
Instruction Scheduling for Clustered VLIW DSPs

Rainer Leupers
�

University of Dortmund
Department of Computer Science 12

Embedded Systems Group
44221 Dortmund, Germany

email: leupers@LS12.cs.uni-dortmund.de

Abstract

Recent digital signal processors (DSPs) show a homo-
geneous VLIW-like data path architecture, which allows C
compilers to generate efficient code. However, still some
special restrictions have to be obeyed in code generation for
VLIW DSPs. In order to reduce the number of register file
ports needed to provide data for multiple functional units
working in parallel, the DSP data path may be clustered
into several sub-paths, with very limited capabilities of ex-
changing values between the different clusters. An example
is the well-known Texas Instruments C6201 DSP. For such
an architecture, the tasks of scheduling and partitioning in-
structions between the clusters are highly interdependent.
This paper presents a new instruction scheduling approach,
which in contrast to earlier work, integrates partitioning
and scheduling into a single technique, so as to achieve a
high code quality. We show experimentally that the pro-
posed technique is capable of generating more efficient code
than a commercial code generator for the TI C62011.

1. Introduction

Software development for embedded DSP systems is fre-
quently a bottleneck in the design process, due to the lack
of powerful development tools. On the other hand, effi-
cient software is becoming more and more important in em-
bedded system design. For example, Siemens recently an-
nounced [1] that the stand-by power consumption of their
C25 mobile phone has been reduced by 60 % through a pure
software modification. In particular, programming support
for DSPs by C compilers is known to be very poor in terms
of code quality [2, 3, 4]. The reason is that traditional fixed-

�
This work has been supported by Agilent Technologies, USA.

1Publication: PACT 2000, Philadelphia, Oct 2000, c
�

IEEE

point DSPs show an irregular, domain-specific architecture,
to which C programs can hardly be mapped efficiently.

However, this situation has changed as new families
of high-performance DSPs, such as the Texas Instruments
C6201 [5], have become available. These recent DSPs tend
to show a very long instruction word (VLIW) architecture.
The TI C6201, for instance, has 8 parallel functional units
(FUs), working independently of each other. Each FU is
controlled via a separate 32-bit field in the VLIW instruc-
tion word. Additionally, all registers are general-purpose
like in a RISC processor. Another example for VLIW DSPs
is the Philips Trimedia architecture [6].

A main motivation for developing VLIW DSPs was the
fact, that their rather regular architectures facilitate the con-
struction of compilers capable of generating efficient code.
This is extremely important for embedded systems which
have to be area-efficient and have to meet real-time con-
straints. Several standard compiler techniques can be used,
such as register allocation graph coloring [7], and software
pipelining [8]. The most important code generation phase
for VLIW DSPs is instruction scheduling, which performs
the FU and control step binding of instructions, so as to
achieve an optimum exploitation of potential parallelism.

Unfortunately, available VLIW DSPs with many parallel
instruction slots are still different from the ”ideal” VLIW
model with full orthogonality2 between registers and FUs.
The limiting factor is the need to move up to two argu-
ments from the register file (RF) to each FU in each in-
struction cycle, and to move back one result per FU, so
that the RF would need to be equipped with a large number
of read/write ports, which are expensive in terms of silicon
area. The number of required RF ports can be reduced by
clustering the data path. For instance, the TI C6201 data
path is divided into two identical halves, called A and B.
Both A and B have their local RF, and there is full orthog-

2Orthogonality means that each FU has random access to each register.

onality between the local RF and the FUs in the respective
cluster. A more detailed description of this architecture will
be given in section 3.

Instruction scheduling for processors with a clustered
data path is more difficult than for an orthogonal VLIW ar-
chitecture. In case of the TI C6201, for instance, the limited
communication capabilities between clusters A and B have
to be taken into account. Computations executed on A and
B in general need to exchange values, but the transport of
values between A and B must take place via a restrictive
interconnection network, which allows the transfer of only
a single value from A to B (and vice versa) within each in-
struction cycle. As we will discuss in section 2, existing
VLIW scheduling techniques are not capable of directly in-
corporating the partitioning of instructions between the dif-
ferent clusters for such an architecture. As a result, there is
a potential loss in code quality when using such scheduling
techniques.

The contribution of this paper is an integrated instruction
scheduling and partitioning technique specifically designed
for clustered VLIW data paths. As a demonstrator we will
use the TI C6201 VLIW DSP. The structure of the paper is
as follows. After a discussion of related work in section 2,
we describe the TI C6201 architecture in more detail in sec-
tion 3. Section 4 defines the instructionscheduling problem,
while sections 5 and 6 present our scheduling technique,
which consists of two interleaved phases. In section 7,
we experimentally show that this approach achieves higher
code quality in terms of performance than the scheduling
technique in the native TI C6201 code generator. Finally,
conclusions are given.

2. Related work

A number of effective local and global scheduling algo-
rithms are known for orthogonal VLIW machines. These
include list scheduling, critical path scheduling [9], trace
scheduling [10], and percolation scheduling [11]. However,
these algorithms have not been designed for clustered data
paths, so that they at least require a partitioning phase prior
to scheduling in order to be applicable.

Nicolau et al. [12] have considered the problem of regis-
ter assignment for VLIW architectures with multiple RFs.
Their approach is based on a hypergraph coloring tech-
nique, where the goal is to find a register assignment that
meets the constraints imposed by the number of physically
available RF read/write ports. Partial instruction reschedul-
ing is performed in case that constraints are violated. How-
ever, the underlying processor model is a fully orthogo-
nal VLIW architecture (except for the RF port constraints),
so that the potential communication bottleneck in clustered
data paths is not considered.

Rau et al. [13] explicitly consider code generation for

VLIW processors with clustered data paths (which they
call EPIC architectures). They use a very fine-grained
organization of code generation phases to obtain an effi-
cient mapping of the source code to the given EPIC ar-
chitecture. However, the partitioning of instructions is
performed heuristically before instruction scheduling takes
place, where the goal of the partitioning phase is to balance
the FU load in the clusters. The partitioning phase inserts
a number of copy operations into the code, that move val-
ues from one register file to another, so as to make values
accessible for the FUs in a different cluster.

This approach results in a phase ordering problem. Par-
titioning is performed in advance without actually knowing
the consequences on the resource conflicts and thus on the
final schedule length. An unfavorable partitioning may im-
pose unnecessary constraints on the subsequent scheduling
phase, and may insert superfluous copy operations, even-
tually resulting in a suboptimal schedule. In fact, one can
easily observe that the optimum partitioning can only be
determined at the time of scheduling: Instructions might be
well balanced between the clusters, but the need to copy val-
ues may induce additional instruction cycles. In turn, free
instruction slots in these additional cycles could be used to
execute useful instructions. Thus, the insertion of copy op-
erations generally has a global impact on the schedule.

Also min-cut partitioning algorithms (e.g., [14]) are not
useful in this situation, since there is no need to minimize
the communication between the clusters. Instead, available
communication resources and free instruction slots for copy
operations should be fully exploited.

In [15], a theoretical analysis has been provided which
allows to derive lower bounds on the minimum schedule
length for a fixed binding of DFG nodes to clusters. This
technique could be used in a branch-and-bound algorithm
for simultaneous partitioning and scheduling. However, due
to some simplifying assumptions in the underlying proces-
sor model it is not clear whether this is also possible for real-
life processors with special architectural restrictions, such
as the TI C6201.

The unified assign and schedule algorithm from [16] is
conceptually close to the one presented in this paper, since
it also relies on a list scheduler for performing integrated
partitioning and scheduling. One main difference is that
our approach includes a feedback path from the scheduler
to the partitioner in order to revise unfavorable partitioning
decisions. In addition, we evaluate our technique for a real-
life VLIW processor instead of a hypothetical architecture.
In [17], the work from [16] has been embedded into a soft-
ware pipelining technique for clustered VLIWs. Likewise,
the technique from [18] emphasizes software pipelining and
is dedicated to a very special class of VLIWs. In contrast,
this paper is focused on acyclic code segments.

Fisher et el. [19] proposed a heuristic algorithm called

LOAD LOAD LOAD LOAD LOAD LOAD LOAD LOAD

MOVE A8, B1
MOVE A9, B3
MOVE A4, B7

LOAD *A4, B4
LOAD *A1, A8
LOAD *A3, A9
LOAD *A0, B0
LOAD *A2, B2
LOAD *A5, B5
LOAD *A7, A4
LOAD *A6, B6
NOP 1

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

a)

b)

c)

LOAD *A0, A8 || MOVE A1, B8
LOAD *B8, B1 || LOAD *A2, A9 || MOVE A3, B10
LOAD *B10, B3 || LOAD *A4, A10 || MOVE A5, B12
LOAD *B12, B5 || LOAD *A6, A11 || MOVE A7, B14
LOAD *B14, B7
MOVE A8, B0
MOVE A9, B2
MOVE A10, B4
MOVE A11, B6

Figure 1. Schedule length minimization by insertion of copy operations: a) data flow graph, b) sched-
ule generated by TI C compiler (12 cycles, 12 instruction words), c) performance-optimal schedule (9
cycles, 16 instruction words), ”

���
” denotes parallel execution of instructions

Partial Component Clustering for the problem of partition-
ing DFG nodes between the clusters. The main idea is to
assign subgraphs (”components”) of the DFG to clusters
in such a way, that copy operations along critical paths are
avoided. The initial assignment is afterwards iteratively im-
proved by swapping component elements, while estimating
the resulting schedule length with a simplified list sched-
uler.

A problem with this approach is that driving the parti-
tioning phase by critical paths is mainly useful for such
DFGs, where the critical path length is close to the actual
minimum schedule length. In this case, nodes not lying on
a critical path most likely can be scheduled in free instruc-
tion slots along the critical path (which is also the main mo-
tivation of the local critical path scheduling technique [9]).
However, if there is a ”wide” DFG, then the critical path
length is only a very loose lower bound on the minimum
schedule length, because the FUs become the limiting fac-
tor in scheduling. This can be shown by a small example
for the TI C6201.

In fig. 1 a), a simple-structured DFG is shown, contain-
ing 8 LOAD instructions. Each LOAD uses a register from
cluster � as a pointer to load a value from memory into
a register within cluster � . Since a LOAD has 4 delay
slots and all LOADs are potentially parallel, the critical path
length is 5. Fig. 1 b) shows the schedule generated by the
TI C6201 assembly optimizer. This tool is part of the soft-
ware development toolkit for the TI C6201 [20]. It reads
symbolic sequential assembly code (generated manually or

by the TI C compiler) and performs partitioning, schedul-
ing and register allocation. According to the restrictions
that will be described in section 3, two LOADs can only be
scheduled in parallel, if the pointers are located in different
RFs. Since all pointers are initially located in RF � , the
TI assembly optimizer generates fully sequential code. The
three MOVE instructions at the end could also be scheduled
in parallel to earlier LOADs, but the schedule length of 12
would not be changed, since the 4 delay slots of the last
LOAD instruction would then need to be filled with NOPs.

In contrast, fig. 1 shows a better schedule (in fact the
schedule generated by the algorithm presented in this pa-
per) with a length of only 9 cycles. In the first 4 cycles,
pointers located in A registers with an odd index are copied
into RF � . In cycles 2 to 4, this allows to schedule two
LOADs in parallel each. In cycles 6 to 9, the loaded values
still residing in RF � are finally moved to their required lo-
cations in RF � . As can be seen, we have traded a larger
code size for a faster schedule. One can easily show that the
schedule from fig. 1 c) is performance-optimal.

In our approach, we take the mutual dependence be-
tween instruction partitioning and scheduling into account
by phase coupling. Both phases are executed simultane-
ously in an interleaved fashion, so that the partitioning of
instructions already takes into account the resource conflicts
and communication restrictions exposed during scheduling.

L1 S1 M1 D1

A register file B register file

D2 L2M2 S2

X1X2

addr bus

data bus

data path A data path B

Figure 2. TI C6201 data path architecture

3. TI C6201 data path architecture

In order to illustrate the problem, this section outlines
the data path architecture of a popular VLIW DSP, the TI
C6201 (fig. 2). It shows a typical load-store architecture,
where all computations take place on (general-purpose) reg-
isters. The data path consists of two symmetric clusters A
and B. Each cluster has a local 16 � 16 bit RF and 4 FUs
(called L, S, M, and D) working in parallel. Each FU type is
capable of executing a certain subset of instructions. These
subsets are partially overlapping, e.g., an ADD instruction
may be executed on L, S, and D type FUs. Most instructions
have a delay of one cycle (i.e., the result is available in the
next cycle), but some instructions have a larger delay (e.g.
2 for a multiply, 4 for a load). The instruction pipeline is
visible to the compiler (or programmer), so that NOPs have
to be inserted in case the delay slots of an instruction cannot
be filled with useful computations.

The FUs in both clusters primarily work on their local
RF. The only exception is that, in each instruction cycle, at
most one of the units L, S, and M may read at most one
argument from the opposite RF. Such read operations take
place via the cross paths X1 and X2. Since there is only one
cross path per cluster, at most two values can flow between
A and B in each instruction cycle. Such a transport may be
a copy operation from one RF to the other (via a MOVE in-
struction), but the value read over the cross path may also be
directly consumed by some FU in the same cycle in which
it is transported. In the latter case the value does not get
stored in the local RF of the FU for further uses.

Besides these general restrictions, there are some further
important constraints to obey:

� Any copy operation blocks one FU for one cycle, since
it is mapped to an addition of zero to the copied value.
While D units may execute additions, they cannot re-
ceive arguments from the opposite RF. Thus, only L

and S units can be used for copy operations.

� L units may receive either the left or the right argument
from the opposite RF, while for S and M units the left
argument must be read from the local RF.

� Memory addresses computed by D units may be used
for a LOAD/STORE into/from the opposite cluster.
Since there are two D units, the C6201 allows to issue
up to two LOAD/STORE instructions in each cycle.
However, in such a case, the memory addresses must
be located in different RFs, and the same restriction
holds for the values to be loaded or stored (e.g., two
parallel loads into the RF of cluster A are invalid).

Due to these restrictions, the partitioning of instructions
between A and B obviously has a large impact on the length
of the schedule generated for a given code sequence. A pure
FU load balancing between A and B is unlikely to lead to
the optimum solution, because the constraints on the com-
munication of values between A and B make it impossible
to accurately predict the schedule length at an early point of
time.

4. Problem definition

The scheduling problem we would like to solve can be
stated as follows: Let � be a basic block, represented by
an edge-weighted data flow graph

�������
	��	����
. We as-

sume that code selection has already been performed, i.e.,
the DFG nodes in

�
represent concrete instructions, while

DFG edges represent scheduling dependencies between in-
structions. Each edge � is weighted by an integer delay
value

��� � � .
We assume that the DFG nodes are not yet bound to one

of the two clusters A and B. Thus, a partitioning

��� ����� � 	 ���

of nodes between A and B must be computed. During
scheduling it has to be decided, which FU a node is bound
to, and at which point of time (or control step) its execu-
tion is started. For a given partitioning

�
, an instruction

schedule is thus represented by two mappings

��� ������� 	��
	�� 	�� �
� � ��� 	

We say that a schedule is valid, if for any node �� � the
FU mapping is such that FU

� � � � belongs to cluster
� � � � ,� � � � can implement the instruction represented by � , any

FU is assigned at most one node per cycle, and the control
step binding

�
does not violate any inter-instruction depen-

dencies. The latter means for any node � with incoming
edges

��� � ��� � 	 � � 	�������	 ��� � ��� � 	 � �
the following constraint must hold:

� � � ��� ������� � �
��� ��� � �"! ��� � � � �

The length
� ��� �

of a schedule
� � � � 	����

is defined as
the latest control step in which an instruction � , having a
delay of # � � � , finishes its execution:

� ���
� � �$�%�&�'�(��� � � �)! # � � � �

Our goal is to simultaneously compute a partitioning
�

and a valid schedule
� � 	����

of minimum length. However,
since resource-constrained scheduling is NP-hard even for
a fixed partitioning [21], in practice we have to resort to a
technique that generally produces only ”close-to-optimal”
solutions.

Whenever there is a data dependence between two in-
structions assigned to different clusters, then the schedule
must also comprise either a copy operation or a direct trans-
fer via a cross path. Which alternative is better depends on
the resources currently available and is thus determined dy-
namically in our scheduling approach.

5. Partitioning algorithm

The proposed scheduling technique consists of two inter-
leaved phases. In phase 1, tentative instruction partitioning
is performed. Then, for the given partitioning, a schedule
is computed in phase 2. The cost of the schedule (the num-
ber of instructions cycles needed to execute it) is used to
measure the quality of the partitioning. Then, based on this
feedback, phase 1 tries to find an improved partitioning, for
which phase 2 is invoked again, and so forth. This process
is iterated, until a certain termination criterion is met.

algorithm PARTITION

input: DFG * with + nodes;
output: , : array[1..N] of -/.10�243 ;
var

int i,r,cost,mincost;
float T;

begin
T = 10;
, := RANDOMPARTITIONING();
mincost := LISTSCHEDULE(* , ,);
while T 5 0.01 do

for i = 1 to 50 do
r := RANDOM(1, 6);, [r] := 1 - , [r];
cost := LISTSCHEDULE(* , ,);
delta := cost - mincost;
if delta 7 0 or RANDOM(0,1) 7 exp(-delta/ 8)
then mincost := cost;
else , [r] := 1 - , [r];
end if

end for
T = 0.9 * T;

end while
return , ;

end algorithm

Figure 3. Partitioning algorithm

For partitioning in phase 1, we use a simulated annealing
(SA) algorithm [22]. Similar to genetic algorithms [23],
SA is suitable for nonlinear optimization problems, since
it is capable of escaping from local optima in the objective
function. The basic idea is to simulate a cooling process.
Starting with an initial temperature and an initial solution,
in each step the current solution is randomly modified. If the
new solution is better, then it is accepted as the new current
solution. Otherwise, it depends on the cost difference to
the previous solution and the current temperature whether
the new solution is accepted. During the annealing process,
the temperature is lowered step by step, and the probability
of accepting worse solutions decreases. Our concrete SA
algorithm is shown in fig. 3.

Initially, a random3 partitioning
�

is used. Then, the in-
put DFG is scheduled by function LISTSCHEDULE, which
implements phase 2 of our approach. In each iteration of
the SA algorithm, the current partitioning is modified by
inverting the cluster flag (0 denotes cluster A, 1 denotes
cluster B) for one randomly selected instruction. The qual-
ity of the new partitioning is evaluated again by a call to

3During experimentation we observed that using a heuristic seed for
SA in this case does not produce better solutions.

LISTSCHEDULE. If the new partitioning results in a shorter
schedule, then it is accepted as the new optimum. Also
worse solutions may be accepted, so that the SA algorithm
generally does not get trapped in a local optimum. In case
the new partitioning is not accepted, the previous one is re-
stored by re-inverting the cluster flag. This process is it-
erated, until the ”temperature” (parameter

�
) is ”frozen”.

Finally, the resulting partitioning is emitted, and a last run
of LISTSCHEDULE can then be used to compute the final
schedule.

Note that, although possible, it would not be a good ap-
proach to solve the entire problem with the SA algorithm,
since the search space would get extremely large if we also
integrated the computation of the FU and control step map-
pings

�
and

�
into the SA. Instead, for phase 2, we use a

fast list scheduling algorithm, which aims at constructing
the best schedule for a given partitioning by using a number
of heuristics. This scheduling algorithm is presented in the
following section.

6. Scheduling algorithm

The scheduling main routine is a conventional list
scheduling algorithm [9] which, in our case, besides the in-
put DFG

�
additionally takes a given partitioning

�
as an

input (fig. 4). While there are unscheduled nodes left, the
next node to be scheduled is picked by subroutine NEX-
TREADYNODE, which returns a node whose DFG prede-
cessors have already been scheduled. In case of alterna-
tive ready nodes, a node with a minimum ALAP (as late as
possible) time is heuristically selected. Each selected node
is placed into the schedule by function SCHEDULENODE,
which forms the core of the scheduling algorithm. Finally,
the length of the schedule (in instruction cycles) is returned.

Subroutine SCHEDULENODE shown in fig. 5 uses a
number of heuristics to avoid additional instruction cycles
caused by the need to communicate values between clusters
A and B. Its inputs are the current schedule

�
, the node �

to be inserted into
�

, and the current partitioning
�

. The
main strategy is to insert � into the earliest possible control
step without violating resource and dependency constraints.
Initially, this control step is given by the ASAP (as soon as
possible) time of � . However, if some predecessor of �
has been scheduled in control step � , and the delay of the
corresponding instruction is # , then � cannot be scheduled
earlier than at time � ! # . These tests are performed in sub-
routine EARLIESTCONTROLSTEP.

The control step number ��� into which � will be placed
is iteratively incremented until a valid control step without
resource conflicts has been found.

For a given value of ��� , subroutine GETNODEUNIT

searches for a free FU ��� , capable of executing the instruc-
tion represented by � in step ��� on the cluster defined by

algorithm LISTSCHEDULE

input: DFG * , partitioning , ;
output: schedule length;
var 	 : DFG node;

: schedule;
begin

mark all nodes as unscheduled;

:= � ;

while (not all nodes scheduled) do
	 := NEXTREADYNODE(*);

:= SCHEDULENODE(

 0�	 0 ,);

mark node 	 as scheduled;
end while
return LENGTH(

);

end algorithm

Figure 4. Main scheduling algorithm

algorithm SCHEDULENODE

input: current schedule

, node 	 , partitioning , ;
output: updated schedule

containing node 	 ;

var �� : control step number;
begin
�� := EARLIESTCONTROLSTEP() - 1;
repeat
���� ������ 2 ;���

:= GETNODEUNIT(0����0 ,);
if
� � ��� then continue; /* try next �� */

if (has an argument on a different cluster) then
CHECKARGTRANSFER();
if (at least one transfer impossible) then continue;
else TRYSCHEDULETRANSFERS();

until (has been scheduled);
if (is a LOAD instruction) then

DETERMINELOADPATH();
end if
if (is a CSE with more than 2 uses) then

INSERTFORWARDCOPY(

 0�);

end if
return

;

end algorithm

Figure 5. Scheduling algorithm for a single
node

� � � � . In case of multiple free FUs the selection is made
arbitrarily. Note that this selection may still be revised later
during version shuffling: If no free FU is directly found,
then version shuffling [9] is applied to the current control
step ��� . Version shuffling tries to rearrange the FU bind-
ing of instructions already scheduled in � � , such that one
FU capable of executing � gets free. If version shuffling
fails to free a resource, then � � is incremented, and resource
allocation is repeated.

Even if a free resource � � has been found, scheduling
� at time ��� might still fail due to the need to provide � ’s
arguments to � � . If � is assigned to the same cluster as
its arguments, then no further actions are required due to
the orthogonality of FUs and the RF in each cluster. If,
however, an argument resides in the opposite RF, then its
transfer between the clusters needs to be scheduled as well.
There are two possibilities for this4:

1. The transfer takes place in control step ��� via a cross
path.

2. The transfer takes place via a copy operation scheduled
earlier than � � .

The best alternative is determined heuristically. Without
loss of generality (since A and B are symmetric), let � be
assigned to cluster A, let � be the left argument of � com-
puted on cluster B in control step � � � ��� ��� , and let � be the
right argument of � computed on cluster B in control step
� � � ��� ��� . The cases that � has less than two arguments or
the arguments already reside in the RF of

� � � � are simple
special cases.

Subroutine CHECKARGTRANSFER checks three possi-
bilities of transporting each argument �� � � 	 � � from A to
B.

1. If � is a common subexpression (CSE) in the DFG, then
it might be the case, that a copy operation from B to
A had already been scheduled for another use of � by
an instruction that was scheduled earlier. If that copy
operation does exist and happens to be scheduled in a
control step in the interval � � � � � !�� 	 ���
	 ��� then it can
be reused.

2. It is checked, whether a new copy operation from B
to A could be inserted in a control step � �� � � � � !
� 	 ����	 ��� . This is possible if both a resource for a copy
operation (either L1 or S1) and cross path X1 are free
in � .

3. It is checked, whether the transfer from B to A could
take place in ��� via cross path X1. This is the case, if

4Theoretically, there is also a third possibility: copying a value via the
memory. However, as both LOADs and STOREs have a significant delay,
it is very unlikely that a benefit will result. Therefore, we neglect this
option.

X1 is not yet blocked in ��� and if the FU � � selected
for � allows to read the argument via X1, dependent
on its position (left or right).

If none of the three cases holds for either � or � , then the
arguments cannot be provided to � in time, and the process
is repeated with an incremented control step number. Oth-
erwise, the (possibly alternative) transfer possibilities are
passed to subroutine TRYSCHEDULETRANSFERS, which
tries to organize the transfer of � and � with a minimum
amount of resource blocking, such that � can be scheduled
in ��� . Due to the limited space, we only summarize the most
important concepts of this subroutine:

� Generally, whenever possible, priority is given to the
reuse of copy operations, since a copy reuse does not
block any further resources. The probability of reusing
copies is increased by another heuristic (forward copy
insertion) described below.

� If copies cannot be reused, priority is given to using the
cross path X1 in control step ��� rather than inserting a
new copy in a step � � ��� . The reason is that the
latter possibility will not only block X1 in � , but also
an FU, which might later be better used for another
instruction.

� A very important technique is the exploitation of com-
mutativity of operations (add, multiply, or, . . .) in cer-
tain situations. If cross path X1 is free in � � , but the
left argument � cannot be read via X1 (since � � is not
an L unit, cf. section 3), then swapping the arguments
can still enable to schedule the transfers without in-
serting an additional control step. Likewise, if � � is
an L unit and X1 would be selected for transporting � ,
then (for commutative operations) the arguments are
heuristically swapped. The reason is that implement-
ing the transfer of � via X1 would prevent to revise
the FU binding of � later during version shuffling. In-
stead, reading � as the right argument (which is not
restricted to L units only) allows to later reassign � to
another FU whenever L needs to be freed for another
instruction.

Note that TRYSCHEDULETRANSFERS might still fail,
even though each single argument could be transported: For
instance, this is the case, if the transfer of both � and � could
only take place via cross path X1 in the current control step,
or if both � and � need to be copied, but there are insuffi-
cient resources. In this case, ��� needs to be incremented,
and the process is repeated.

Otherwise, node � is assigned to control step ��� , and
all required resources are marked as being blocked. Finally,
two further heuristics are applied, from which the schedul-
ing of subsequent nodes in general benefits:

DETERMINELOADPATH: If � is a LOAD instruction, then
the RF which the loaded value will be written to is not fixed
by the partitioning

�
. This is due to the fact, that memory

addresses computed in one cluster can be used for loading
a value into the RF of the opposite one. Only the cluster for
computing the memory address itself is prescribed by

�
.

As mentioned in section 3, two memory accesses can only
be issued in parallel, if they load to (or store from) different
RFs. We model this restriction by two virtual resources

� �
and

���
. Whenever both are still free in the control step se-

lected for � , this freedom can be exploited: The result of
� is written to the RF of that cluster, to which the majority
of uses of � are assigned by

�
. In case there is no such

majority, the choice is made arbitrarily.

INSERTFORWARDCOPY: If � is a common subexpression
(scheduled in ���) with more than two uses, � is not on a
critical path in the DFG, and the majority of instructions
using � as an argument are assigned to the opposite cluster,
then a copy to that cluster is inserted in the earliest possi-
ble control step after ��� . This heuristic enables the reuse of
copy operations for the majority of uses of � .

7. Experimental results

In this section, we experimentally evaluate our technique
by comparing the performance of generated schedules with
schedules generated by the TI C6201 assembly optimizer,
that has already been mentioned in section 2. We present
results of a statistical analsis, followed by results for a set
of real DSP code examples.

7.1. Statistical evaluation

For sake of a broad evaluation, we have first performed a
statistical analysis based on four sets of 100 randomly gen-
erated DFGs each. An experimental evaluation using ran-
dom inputs bears the disadvantage that we do not get results
for ”real” problems. However, we used this method, be-
cause showing that the technique produces good results on
the average indicates that it will generally also achieve good
results for ”real” problem instances. In addition, using a
sufficiently large input data base ensures the reproducibility
of results, even without having access to the detailed bench-
marks.

Since our approach does not capture register allocation
effects, all DFGs have been generated in such a way, that
no extra instructions due to register spilling were required.
Since the TI C6201 has a total of 32 general-purpose regis-
ters, this is not a severe restriction, but spilling is only rarely
required also in realistic code examples. The DFG sets are
parameterized by the degree of potential instruction-level
parallelism (ILP). This ILP degree is inversely related to

Figure 6. Relative length of generated sched-
ules

the
�����

ratio, where
�

is the critical path length, and
�

is
the number of DFG nodes.

If
�

is close to
�

, then the concrete partitioning algo-
rithm plays no substantial role for the result quality. The
reason is that

�
is a lower bound on the schedule length,

and that due to the large number of FUs available, nodes
not lying on the critical path can most likely be scheduled
in free instruction slots ”along” the critical path. This means
that the resulting schedule length is mostly identical or only
slightly larger than

�
.

However, this situation is different in case of a low
�����

ratio. In this case the number of nodes is much larger than
the theoretical minimum schedule length, and the available
resources become the limiting factor. Therefore, careful
partitioning and scheduling become extremely important.

In our experimentation, each DFG has been scheduled
by the technique described in this paper. Additionally, a
sequentialized version of the same DFG has been sched-
uled by the TI assembly optimizer. Finally, a custom anal-
ysis tool was used to determine the code size and the per-
formance of both schedules. The performance results are
shown in fig. 6.

For each
�����

ratio, the left bar shows the relative num-
ber of instruction cycles (average over 100 DFGs) of sched-
ules generated by the TI assembly optimizer (set to 100 %),
while the right bar shows the results generated by our ap-
proach. For the ratio

����� � �1�	� �
, the results do not differ

significantly, since due to the reasons explained above both
schedulers were able to achieve the theoretical limit

�
in

most cases. However, as can be seen, the difference grows
with a decreasing

�����
ratio. For highly parallel DFGs

Figure 7. Performance compared to lower
bound

�

(
�����

= 0.17), which for instance typically occur in unrolled
loops, schedules generated by our approach on the average
need only 78 % of the instruction cycles compared to sched-
ules generated by the TI assembly optimizer. This large im-
provement is due to the better partitioning and utilization of
available communication resources between clusters A and
B.

Fig. 7 shows the performance results from a different
perspective. For each

�����
ratio, the average schedule

length is compared to the critical path length (set to 1) in
the DFG. For

����� � � �	� �
, both the TI assembly optimizer

and our technique were able to achieve the theoretical limit
in most cases. Again, the difference grows with decreas-
ing

�����
ratio. For

� ���
= 0.17, the TI assembly optimizer

generates schedules of an average length of
� � ��� �

, while
our technique achieves � �������

.
Since our approach tends to make more intensive use of

copy operations, this performance improvement has to be
paid with increased code size. The average overhead in code
size as compared to the TI assembly optimizer ranged be-
tween 5 and 10 %.

7.2. Performance for real benchmarks

Fig. 8 shows performance results for a set of basic blocks
extracted from realistic DSP programs. These are relatively
small, compute-intensive kernels with a DFG size between
18 (iir) and 300 (dct) nodes. For compilation of the C source
code, we have used our compiler platform LANCE [24].
The left bars show the number of instruction cycles of ma-
chine code generated by the TI assembly optimizer, while
the right bars show the corresponding results for our inte-

Figure 8. Performance results for real DSP
code

grated scheduling technique. The benchmarks are ordered
by increasing

� ���
ratio, ranging from 0.11 (left) to 0.61

(right). As predicted by the results of the above statistical
evaluation, the performance gain tends to fall with increas-
ing

�����
ratio. The performance improvements compared

to the TI scheduler range between 7 % (iir) and 26 % (dct).
Thus, the statistical evaluation corresponds well with results
obtained for realistic applications.

Finally, we need to mention the runtime requirements of
our scheduling technique. The TI assembly optimizer ap-
parently uses a purely heuristic partitioning and scheduling
approach, and is therefore comparatively fast. On the other
hand, the simulated annealing (SA) technique (section 5) is
generally known to be runtime intensive for large optimiza-
tion problems. However, in our approach we have limited
the use of SA to the partitioning task only, while the de-
tailed scheduling is performed by an efficient heuristic. This
”hybrid” approach allows us to schedule even large DFGs
within reasonable time. For DFGs with approximately 100
nodes, the runtime for partitioning and scheduling on a Sun
Ultra-1 workstation is typically in the order of 10 CPU sec-
onds. In the area of embedded systems, where code quality
is of much higher concern than compilation speed, this run-
time is definitely acceptable.

8. Conclusions

VLIW DSPs are finding increasing use in the design
of embedded systems. Compiler support for such DSPs
is very important, since assembly-level programming of
VLIW DSPs is an extremely time-consuming task. In this

paper we have presented a dedicated instruction schedul-
ing technique for VLIW DSPs that show a clustered data
path. For such architectures, the phases of scheduling and
partitioning instructions between the clusters are highly in-
terdependent. We have proposed a technique that tightly
couples these two phases in order to achieve high code per-
formance, and we have given experimental evidence that
this technique generates faster code than a commercial code
generator in case of the TI C6201 DSP. In order to mea-
sure the code quality improvements for an existing machine,
the list scheduler has been developed specifically for this
CPU with its special architectural restrictions. Porting the
technique to other machines certainly requires to redesign
the list scheduler. However, the approach in general is
machine-independent, and our goal has been to demonstrate
the optimization potential of phase-coupled partitioningand
scheduling. In fact, the TI C6201 is a very interesting ex-
ample for this purpose, because its capability of using cross
paths for ”volatile” copy operations adds another dimension
to the search space.

Future work will deal with the adaptation of the schedul-
ing algorithm to further processor architectures and the in-
tegration of register allocation, as well as integration with
global scheduling techniques. Possible improvements of
the presented technique include adaptations of the simu-
lated annealing algorithm towards the concrete input DFGs,
instead of using a fixed cooling schedule. In addition, the
scalability of the proposed algorithm w.r.t. the number of
functional units and inter-cluster communication resources
should be investigated.

References

[1] Siemens: www.siemens.de/ic/products/cd/english/index,
1999

[2] V. Zivojnovic, J.M. Velarde, C. Schläger, H. Meyr: DSP-
Stone – A DSP-oriented Benchmarking Methodology, Int.
Conf. on Signal Processing Applications and Technology
(ICSPAT), 1994

[3] M. Levy: C Compilers for DSPs flex their Muscles, EDN
Access, Issue 12, www.ednmag.com, 1997

[4] M. Coors, O. Wahlen, H. Keding, O. Lüthje, H. Meyr: TI
C62x Performance Code Optimization, DSP Germany, 2000

[5] Texas Instruments: TMS320C62xx CPU and Instruction Set
Reference Guide, www.ti.com/sc/c6x, 1998

[6] Philips Semiconductors: www.trimedia.philips.com, 2000

[7] P. Briggs: Register Allocation via Graph Coloring, Doctoral
thesis, Dept. of Computer Science, Rice University, Hous-
ton/Texas, 1992

[8] M. Lam: Software Pipelining: An Effective Scheduling
Technique for VLIW machines, ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), 1988, pp. 318-328

[9] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett: Some
Experiments in Local Microcode Compaction for Horizontal
Machines, IEEE Trans. on Computers, vol. 30, no. 7, 1981,
pp. 460-477

[10] J.A. Fisher: Trace Scheduling: A Technique for Global Mi-
crocode Compaction, IEEE Trans. on Computers, vol. 30,
no. 7, 1981, pp. 478-490

[11] A. Aiken, A. Nicolau: A Development Environment for Hori-
zontal Microcode, IEEE Trans. on Software Engineering, no.
14, 1988, pp. 584-594

[12] A. Capitanio, N. Dutt, A. Nicolau: Partitioning of Vari-
ables for Multiple-Register-File Architectures via Hyper-
graph Coloring, in: M. Cosnard, G.R. Gao, G.M. Silberman
(eds.): IFIP Trans. A-50 – Parallel Architectures and Com-
pilation Techniques, North Holland, 1994

[13] B.R. Rau, V. Kathail, S. Aditya: Machine-Description
Driven Compilers for EPIC and VLIW processors, De-
sign Automation for Embedded Systems, vol. 4, issue 2/3,
Kluwer Academic Publishers, 1999

[14] B.W. Kernighan, S. Lin: An Efficient Heuristic Procedure for
Partitioning Graphs, Bell Sys. Tech. Journal, Vol. 49, 1970

[15] M.F. Jacome, G. de Veciana: Lower Bound on Latency for
VLIW ASIP Data Paths, Int. Conf. on Computer-Aided De-
sign (ICCAD), 1999

[16] E. Özer, S. Banerjia, T.M. Conte: Unified Assign and Sched-
ule: A New Approach to Scheduling for Clustered Register
File Microarchitectures, MICRO-31, 1998

[17] J. Sanchez, A. Gonzales: Instruction Scheduling for
Clsutered VLIW Architectures, Int. Symp. on System Sythe-
sis (ISSS), 2000

[18] M.M. Fernandes, J. Llosa, N. Topham: Partitioned Sched-
ules for VLIW Architectures, Int. Parallel Processing Symp.
(IPPS), 1998

[19] P. Faraboschi, G. Desoli, J.A. Fisher: Clustered Instruction-
Level Parallel Processors, Technical Report HPL-98-204,
HP Labs, USA, 1998

[20] E. Stotzer, B. Huber, R. Tatge, A. Ward: Programming a
VLIW DSP in Assembly Language, Proc. 2nd International
Workshop on Compiler and Architecture Support for Em-
bedded Systems (CASES), 1999

[21] M.R. Gary, D.S. Johnson: Computers and Intractability – A
Guide to the Theory of NP-Completeness, Freemann, 1979

[22] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi: Optimzation by
Simulated Annealing, Science, Vol. 220, 1983

[23] L. Davis: Handbook of Genetic Algorithms, Van Nostrand
Reinhold, 1991

[24] LANCE Software: University of Dortmund, Dept. of Com-
puter Science 12,
ls12-www.cs.uni-dortmund.de/ � leupers, 2000

