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Instruction-level Parallelism

* Most modern processors have the ability to

execute several adjacent instructions
simultaneously.

- Pipelined machines.

- Very-long-instruction-word machines (VLIW).
- Superscalar machines.

- Dynamic scheduling/out-of-order machines.

+ ILP is limited by several kinds of execution

constraints.

- Data dependence constraints.

- Resource constraints (“hazards")
- Control hazards
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Execution Constraints

- Data-dependence constraints:

- If instruction A computes a value that is
read by instruction B, then B cannot execute
before A is completed.

* Resource hazards: For example: o
- Limited # of functiot Id  [%fp-28], %ol

* If there are n functional o 5 o
multipliers), then only 7 in: add  %ol, %l2, %I3

of unit can execute at once.
- Limited instruction issue.
+ If the instruction-issue unit can issue only ninstructions at
a time, then this limits ILP.
- Limited register seft.

+ Any schedule of instructions must have a valid register
allocation.

Instruction Scheduling

* The purpose of instruction scheduling (IS) is to

order the instructions for maximum ILP.
- Keep all resources busy every cycle.

- If necessary, eliminate data dependences and
resource hazards to accomplish this.

* The IS problem is NP-complete (and bad in

practice).
- So heuristic methods are necessary.

15-745 © Seth Copen Goldstein 2000-5




Instruction Scheduling

There are many different techniques for IS.
- Still an open area of research.

Most optimizing compilers perform good local
IS, and only simple global IS.

The biggest opportunities are in scheduling the
code for loops.
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Should the Compiler Do IS?

Many modern machines perform dynamic reordering of
instructions.

- Also called "out-of-order execution” (OOOE).
- Not yet clear whether this is a good idea.

- Pro:

+ OOOE can use additional registers and register renaming to
eliminate data dependences that no amount of static IS can
accomplish.

+ No need to recompile programs when hardware changes.

- Con:

+ OOOE means more complex hardware (and thus longer cycle times
and more wattage).

+ And can't be optimal since IS is NP-complete.
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What we will cover

Scheduling basic blocks

- List scheduling

- Long-latency operations
- Delay slots

Software Pipelining
Scheduling for clusters architectures (next week)

What we need to know
- pipeline structure

- data dependencies
- register renaming

- scalar replacement
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Instruction Scheduling

In the von Neumann model of execution an instruction starts
only after its predecessor completes.

instr 1 instr 2

time

This is not a very efficient model of execution.
- von Neumann bottleneck or the memory wall.
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Instruction Pipelines

Almost all processors today use instructions pipelines to allow
overlap of instructions (Pentium 4 has a 20 stage pipelinelll).

The execution of an instruction is divided into stages. each stage is
performed by a separate part of the processor.

instt  |F|D|E[M][wW]

time

Fetch instruction from cache or memory.
Decode instruction.

Execute. ALU operation or address calculation.
Memory access.

Write back result into register.

SImMOm

Each of these stages completes its operation in one cycle (shorter
the the cycle in the von Neumann model).

An instruction still takes the same time to execute.
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Instruction Pipelines

However, we overlap these stages in time to complete an
instruction every cycle.

instr1 | F|D|E|N

instr 2 F B

-n Draining the
instr 3 pipeline
instr 4

[ G

instr 5 Filling the
pipeline
instr 6

instr 7

time
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Pipeline Hazards

Structural Hazards

- two instructions need the same resource at the same time
- memory or functional units in a superscalar.
Data Hazards

- an instructions needs the results of a previous instruction
rl=r2+r3
rd=rl+rl

rl = [r2]
rd=rl+rl
- solved by forwarding and/or stalling
- cache miss?
Control Hazards
- jump & branch address not known until later in pipeline
- solved by delay slot and/or prediction
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Jump/Branch Delay Slot(s)

Control hazards, i.e. jump/branch instructions.

unconditional jump address available only after Decode.
conditional branch address available only after Execute.

jump/branch|F|D|E|M|W|

instr 2 | o [e|m|w]|
instr 3 HEEE
instr 4 |Flp[e[m|w]
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Jump/Branch Delay Slot(s)

One option is to stall the pipeline (hardware solution).

jump | F|D|lE|[M|w|

instr 2 HEEE
Another option is to insert a no-op instructions (software).

jump | F|[D]E|M|w]|

\
nop |F/I/6|E|M|W|

instr 2 HEEN

Both degrade performance!
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Jump/Branch Delay Slot(s)

* another option is for the branch take effect after
the delay slots.

+ Ie., some instructions always get executed after the
branch but before the branching takes effect.

bra [F|o]Efwv|w]

nsix [F1o[#Tm]w]

wwy  [qLolE[w]w]

instr 2 Flole|[m|w]
instr 3 HEEE
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Jump/Branch Delay Slots

In other words, the instruction(s) in the delay slots of the
jump/branch instruction always get(s) executed when the
branch is executed (regardless of the branch result).
Fetching from the branch target begins only after these
instructions complete.

bgt r3,L1

L1:

—

What instruction(s) to use?

15-745 © Seth Copen Goldstein 2000-5 15

Branch Prediction

Current processors will speculatively execute at
conditional branches

- if a branch direction is correctly guessed, great!
- if not, the pipeline is flushed before instructions
commit (WB).
* Why not just let compiler schedule?

- The average number of instructions per basic block
in typical C code is about 5 instructions.

- branches are not statically predictable
- What happens if you have a 20 stage pipeline?

15-745 © Seth Copen Goldstein 2000-5




Data Hazards

rl=r2+r3
rd=rl1+rl

[FlofEfm|w]

r2 + r3 available here

rl1=1[r2]
rd=rl1+rl

[Flofelwmw]

[r2] available here
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Defining Dependencies

* Flow Dependence W3R &  }ie
- Anti-Dependence R 2W &
+ Output Dependence WW & false
* Input Dependence R 2R &
51) a=0; Not generally
S2) b=a; defined
S3) c=at+d+e;
S4) d=b:
S5) b=5+e;
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Example Dependencies

S1) a=0;

S2) b=a;

S3) c=a+d+e;
S4) d=b;

S5) b=5+e;

S16fS2 dueto a
S16fS3 dueto a
S2 57354 duetob
S3 6254 due tod
S4 62 S5 duetob
S2 5° S5 duetob
S35 S5 due to a

15-745 © Seth Copen Goldstein 2000-5

Renaming of Variables

- Sometimes constraints are not “real,” in the

sense that a simple renaming of
variables/registers can eliminate them.
- Output dependence (WW):
A and B write fo the same variable.
- Anti dependence (RW):
A reads from a variable to which B writes.

« In such cases, the order of A and B cannot be

changed unless variables are renamed.

- Can sometimes be done by the hardware, to a
limited extent.
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Register Renaming Example Scheduling a BB

r1\<—‘r2+1 r7<r‘2+1 "7 crexl "X —wW*2*x*y*z . What do we need to know?
[fp+8] <« rl [fp+8] <« r7 rl «~r3+2 r'; « [sz“W] * Latency of operations
r — .- H# ist
1 “r3+2||rl —r3+2||[fp+8] < r7 M e pl* . Assum"ef registers
[fp+12] «rl [fp+12] «rl [fp+12] «rl r2 « [fp+x] - load 5
1 ase ordering problem 2« [fpryl Cmt 2
- Can pelf'for'm register renaming after register rl —rl*r2 . others 1
allocation r2 « [fp+z] - Also assume,
- Constrained by available registers rl «<rl*r2 - operations are non-blocking
[fp*w] «rl

» Constrained by live on entry/exit
* Instead, do scheduling before register allocation
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Scheduling a BB

+ Assume:
* load 5
+ store 5
s mult 2
+ others 1

* operations
are non-
blocking

X «wW*2*x*y*z

1 rl « [fp+w]
2 re «— 2

6 ri «~rl*r2
7 r2 « [fp+x]
12 r1 «—rl*r2
13 r2 « [fp+y]
18 r1 «~rl*r2
19 r2 « [fp+z]
24 r1 «~rl*pr2

26 [fp+w] «rl
33 rl can be used again
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We can do better

Assume:
* load 5
+ store 5
s mult 2
+ others 1

* operations
are non-
blocking

We can do even
better if we
assume what?

ri « [fp+w]

re « [fp+x]
r3 « [fp+y]
r4 « [fp+z]
rb «— 2

ri «~rl*rb
ri «~rl*r2
ri «~rl*r3
ri «~rl*r4
[fp+w] « rl

rl can be used again
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Defining Better

1 rl « [fp+w] 1 rl « [fp+w]
2 r2 « 2 2 r2 « [fp+x]
6 ri «—rl*r2 3 r3 « [fp+y]
7 r2 « [fp+x] 4 r4 « [fp+z]
12 rl «~rl*pr2 5 rb « 2

13 r2 « [fp+y] 6 ri «~rl*rb
18 ri «~rl*r2 8 rl «~rl*r2
19 r2 « [fp+z] 10 r1 «~rl*r3
24 rl «~rl*r2 12 r1 «~rl*r4
26 [fprw] «rl 14 [fp+w] «rl

33 rl can be used again 19 rl can be used again
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The Scheduler

+ Given:

- Code to schedule
- Resources available (FU and # of Reg)
- Latencies of instructions

+ Goal:

- Correct code

- Better code [fewer cycles, less power,
fewer registers, ...]

- Do it quickly
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More Abstractly

* Given a graph G = (V,E) where

- nodes are operations
+ Each operation has an associated delay and type

- edges between nodes represent dependencies
- The number of resources of type t, R(t)

* A schedule assigns to each node a cycle number:
-5S()>0
- If (nm) € G, S(m) > S(n) + delay(n)
- |{n| S(n) = x and type(n) = t}| <= R(t)

* Goal is shortest length schedule, where length
- L(S) = max over n, S(n)+delay(n)

List Scheduling

* Keep a list of available instructions, Le.,

- If we are at cycle k, then all predecessors, p,
in graph have all been scheduled so that

S(p)+delay(p) < k

* Pick some instruction, n, from queue such that

there are resources for type(n)

+ Update available instructions and continue

* Itis all in how we pick instructions
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Lots of Heuristics

- forward or backward
* choose instructions on critical path

« ASAP or ALAP

* Balanced paths
+ depth in schedule graph
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DLS (1995)

+ Aim: avoid pipeline hazards in load/store unit

- load followed by use of target reg
- store followed by load

+ Simplifies in two ways

- 1 cycle latency for load/store
- includes all dependencies (WaW included)
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The algorithm

+ Construct Scheduling dag
* Make srcs of dag candidates

 Pick a candidate
- Choose an instruction with an interlock
- Choose an instruction with a large number of

successors
- Choose with longest path fo root

* Add newly available instruction to candidate list

1)
2)
3)
4)
5)
6)
7)
8)
9)

Id rl <« [a]
Id r2 <« [b]
add rl <« rl+r2
Id r2 <« [c]
Id r3 <« [d]

mul r4 «r2*r3
add rl «rl+r4
add r2 <« r2+r3
mul r2 «<r2*r3

10) add rl <« rl1+r2
11) st [a] «rl
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Trace Scheduling
Basic blocks typically contain a small number of instrs.
With many FUs, we may not be able to keep all the units
busy with just the instructions of a BB.
Trace scheduling allows block scheduling across BBs.
The basic idea is to dynamically determine which blocks
are executed more frequently. The set of such BBs is
called a trace.

The trace is then scheduled as a single BB.

Blocks that are not part of the trace must be modified
to restore program semantics if /when execution goes
off-trace.
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Trace Scheduling
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Trace Scheduling

| f=a+3 | d=a-3 a=b+c
f=a+3

a=b+c

- X=x+1 a=e*f
azert d=a-3 d=a-3
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Software Pipelining

Software pipelining is an IS technique that reorders
the instructions in a loop.

- Possibly moving instructions from one iteration to
the previous or the next iteration.

- Very large improvements in running tfime are possible.

* The first serious approach to software pipelining was

presented by Aiken & Nicolau.
- Aiken's 1988 Ph.D. thesis.

- Impractical as it ignores resource hazards (focusing
only on data-dependence constraints).
+ But sparked a large amount of follow-on research.
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Goal of SP

* Increase distance between dependent
operations by moving destination operation to a

later iteration

Aia« Id[d]
B:b« a*a
C: st [d], b
Did« d+4

Assume all have latency of 2
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Can we decrease the latency?

« Lets unroll

A: a<« Id[d]
B: b«a*a
C: st [d], b
D: d«d+4
Al: a « Id [d]
Bl: b« a*a
cl: st [d], b
Dl:d« d+4

A B C D Al B1 C1 D1
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Rename variables

A: a<« Id[d]

B: b« a*a

C: st [d], b
D: dl« d+4

Al: al « Id [d1]
Bl: bl « al *al
Cl: st [d1], bl
Dl:d« dl+4

A B C D Al B1 Cl

D1
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Schedule

A a<« Id[d]

B: b« a*a

C st [d], b
D: dl« d+4

Al: al « Id [d1]
Bl: bl « al *al
Cl: st [d1], bl
Dl:d« dl+4

JG@@
&
@-@®

A B C D1
D Al B1 C1
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Unroll Some More

Unroll Some More

. A: «~ Id[d]
g' (I;<_ ld*[d] B: ge a*a

: <~ a*a o t[d], b
C: st [d], b D: dl« f1+4
PR SR
Al: al « |d[d1] cl: st [d1], bl
B1l: bl « al * al DI: d2« dil+4

) A2: a2 « Id[d2]
gll d2 ‘:; Edi]’ bl B2: gz « a2*a2

: <~ ca: t [d2], b2
A2: a2 « Id [d2] D2 de  d2+4
B2: b2 « a2 * a2
C2: st [d2], b2 A B
D2:d« d2+4 5 Al

A B C D2 N A2
D Al B1 cl D2
D1 A2 B2 c2
One More Time Can Rearrange
A B C D4 A B C D4
D Al B1 Cl1 D Al B1 Cl1
D1 A2 B2 c2 DI+ |A2 B2 ce2

D2 A3 B3 C3

D3 A4 B4

D2+ |A3 B3 C3

D3 A4 B4




Rearrange Rearrange
A a<« Id [d] A a« Id [d]
B: b« a*a B: b« a*a
C: st [d], b C st [d], b
D: dle d+4 D: dle d+4
Al al< Id[d1] Al al< Id[d1]
Bl: bl« al*al Bl: bl« al*al
ct: st [d1], bl ct: st [d1], bl
DL: d2« dil+4 DL d2« di+4
A2: a2 « Id[d2] A2: a2 « Id[d2]
B2: b2« a2*a2 B2: b2« a2*a2
c2: st [d2], b2 c2: st [d2], b2
D2: de d2+4 D2: de d2+4
A B | [|c A B | [|c
D Al| [|B1 D Al| [|B1
D1 | ||A2 D1 | | |A2
D2 D2
SP Loop Goal of SP
Al a<« Id [d]
B: b« a*a .
D: dle d+4 Prolog - Increase distance between dependent
Al: al« Id[dl] . . . . .
e aioa operafrmns t?y moving destination operation to a
later iteration
C st [d], b
Bl: bl« al*al
A2 a2« Id[d2] Body @ O Q
D2: de d2+4
B2: b2« a2*a2 e
S il O O
L o S Epilog ‘
c2: st [d2], b2 @
RENE O 1O
D Al . . . : :
o1 o dependencies iteration i i+1 i+2
in initial loop
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Example

Assume operating on a infinite wide machine

®E
®

HR®E
ROI0IOI0
Q
OIB] &

®EE®E

15-745 © Seth Copen Goldstein 2000-5 49

Example

Assume operating on a infinite wide machine

Prolog

90O ™

: epilog
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ing with exit conditions

i=0 loop:
if (i >= N) goto done A
Ao B
Bo Ciz
if (i+1 == N) goto last i++
i=1 if (i < N) goto loop
A epilog:
if (i+2 == N) goto epilog B,
i=2 Ciy
last:
Ci
done:
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Loop Unrolling V. SP

For SuperScalar

* Loop Unrolling reduces loop overhead
- Software Pipelining reduces fill/drain
- Best is if you combine them

# of
overlapped
iterations

=
y VW N
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Aiken/Nicolau Scheduling
Step 1

Perform scalar replacement to eliminate memory
references where possible.

for 1:=1 to N do for i:=1 to N do

a :=j & V[i-1] a:=je@&b
b:=a®f b:=a@®f
cC :=e & ] C =e @]
d:=f&c d :=f@&c
e:=be&d e:=be&d
f = U[i] f = ULi]
g: V[i] :=b g: V[il] :=b
h: W[i] :=d h: WLi] :=d
J = X[i] J = X[i]
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Aiken/Nicolau Scheduling
Step 2

Unroll the loop and compute the data-dependence
graph (DDG).

DDG for rolled loop:

for i:=1 to N do
a:=jo®b !
b:=a®f |
cC :=e & ] N
d:=fo®c /
e:=bed g
f = U[i]

g: V[i] := b

h: WLi] :=d
J = X[i]
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Aiken/Nicolau Scheduling
Step 2, cont'd

DDG for unrolled loop:

for i:=1 to N do /

v
a:=j®hb
b::;@f g1 @
c =e ] l::
d:=f&c 2
e:=be&d /l
f 2= U[i]
g: V[i] := b 92 613
h: W[i] :=d
J = X[l bs
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Aiken/Nicolau Scheduling

Step 3
Build a tableau of iteration number vs cycle time.
iteration
a Cy 1 2 3 4 5 6
v I facty £ ) £ ] 1)
\ d 2 |bd
AT, P
1 4 cb
¥ f v kY 6 eh b
O
/ b G 9 ; & b
! i P v 9 eh g a
gz aS / d2 10 C b
' 11 d g a
L i h
' T2\ e 1 12 eh b
b3 2 13 c g
v 14 d
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Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1jacty fj £ 5 5 1)
2 [bd
3 legh a
4 ch
5 dg a
KY) 6 eh b
S 7 cg a
'8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 c g
14 d
15 eh
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Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 lacty--T3-f5-F1-F1-F)
2 |bd
3 |legh a
4 ch,
5 dy a
v 6 eh\b
S 7 tg's
v'8 dy b
9 eh'g ‘a
10 & b\\
11 d\. g a
12 eh, b
13 € g
14 d
15 eh
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Aiken/Nicolau Scheduling
Step b

“Coalesce” the slopes.

iteration

cycle

1 2 3 4 5 6
1 lacHy-5-5-Ff-Ff1-Fr
2 |bd
3 legh a
4 cb,
5 dy ‘a
6 eh.\b
7 &g a
8 ds b
9 eh\g ‘a
10 § b
11 dy g a
12 ehy, b
13 € g
14 d
15 eh

iteration
1 2 3 4 5 6
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1 JacTj
2 |bd fj
3 |legh a
4 cb fj
5 dg a

v 6 eh b fj

$ 7 cg a

v 8 d b
9 eh g fj
10 c a
11 d b
12 eh g
13 c
14 d
15 eh

Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6

1 [actj
2 |bd fj
3 legh a
4 cb fj
5 dg a

v 6 eh b fj

9 7 cg a

v 8 d b
9 eh g fj
10 c a
11 d b
12 eh g
13 c
14 d
15| eh
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Aiken/Nicolau Scheduling

Step 6

Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6
1 [actj
2 [bd  fj
i egh ib fj <— Prologue/entry code
5 dg a
v 6 eh b fj
S 7 cg a
o g d b
9 eh g fj |+« Loop body
10 c a
11 d b
12 eh g
13 ¢ «——— Epilogue/exit code
14 d
15 eh
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Aiken/Nicolau Scheduling

Step 7

Generate code.
(Assume VLIW-like machine for this example.
each line should be issued in parallel.)

al == jO® b0 ¢l :=e0 ® jOo  Fl := U[L] j1
bl := al & fO dl := fO & c1 2 = U[2] j2

el := bl & dil V[1] := bl W[1] := di a2 :
c2 :=el @ j1 b2 := a2 & f1 3 = U[3] J3
d2 := f1 & c2 V[2] := b2 a3 = j2 & b2

e2 1= b2 ® d2  W[2] := d2 b3 := a3 ® f2 f4
c3 :=e2 & j2 V[3] := b3 ad := j3 © b3 i
i =, 8¢ b, = a; & f;

e = b; ® d; Wi == d; VLi+1] = by, F,
Cii = € © 8y, 2= Jjg @ by 1 2= 041

Ay, = fi, ® ¢y, by =2, & Ff,

€1 = by @_ w-r WIN-1] == dy,; VIN] := by

Cy = ey ® Jyy

dN = fol + CN

e, 1= by ® d, w[N] := d,
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The instructions on

X[1]
X[2]
Jj1 & bl
X[3]

—
N
e

34 = X[4]

nn
wC

= U[L1+21 3., = X[i+2]

if i<N-2 goto L

Aiken/Nicolau Scheduling

Step 8

+ Since several versions of a variable (e.g., j; and ji.1)
might be live simultaneously, we need to add new temps

and moves

al := jO @ bO cl := e0 ® jO f1 := U[1] J1 == X[1]

bl := al & 0O dl := fO & c1 2 = U[2] j2 = X[2]

el := bl & dil V[1] := bl W[1] := d1 a2 := j1 & bl

c2 :=el & j1 b2 := a2 & f1 3 = U[3] 33 = X[3]

d2 := f1 & c2 V[2] := b2 a3 = j2 & b2

e2 := b2 @ d2 w[z2] := d2 b3 := a3 ® 2 f4 := U[4] §4 = X[4]
c3 :=e2 @ j2 V[3] := b3 a4 = j3 © b3 i=3

di =T, ®&c b, = a;, & T,

e; 1= b; ® d, WLi] := d; VLi+1] := b;,, T, 1= U[1+2] J,., == X[i+2]
Ciyy = €; @ J; A, 2= Ji ® by T I= i+l if i<N-2 goto L

del = fN*Z e CNfl bN i= aN e fol

€y 1= by @_ o1 WIN-1] == dy, VIN] := by

Cyv == €1 & Jy

d, := f_; + ¢,

e, 1= by ® d, w[N] := d,
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Aiken/Nicolau Scheduling

Step 8

Since several versions of a variable (e.g., j; and j.;)
might be live simultaneously, we need to add new temps

and moves

al := jJO & bO cl := e0 & jO 1 = U[1] J1 = X[11]

bl := al & f0 dl := fO & cl 77 = U[2] 32 = X[2]

el := bl & d1 V[1] := bl W[1] := d1 a2 1= j1 @ bl

c2 :=el ® j1 b2 := a2 & f1 7 = U[3] 37 = X[3]

d2 := f1 & c2 V[2] := b2 a3 = j2 & b2

e2 = b2 & d2 w2l := d2 b3 :=a3 & f f4 = U[4] 34 = X[4]
c3 = e2 @ j2 V[3] := b3 a4 = j° @ b3 i:=3

d; =77 & ¢ b, :=a> & T b> := b; a’=a; 77=F; £’=F; j*’=)7; J’=]
e; 1= b’ ® d, WLi] := d; VLi+1] := b, T, 1= U[1+2] J,., == X[i+2]
Ciyy =€ @ 37 A, =377 ® by, ¥ o= i+l if i<N-2 goto L

del = fN*Z ® CNfl bN i= aN e fol

e, = by, e_ dy_, W[N-1] :=d,_; VIN] := by

Cy 1= ey © Jy,y

dy, := f_, + ¢,

ey 1= by @ d, w[N] := d,
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Next Step in SP

+ ANB88 did not deal with resource constraints.
* Modulo Scheduling is a SP algorithm that does.
* It schedules the loop based on

- resource constraints

- precedence constraints
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Resource Constraints

* Minimally indivisible sequences, /and j, can

execute together if combined resources ina
step do not exceed available resources.

+ R(i) is a resource configuration vector

R(i) is the number of units of resource i

* r(i) is a resource usage vector s.t.

0 < r(i) < R(i)

* Each node in G has an associated r(i)

15-745 © Seth Copen Goldstein 2000-5

Precedence Constraints

- Data Dependence + Latency of the
functional unit being used

* The precedence constraint between two
nodes, u and v, is the minimal delay between
starting u and v in the schedule.

delay=j-i+d

This FU has
a latency of g
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Software Pipelining Goal

« Find the same schedule for each iteration.
+ Stagger by iteration initiation interval, s
« Goal: minimize s,
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Modulo Resource Constraints

« Combine the resource constraints of
instructions at steps i,i+s,i+2s,i+3s, etc.

Resources
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Precedence Constraints

+ Constraint becomes a tuple: <p,d>

- p is the minimum iteration delay
(or the loop carried dependence distance)

- d is the delay

+ For an edge, u—v, we must have

o(v)-o(u) > d(u,v)-s*p(u,v)

- p20
* If data dependence is loop

- independent p=0
- loop-carried p>0
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Tterative Approach

« minimum s that satisfies the constraints is NP-
Complefte.

* Heuristic:
- Find lower and upper bounds for S

- foreach s from lower to upper bound
+ Schedule graph.
« If succeed, done
* Otherwise try again
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Lower Bounds

+ Resource Constraints: Sy

maximum over all resources of # of uses
divided by # available

[l What is lower bound.
Is it tight?

* Precedence Constraints: Sg

max over all cycles: d(c)/p(c)
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Acyclic Example

o @) Eml] @-ﬂ

;) <0.3>

<0,1> e
"

Lower Bound: S;=2
Upper Bound: 5
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Lower Bound on s

+ Assume 1 ALU and 1 MU
+ Assume latency Op or load is 1 cycle

for i:=1 to N do

a:=3J@®hb
b:=a®f
cC:=e®j
d:=f®c <11 Dbl
e:=b®d
f = ULi]

g: V[i] = b

h: WLi] :=d
J = X[i]

Resources  =>5 cycles 4D

Dependencies => 3 cycles
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Scheduling data structures

To schedule for initiation interval s:

+ Create a resource table with s rows and R
columns

* Create a vector, o, of length N for n
instructions in the loop

- o[n] = the time at which n is scheduled or
NONE

* Prioritize instructions by some heuristic
- critical path
- resource critical
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Scheduling algorithm

* pick an instruction, n
* Calculate earliest time due to dependence

constraints
For all x=pred(n),
earliest = max(earliest, o(x)+d(x,n)-sp(x,n))

* try and schedule n from earliest to earliest+s-1

s.t. resource constraints are obeyed.

« If we fail, then this schedule is faulty
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Scheduling algorithm - cont. Example
. _ for i:=1 to N do
* We now schedule n at earliest, I.e., o(n) = a:<j®b Priorities: 2
earliest b:=a@&f )
- Fix up schedule i-tet 11 11
. RN > > .
- Successors, X, of n must be scheduled s.t. Iy N <o
o(x) >= o(n)+d(n,x)-sp(n,x), otherwise they g: V[i] := b / @
are removed. h: WLi] X;g
. . j := i
- All scheduled instructions (except n) that A T p e
have data dependence conflicts are removed.
* repeat this some number of times until either
- succeed, then register allocate
- fail, then increase s 11
for i:=1 to N do -
EXGmp|e a:=j@®b s=5 instr| o
b:=a&f
for i:=1 to N do ((;:igj a
a:=j@®b iorities: i = c
g Priorities: c,d,e,a,b,f,j,g,h e=bad YRR b
C:=e®d®j f[;u['g c
-= g: V[i] :=
1ioTec SRS I LIRS i E h: Wil := d g
f = U[i] J = X[i]
b XEH - 2 Priorities: c¢,d,e,a,b,f,j.gh
J = XIil
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S| IO | K~ ©®

C—.
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for i:=1 to N do - for i:=1 to N do -
a:=j &b s=5 instr| o a:=j®b s=5 instr| o
e a e E
d:=f&c d:=f&c
- b b
e:=be&d =b®d
o ALU |[MU 5 o ALU |[MU
g: V[i] := b ¢ g: V[i] := b ¢ 0
h: WLi] :T: d d h: W[i] :=d d
J = X[i] d J = X[i] d
N e |2 Priorities: b,f,j,g.h N e |2
f . f
9 9
h h
J J
for i:=1 to N do - for i:=1 to N do -
g = j g ]2 s=5 instr| o a:=j®b s=5 instr| o
= a b:=a&Tf
- . a 3 - a 3
C=e®d]j C=e®]j
d = ; ] 3 b 4 d:=f&c b 4
e :=b® =be®ed
g: VEi} I= z c ' =b c ¢ 0
D WLi] := -=d
J = X[i] d o i d d |t
e € 2 e
f f
b 9 b 9
h h
J J
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b causes b->e edge violation
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- for i:=1 to N do -
s=5 instr| o a:=j®b s=5 instr| o
a 3 2 _ e g Jf a 3
b 4 d i f®c b 4
ALU |[MU o ALU |[MU
c 0 Vil o= c 5
v f
: 1 o=
o e 7 o e 7
f f 0
g g
h h
J J
e causes e->c edge violation
for i:=1 to N do - for i:=1 to N do -
a:=j®b s=5 instr| o a:=j®b s=5 instr| o
b:=adf b:=aef
ceoj a 3 cieej a 3
d:=fF&c d:=fF&c
- b 4 - b 4
o ALU |MU o ALU |MU
VP - c 5 CVri - c 5
g: V[i] := b f g: V[i] := b f
h: W[i] :=d h: W[i] := d
H : M d j d 6 H : M d j d 6
e 7 e 7
e e g
f 0 h f 0
b 9 b g |’
h h 8
J 1 J 1
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Creating the Loop [instr] o
a 3
* Create the body from the schedule. b 4
- Determine which iteration an instruction
falls into c 5
- Mark its sources and dest as 4 6
belonging to that iteration.
- Add Moves to update registers e 7
* Prolog fills in gaps at beginning F 0
- For each move we will have an
instruction in prolog, and we fill in g 7
dependent instructions
+ Epilog fills in gaps at end & 8
J 1
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fO = U[O],
Jjo = X[0L.

FORi=0to N
£1:= U[i+1]
j1 1= X[i*1]
nop
a:=j0?b
b:=a?f0
c:=e?j0
d:=f0?c
e=b?d g: V[il:=b

h: W[i]:=d
fO = f1
jo=j1
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Conditionals

+ What about internal control structure, I.e.,
conditionals

* Three approaches

- Schedule both sides and use conditional
moves

- Schedule each side, then make the body of
the conditional a macro op with appropriate
resource vector

- Trace schedule the loop
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What to take away

- Dependence analysis is very important
+ Software pipelining is cool
* Registers are a key resource
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