code Tuning

 6-16

6.2.4 Cache Tune

The Cache Tune tool provides a graphical visualization of cache accesses
over a set amount of time. This tool is highly effective at highlighting
non-optimal cache usage (due to factors such as conflicting code placement,
inefficient data access patterns, etc.). All the memory accesses are
color−coded by type. Various filters, panning, and zoom features facilitate
quick drill−down to view specific areas. This visual/temporal view of cache
accesses enables quick identification of problem areas, such as areas related
to conflict, capacity, or compulsory misses. Using this tool, developers can
significantly optimize cache efficiency, thereby reducing the cycles consumed
in the memory subsystem. All of these features help the user to greatly improve
the cache efficiency of the overall application.

The Tuning→CacheTune menu item launches the Cache Tune tool showing
the latest cache traces. There are three kinds of cache trace files:

� Program Cache trace

� Data Cache trace

� Cross Cache trace

The data cache trace tab is displayed by default. If no cache traces have been
collected, then the graph is empty.

Application Code Tuning

6-17Analyze/Tune

Once the tool is launched, you can view other cache data files by opening a
saved dataset.

Datasets can be opened by clicking the Open dataset button, pressing its
hotkey, or clicking the Load dataset item in the pop-up menu.

See the Cache Analysis User’s Guide (SPRU575) accessed from the TI
website for further information on the Cache Analysis tool.

7-1

���������� ����	# ����# ���

���	

This chapter gives information on how to find additional help for documenta-
tion, updates, and with customizing your Code Composer Studio installaton.

Topic Page

7.1 Component Manager 7-2.

7.2 Update Advisor 7-4.

7.3 Additional Help 7-6.

Chapter 7

Component Manager

 7-2

7.1 Component Manager

Note:

The Component Manager is an advanced tool used primarily to customize
or modify your installation. Use this tool only to resolve component interac-
tion in a custom or multiple installation environment.

Multiple installations of the Code Composer Studio IDE can share installed
tools. The Component Manager provides an interface for handling multiple
versions of tools with these multiple installations.

The Component Manager window displays a listing of all installations, build
tools, Texas Instruments plug-in tools, and third-party plug-in tools. When a
node is selected in the tree (the left pane of the Component Manager), its prop-
erties are displayed in the Properties pane (the right pane) (see Figure 7−1).

With the Component Manager, you can enable or disable tools for a particular
Code Composer Studio installation. This functionality allows you to create a
custom combination of tools contained within the IDE. The Component Man-
ager also allows you to access the Update Advisor to download the most re-
cent version of the tools from the web.

Figure 7−1. Component Manager

Tree listing of all Code
Composer Studio installa-
tions and tools

Properties of the item highlighted
in the Code Composer Studio
installation pane

Component Manager

7-3Additional Tools, Help, and Tips

7.1.1 Opening Component Manager

To open the Component Manager:

Step 1: From the Help menu in the Code Composer Studio IDE, select
About.

The About Code Composer Studio dialog box appears.

Step 2: In the About dialog box, click the Component Manager button.

The Component Manager window displays.

7.1.2 Multiple Versions of the Code Composer Studio IDE

The following is a list of requirements for maintaining multiple versions of the
Code Composer Studio IDE and related tools:

� To keep more than one version of the Code Composer Studio IDE or a re-
lated tool, you must install each version in a different directory.

� If you install an additional version of the Code Composer Studio IDE, or
an additional version of a tool, in the same directory as its previous installa-
tion, the original installation will be overwritten.

� You cannot enable multiple versions of the same tool within one installa-
tion.

Update Advisor

 7-4

7.2 Update Advisor

The Update Advisor allows you to download updated versions of the Code
Composer Studio IDE and related tools. The Update Advisor accesses the
Available Updates web site. This site displays a list of patches, drivers, and
tools available for downloading.

To use the Update Advisor, you must have Internet access and a browser
installed on your machine. See the Code Composer Studio IDE Quick Start for
complete system requirements.

Note:

You must be registered with TI&ME before you can access the Available Up-
dates web site.

7.2.1 Registering Update Advisor

If you did not register your product during installation, you can access the on-
line registration form from the Code Composer Studio help menu: Help→CCS
on the Web→Register.

Important! The first time you use Update Advisor, your browser may display
the TI&ME web page. To register, follow the directions displayed on the page.

You must register online and have a valid subscription plan in place to receive
downloads through Update Advisor. You receive a 90 day free subscription
service with the Code Composer Studio product. At the end of this period, you
must purchase an annual subscription service. Annual subscriptions are only
available for the full product.

7.2.2 Checking for Tool Updates

In the Code Composer Studio IDE, select Help→Check for Updates→Update
Advisor.

If you are already registered with TI&ME, and have accepted the cookie neces-
sary for automatic log-in, your browser will go directly to the Available Updates
web site.

To query the Available Updates web site, the Update Advisor passes certain
information from your machine:

� Code Composer Studio product registration number
� Code Composer Studio installation version
� a text description of the installed product
� the list of installed plug-ins

Update Advisor

7-5Additional Tools, Help, and Tips

The Available Updates web site will then list any updates appropriate for your
Code Composer Studio installation.

You have the opportunity to just download the updates, or to download and
install them immediately.

You can also configure the Update Advisor to automatically check for updates.

7.2.3 Automatically Checking for Tool Updates

You may check for tool updates at any time, or you can configure the Update
Advisor to automatically check for updates.

Step 1: Select Help→Update Advisor→Setting. The Web Settings dialog
box appears:

Step 2: In the Check for Update field, specify how often the Update Advisor
should check the Available Updates web site.

Step 3: To enable the automatic update feature, click the checkbox to the left
of the “Enable timed check for update upon startup” field.

When this field is enabled, the Update Advisor automatically checks
for web updates according to the schedule specified in step 2.

Step 4: Click OK to save your changes and close the dialog box.

7.2.4 Uninstalling the Updates

Any installed update can be uninstalled to restore the previous version of the
Code Composer Studio IDE.

Note that only the previous version of a tool can be restored. If you install one
update for a tool, and then install a second update for the same tool, the first
update can be restored. The original version of the tool cannot be restored,
even if you uninstall both the second update and the first update.

Additional Help

 7-6

7.3 Additional Help

A multitude of help tools are available to answer your questions. You can ac-
cess Help→Contents to guide you through certain topics step by step; traverse
online help sites that provide the most current help topics; or, peruse user
manuals which are pdf files that provide information on specific features or pro-
cesses.

Also, you can access the Update Advisor to get the newest features through
Help→Update Advisor.

7.3.1 Code Composer Studio Online Help

The Online Help provides links to the tutorials, multimedia demos, user manu-
als, application reports, and a website (www.dspvillage.com) where you can
obtain information regarding the software. Simply click on Help and follow the
links provided.

Index

Index-1

����$

A
absolute lister 4-22

add, new project configuration 4-6

add files to a project 4-3

add new project configuration 4-6

advanced event triggering 5-36
event analysis 5-36
event sequencer 5-36, 5-38

archiver, described 4-22

assembler
described 4-22
overview 4-23

assembly language tools 4-22
absolute lister 4-22
archiver 4-22
assembler 4-22
cross−reference lister 4-22
hex−conversion utility 4-22
linker 4-22
menemonic−to−algebraic translator utility 4-22

assembly optimizer, described 4-24

automatic tool updates, Update Advisor 7-5

automatic web update, Update Advisor 7-5

B
bookmarks, code window 4-18

breakpoints
hardware 5-20
introduction 5-18
software 5-19
vs. probe points 5-21

build options, dialog box 4-20

Build Options dialog box 4-20

C
C/C++ compiler, described 4-24
CCS versions, Component Manager 7-2
change, active project configuration 4-5
change active project configuration 4-5
Channel Viewer Control, RTDX 5-45
check for tool updates, Update Advisor 7-4, 7-5
Chip Support Library 4-29
code, review using the editor 4-17
code development tools

assembly optimizer 4-24
C++ name demangling utility 4-25
library−build utility 4-24
run−time−support libraries 4-24

code generation tools 4-19
code window

bookmarks 4-18
keyboard shortcuts 4-18
keywords 4-17
selection margin 4-17

Command Window 5-32
compiler, overview 4-21 to 4-24
Component Manager 7-2
Configuration, create a 3-2
configuration

add DSP/BIOS files to project 4-16
add new project 4-6
change active 4-5
project selection 4-5

Configuration Control, RTDX 5-45
configuration files, DSP/BIOS 4-14
configuration tool, DSP/BIOS 4-12
configure, RTDX graphically 5-44
create a project 4-2

Project Creation wizard 4-2
Create a System Configuration 3-2

Index

Index-2

cross-reference utility 4-22

CSL, Introduction to 4-29

CSL (chip support library), benefits of 4-29

CSL Benefits 4-29

D
data flow, RTDX 5-43

debug tools
advanced event triggering 5-36
Command Window 5-32
emulator analysis 6-4
overview 5-2
Pin Connect 5-12
Port Connect 5-12
probe points 5-21
simulator analysis 6-3
symbol browser 5-31
Watch window 5-24

Development Flow, code composer studio 1-4

Diagnostics Control, RTDX 5-44

DSP/BIOS
add configuration files to project 4-16
configuration tool 4-12
create configuration files 4-14
Real−time Analysis Tools 6-5
using 4-12

DSP/BIOS toolbar 6-7

E
editor, review source code 4-17

emulator analysis 6-4

EPROM programmer 4-22

event analysis 5-36

event sequencer 5-36, 5-38

event triggering 5-36
event analysis 5-36
event sequencer 5-36, 5-38

external editor, source code 4-18

external makefile 4-27

F
files

add DSP/BIOS configuraiton to project 4-16
adding to a project 4-3
create DSP/BIOS configuration 4-14

G
GEL, general extension language 4-38

H
hardware breakpoints 5-20
hex conversion utility, described 4-22

I
Import Configuration dialog box 3-2, 3-3
import makefile 4-27
interlist utility, described 4-24

K
keyboard shortcuts, code window 4-18
keywords, code window 4-17

L
library-build utility, described 4-24
linker

described 4-22
overview 4-23

M
makefile

external 4-27
import 4-27

mnemonic−to−algebraic translator utility 4-22
multiple CCS versions, Component Manager 7-2
multiple tool versions, Component Manager 7-2

Index

Index-3

N
new project

create a 4-2
Project Creation wizard 4-2

O
optimizer, described 4-24
overview

assembler 4-23
linker 4-23

P
Pin Connect 5-12
Port Connect 5-12
probe points 5-21

vs. breakpoints 5-21
project

add DSP/BIOS configuration files 4-16
adding files 4-3
create a 4-2
Project Creation wizard 4-2

project configuration
add new 4-6
change active 4-5
selecting 4-5

Project Creation wizard 4-2

R
Real−time analysis tools, DSP/BIOS 6-5
real−time component, DSP/BIOS 4-12
real−time components, RTDX 5-42
real−time data exchange, RTDX 5-42
RTDX

Channel Viewer Control 5-45
Configuration Control 5-45
configure graphically 5-44
data flow 5-43
Diagnostics Control 5-44
real−time data exchange 5-42
transmit data from host 5-47
transmit integer to host 5-46
using 5-42

runtime-support, library, described 4-24

S
select

configuration 4-5
project configuration 4-5

select a project configuration 4-5
selection margin, code window 4-17
shell program, described 4-24
simulator analysis 6-3

user options 6-3
software breakpoints 5-19
source code

external editor 4-18
review 4-17

Source Control 4-10
pop−up menu 4-11

symbol browser 5-31
System Configuration, Create a 3-2

T
tool updates, Update Advisor 7-4, 7-5
tool versions, Component Manager 7-2
toolbar, DSP/BIOS 6-7
tools

assembly language 4-22
code generation 4-19
compiler 4-21

translator utility, mnemonic−to−algebraic 4-22
transmit data from host, RTDX 5-47
transmit integer to host, RTDX 5-46

U
Update Advisor 7-4

check for tool updates 7-4, 7-5
use Source Control 4-10

pop−up menu 4-11
using

DSP/BIOS 4-12
RTDX 5-42

W
Watch window 5-24
web updates, Update Advisor 7-4, 7-5

	Title Page - SPRU509E
	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	To Help Us Improve Our Documentation . . .

	Contents
	Figures
	Chapter 1: Introduction
	1.1 Welcome to the World of eXpressDSP
	1.2 Development Flow

	Chapter 2: Getting Started Quickly
	2.1 Launching Code Composer Studio
	2.1.1 Important Icons Used in Code Composer Studio v3

	2.2 Creating a New Project
	2.3 Building Your Program
	2.4 Loading Your Program
	2.5 Basic Debugging
	2.5.1 Go to Main
	2.5.2 Using Breakpoints
	2.5.3 Source Stepping
	2.5.4 Viewing Variables
	2.5.5 Output Window
	2.5.6 Symbol Browser

	2.6 Introduction to Help

	Chapter 3: Target and Host Setup
	3.1 Define and Set Up Target
	3.1.1 Code Composer Studio Setup Utility
	3.1.1.1 Importing an Existing Configuration
	3.1.1.2 Creating a New System Configuration
	3.1.1.3 Creating Multiprocessor Configurations
	3.1.1.4 Startup GEL Files
	3.1.1.5 Device Drivers

	3.1.2 Parallel Debug Manager Plus (PDM+)
	3.1.3 Connect/Disconnect

	3.2 Host Setup
	3.2.1 IDE Customization
	3.2.1.1 Setting Custom General IDE Options
	Color
	Keyboard
	Control Window Display
	Title bar displays
	Source file names
	Project close
	Close projects
	File Access
	Font

	Chapter 4: Code Creation
	4.1 Create and Configure Project
	4.1.1 Creating a Project
	4.1.1.1 Adding Files to a Project
	Removing a File

	4.1.2 Project Configurations
	Changing the Active Project Configuration
	Adding a New Project Configuration

	4.1.3 Project Dependencies
	Adding/Creating a sub-project
	First Method: Drag-and-drop from the project view windows.
	Second Method: Drag-and-drop from Windows File Explorer.
	Third Method: Use the Context Menu
	Project Dependencies Settings
	Modifying Project Configurations
	Sub-project configurations

	4.1.4 Makefiles
	Limitations and Restrictions

	4.1.5 Source Control Integration

	4.2 Configuring DSP/BIOS
	Creating DSP/BIOS Configuration Files
	Adding DSP/BIOS Configuration Files to Your Project

	4.3 Editor
	4.3.1 Using the Code Composer Studio Editor
	Editor Properties

	4.3.2 Using an External Editor

	4.4 Code Generation Tools
	4.4.1 Code Development Flow
	4.4.2 Project Build Options
	Setting Project Level Options
	Setting File-Specific Options

	4.4.3 Compiler Overview
	Interfacing with Code Composer Studio

	4.4.4 Assembly Language Development Tools
	4.4.5 Assembler Overview
	4.4.6 Linker Overview
	4.4.6.1 Text-Based Linker

	4.4.7 C/C++ Development Tools

	4.5 Building Your Code Composer Studio Project
	4.5.1 From Code Composer Studio
	4.5.2 External Make
	Limitations and Restrictions

	4.5.3 Command Line
	Using the timake utility from the command line

	4.6 Available Foundation Software
	4.6.1 DSP/BIOS
	4.6.2 CSL
	4.6.2.1 Benefits of CSL

	4.6.3 BSL
	4.6.3.1 Benefits of BSL

	4.6.4 DSPLIB
	4.6.4.1 Benefits of DSPLIB
	4.6.4.2 DSPLIB Functions Overview

	4.6.5 IMGLIB
	4.6.5.1 Benefits of IMGLIB
	4.6.5.2 IMGLIB Functions Overview

	4.6.6 XDAIS Components
	Scope of XDAIS
	Rules and Guidelines
	Requirements of the Standard
	Goals of the Standard

	4.6.7 Reference Frameworks
	Device controller and device adapter.
	Chip Support Library (CSL).
	DSP/BIOS.
	Framework Components.
	eXpressDSP-compliant Algorithms.
	Application-level code.

	4.7 Automation (for Project Management)
	4.7.1 Using General Extension Language (GEL)
	4.7.2 Scripting Utility

	Chapter 5: Debug
	5.1 Setting Up Your Environment for Debug
	5.1.1 Setting Custom Debug Options
	5.1.1.1 Debug Properties Tab
	Program load/reload/restart actions
	Target Connection actions

	5.1.1.2 Directories
	To Specify Search Path Directories

	5.1.1.3 Program Load Options
	To Set Program Load Options

	5.1.1.4 Disassembly Style
	5.1.1.5 Default File I/O Directory

	5.1.2 Simulation
	5.1.2.1 Memory Mapping
	Memory Mapping with Simulation
	Using the Debugger
	Using GEL

	5.1.2.2 Pin Connect
	5.1.2.3 Port Connect

	5.1.3 Program Load
	5.1.3.1 Loading Symbols Only
	Adding Symbols Only

	5.2 Basic Debugging
	5.2.1 Running/Stepping
	5.2.1.1 Source Stepping
	5.2.1.2 Assembly Stepping
	Run

	5.2.1.3 Multiprocessor Broadcast Commands (PDM+ only)

	5.2.2 Breakpoints
	Software Breakpoints
	Hardware Breakpoints

	5.2.3 Probe Points
	5.2.4 Watch Window
	5.2.5 Memory Window
	5.2.6 Register Window
	5.2.7 Disassembly/Mixed Mode
	Disassembly
	Mixed Mode

	5.2.8 Call Stack
	5.2.9 Symbol Browser
	5.2.10 Command Window

	5.3 Advanced Debugging Features
	5.3.1 Thread Level Debugging
	5.3.2 Advanced Event Triggering (AET)
	Event Analysis
	Event Sequencer

	5.4 Real-Time Debugging
	5.4.1 Real-Time Mode
	Rude Real-Time Mode

	5.4.2 Real-Time Data Exchange (RTDX)
	RTDX Data Flow
	Configuring RTDX Graphically
	Transmit a Single Integer to the Host
	Transmit Data from the Host to the Target

	5.5 Automation (for Debug)
	5.5.1 Using the General Extension Language (GEL)
	5.5.2 Scripting Utility for Debug

	5.6 Target Reset
	5.6.1 Reset Target
	5.6.2 Emulator Reset

	Chapter 6: Analyze/Tune
	6.1 Appliction Code Analysis
	6.1.1 Data Visualization
	6.1.2 Simulator Analysis
	6.1.3 Emulator Analysis
	6.1.4 BIOS Real-Time Analysis (RTA) Tools
	6.1.5 Code Coverage and Multi-Event Profiler Tool

	6.2 Application Code Tuning
	6.2.1 Optimization Dashboard
	6.2.1.1 Advice Window
	6.2.1.2 Profile Setup
	6.2.1.3 Goals Window
	6.2.1.4 Profile Viewer

	6.2.2 Compiler Consultant
	6.2.3 CodeSizeTune (CST)
	6.2.4 Cache Tune

	Chapter 7: Additional Tools, Help, and Tips
	7.1 Component Manager
	7.1.1 Opening Component Manager
	7.1.2 Multiple Versions of the Code Composer Studio IDE

	7.2 Update Advisor
	7.2.1 Registering Update Advisor
	7.2.2 Checking for Tool Updates
	7.2.3 Automatically Checking for Tool Updates
	7.2.4 Uninstalling the Updates

	7.3 Additional Help
	7.3.1 Code Composer Studio Online Help

	Index

