15-745

Instruction Scheduling

Copyright © Seth Copen Goldstein 2000-5
(some slides.oborrowed from M. Voss)

Instruction-level Parallelism

- Most modern processors have the ability to execute several adjacent instructions simultaneously.
- Pipelined machines.
- Very-long-instruction-word machines (VLIW).
- Superscalar machines.
- Dynamic scheduling/out-of-order machines.
- ILP is limited by several kinds of execution constraints.
- Data dependence constraints.
- Resource constraints ("hazards")
- Control hazards

Instruction Scheduling

- The purpose of instruction scheduling (IS) is to order the instructions for maximum ILP.
- Keep all resources busy every cycle.
- If necessary, eliminate data dependences and resource hazards to accomplish this.
- The IS problem is NP-complete (and bad in practice).
- So heuristic methods are necessary.
- Limited instruction issue.
- If the instruction-issue unit can issue only n instructions at a time, then this limits ILP.
- Limited register set.
- Any schedule of instructions must have a valid register allocation.

Execution Constraints

- Data-dependence constraints:
- If instruction A computes a value that is read by instruction B, then B cannot execute before A is completed.
- Resource hazards:
- If there are n functional 1 multipliers), then only n in: multipliers), then only n unit can execute at once.

Instruction Scheduling

- There are many different techniques for IS.
- Still an open area of research.
- Most optimizing compilers perform good local IS, and only simple global IS.
- The biggest opportunities are in scheduling the code for loops.

Should the Compiler Do IS?

- Many modern machines perform dynamic reordering of instructions.
- Also called "out-of-order execution" (OOOE).
- Not yet clear whether this is a good idea.
- Pro:
- OOOE can use additional registers and register renaming to eliminate data dependences that no amount of static IS can accomplish.
- No need to recompile programs when hardware changes.
- Con:
- OOOE means more complex hardware (and thus longer cycle times and more wattage).
- And can't be optimal since IS is NP-complete.

Instruction Scheduling

- In the von Neumann model of execution an instruction starts only after its predecessor completes.

instr 1	instr 2

time

- This is not a very efficient model of execution.
- von Neumann bottleneck or the memory wall.
- pipeline structure
- data dependencies
- register renaming
- scalar replacement

Instruction Pipelines

- Almost all processors today use instructions pipelines to allow overlap of instructions (Pentium 4 has a 20 stage pipeline!!!).
- The execution of an instruction is divided into stages; each stage is performed by a separate part of the processor.

F: Fetch instruction from cache or memory.
D: Decode instruction.
E: Execute. ALU operation or address calculation.
M: Memory access.
W: Write back result into register.

- Each of these stages completes its operation in one cycle (shorter the the cycle in the von Neumann model).
- An instruction still takes the same time to execute.

Pipeline Hazards

- Structural Hazards
- two instructions need the same resource at the same time
- memory or functional units in a superscalar.
- Data Hazards
- an instructions needs the results of a previous instruction

$$
\begin{aligned}
& r 1=r 2+r 3 \\
& r 4=r 1+r 1 \\
& r 1=[r 2] \\
& r 4=r 1+r 1
\end{aligned}
$$

- solved by forwarding and/or stalling
- cache miss?
- Control Hazards
- jump \& branch address not known until later in pipeline
- solved by delay slot and/or prediction

Instruction Pipelines

- However, we overlap these stages in time to complete an instruction every cycle.

Jump/Branch Delay Slot(s)

- Control hazards, i.e. jump/branch instructions.
unconditional jump address available only after Decode. conditional branch address available only after Execute.
jump/branch

instr 2
instr 3
instr 4

Jump/Branch Delay Slot(s)

- One option is to stall the pipeline (hardware solution).

- Another option is to insert a no-op instructions (software).

- Both degrade performance!

Jump/Branch Delay Slots

- In other words, the instruction(s) in the delay slots of the jump/branch instruction always get(s) executed when the branch is executed (regardless of the branch result).
- Fetching from the branch target begins only after these instructions complete.

- What instruction(s) to use?

Jump/Branch Delay Slot(s)

- another option is for the branch take effect after the delay slots.
- I.e., some instructions always get executed after the branch but before the branching takes effect.

Branch Prediction

- Current processors will speculatively execute at conditional branches
- if a branch direction is correctly guessed, great!
- if not, the pipeline is flushed before instructions commit (WB).
- Why not just let compiler schedule?
- The average number of instructions per basic block in typical C code is about 5 instructions.
- branches are not statically predictable
- What happens if you have a 20 stage pipeline?

Data Hazards

[r2] available here

Example Dependencies

S1) $\mathrm{a}=0$;		
S2) $b=a$;		
S3) c=a+d+e;		
S4) d=b;		
S5) b=5+e;	S1 $\delta^{\text {f }}$ S2	due to a
	S1 $\delta^{\text {f }}$ S3	due to a
	S2 $\delta^{\text {f }}$ S 4	due to b
	S3 $\delta^{\text {a }} \mathrm{S} 4$	due to d
	S4 $\delta^{\text {a }} 5$	due to b
	S2 $8^{\circ} \mathrm{S} 5$	due to b
	S3 $\delta^{\text {i }} 5$	due to a

Register Renaming Example
\(\left.\left.$$
\begin{array}{|ll|}\hline r 1 & \leftarrow r 2+1 \\
{[f p+8]} & \leftarrow r 1 \\
r 1 & \leftarrow r 3+2 \\
{[f p+12]} & \leftarrow r 1\end{array}
$$\right] \begin{array}{lll}r 7 \& \leftarrow r 2+1

{[f p+8]} \& \leftarrow r 7

r 1 \& \leftarrow r 3+2

{[f p+12]} \& \leftarrow r 1\end{array}\right]\)| $r 7$ | $\leftarrow r 2+1$ |
| :--- | :--- |
| $r 1$ | $\leftarrow r 3+2$ |
| $[f p+8]$ | $\leftarrow r 7$ |
| $[f p+12]$ | $\leftarrow r 1$ |

Phase ordering problem

- Can perform register renaming atter register allocation
- Constrained by available registers
- Constrained by live on entry/exit
- Instead, do scheduling before register allocation

Scheduling a BB

$\cdot x$	$\leftarrow w^{*} 2^{*} x^{*} y^{*} z$
$r 1$	$\leftarrow[f p+w]$

Scheduling a BB

- Assume:
- load 5
- store 5
- mult 2
- others 1
- operations are nonblocking

\cdot	$x \leftarrow w^{*} 2^{*} x^{*} y^{*} z$	
1	$r 1$	$\leftarrow[f p+w]$
2	$r 2$	$\leftarrow 2$
6	$r 1$	$\leftarrow r 1^{*} r 2$
7	$r 2$	$\leftarrow[f p+x]$
$12 r 1$	$\leftarrow r 1^{*} r 2$	
13	$r 2$	$\leftarrow[f p+y]$
$18 r 1$	$\leftarrow r 1^{*} r 2$	
19	$r 2$	$\leftarrow[f p+z]$
$24 r 1$	$\leftarrow r 1^{*} r 2$	
$26[f p+w]$	$\leftarrow r 1$	
33	$r 1$ can be used again	

We can do better

Assume:	1	r1	$\leftarrow[f p+w]$
	2	r2	$\leftarrow[f p+x]$
mult 2	3	r3	$\leftarrow[f p+y]$
others 1	4	r4	$\leftarrow[f p+z]$
operations	5	r5	$\leftarrow 2$
are non-	6	r1	$\leftarrow \mathrm{r} 1^{*} \mathrm{r}$
blocking	8	r1	$\leftarrow \mathrm{r} 1^{*} \mathrm{r}$
	10	r1	$\leftarrow \mathrm{r} 1^{*} \mathrm{r}$
We can do even	12	r1	$\leftarrow r 1^{*} r$
etter if we	14	[fp+	$\leftarrow r 1$
assume what?	19		used

Defining Better

1	$r 1$	$\leftarrow[f p+w]$				
2	$r 2$	$\leftarrow 2$				
6	$r 1$	$\leftarrow r 1^{*} r 2$				
7	$r 2$	$\leftarrow[f p+x]$				
12	$r 1$	$\leftarrow r 1^{*} r 2$				
13	$r 2$	$\leftarrow[f p+y]$				
18	$r 1$	$\leftarrow r 1^{*} r 2$				
19	$r 2$	$\leftarrow[f p+z]$				
24	$r 1$	$\leftarrow r 1^{*} r 2$				
26	$[f p+w]$					
33	$r 1$		\quad	can be used again		
:---	:---	:---	\quad	1	$r 1$	$\leftarrow[f p+w]$
:---	:---	:---				
2	$r 2$	$\leftarrow[f p+x]$				
3	$r 3$	$\leftarrow[f p+y]$				
4	$r 4$	$\leftarrow[f p+z]$				
5	$r 5$	$\leftarrow 2$				
6	$r 1$	$\leftarrow r 1^{*} r 5$				
8	$r 1$	$\leftarrow r 1^{*} r 2$				
10	$r 1$	$\leftarrow r 1^{*} r 3$				
12	$r 1$	$\leftarrow r 1^{*} r 4$				
14	$[f p+w]$	$\leftarrow r 1$				
19	$r 1$ can be used again					

The Scheduler

- Given:
- Code to schedule
- Resources available (FU and \# of Reg)
- Latencies of instructions
- Goal:
- Correct code
- Better code [fewer cycles, less power, fewer registers, ...]
- Do it quickly

More Abstractly

- Given a graph $G=(V, E)$ where
- nodes are operations
- Each operation has an associated delay and type
- edges between nodes represent dependencies
- The number of resources of type $t, R(t)$
- A schedule assigns to each node a cycle number:
- $S(n) \geq 0$
- If $(n, m) \in G, S(m) \geq S(n)+\operatorname{delay}(n)$
$-\mid\{n \mid S(n)=x$ and type $(n)=t\} \mid \ll R(t)$
- Goal is shortest length schedule, where length
- $L(S)=\max$ over $n, S(n)+$ delay (n)

List Scheduling

- Keep a list of available instructions, I.e.,
- If we are at cycle k, then all predecessors, p, in graph have all been scheduled so that $\mathrm{S}(\mathrm{p})+$ delay $(\mathrm{p}) \leq \mathrm{k}$
- Pick some instruction, n, from queue such that there are resources for type(n)
- Update available instructions and continue
- It is all in how we pick instructions

Lots of Heuristics

- forward or backward
- choose instructions on critical path
- ASAP or ALAP
- Balanced paths
- depth in schedule graph

DLS (1995)

- Aim: avoid pipeline hazards in load/store unit
- load followed by use of target reg
- store followed by load
- Simplifies in two ways
- 1 cycle latency for load/store
- includes all dependencies (WaW included)

The algorithm

- Construct Scheduling dag
- Make srcs of dag candidates
- Pick a candidate
- Choose an instruction with an interlock
- Choose an instruction with a large number of successors
- Choose with longest path to root
- Add newly available instruction to candidate list

1) Id $\mathrm{rl} \leftarrow[a]$
2) Id $r 2 \leftarrow[b]$
3) add $r 1 \leftarrow r 1+r 2$
4) Id $r 2 \leftarrow[c]$
5) Id $r 3 \leftarrow[d]$
6) $\mathrm{mul} \mathrm{r} 4 \leftarrow \mathrm{r} 2 * \mathrm{r} 3$
7) add $r 1 \leftarrow r 1+r 4$
8) add $r 2 \leftarrow r 2+r 3$
9) mul $\mathrm{r} 2 \leftarrow \mathrm{r}^{*} \mathrm{r}^{3}$
10) add $r 1 \leftarrow r 1+r 2$
11) $s+\quad[a] \leftarrow r 1$

Trace Scheduling

- Basic blocks typically contain a small number of instrs.
- With many FUs, we may not be able to keep all the units busy with just the instructions of a $B B$.
- Trace scheduling allows block scheduling across BBs.
- The basic idea is to dynamically determine which blocks are executed more frequently. The set of such BBs is called a trace.

The trace is then scheduled as a single $B B$.

- Blocks that are not part of the trace must be modified to restore program semantics if/when execution goes off-trace.

Software Pipelining

- Software pipelining is an IS technique that reorders the instructions in a loop.
- Possibly moving instructions from one iteration to the previous or the next iteration.
- Very large improvements in running time are possible.
- The first serious approach to software pipelining was presented by Aiken \& Nicolau.
- Aiken's 1988 Ph.D. thesis.
- Impractical as it ignores resource hazards (focusing only on data-dependence constraints).
- But sparked a large amount of follow-on research.

Goal of SP

- Increase distance between dependent operations by moving destination operation to a later iteration
$A: a \leftarrow \mathrm{ld}[d]$
Assume all have latency of 2
$B: b \leftarrow a * a$
$C: \quad s t[d], b$
$\mathrm{D}: \mathrm{d} \leftarrow \mathrm{d}+4$

Can we decrease the latency?

- Lets unroll

A: $a \leftarrow \mathrm{Id}[\mathrm{d}]$
B: $b \leftarrow a * a$
C : $\quad s t[d], b$
D: $d \leftarrow d+4$
A1: $a \leftarrow$ Id [d]
B1: $b \leftarrow a^{*} a$
C1: $\quad s t[d], b$
D1: $d \leftarrow d+4$

A		B		C		D		A 1		B 1		C 1	

Rename variables

$A: a \leftarrow \mathrm{ld}[\mathrm{d}]$
B: $b \leftarrow a * a$
$C: \quad s t[d], b$
D: $\mathrm{d} 1 \leftarrow \mathrm{~d}+4$
A1: $\mathrm{a} 1 \leftarrow \mathrm{Id}$ [d1]
B1: $b 1 \leftarrow a 1$ * $a 1$
C1: $\quad s t[d 1], b 1$
D1: $\mathrm{d} \leftarrow \mathrm{d} 1+4$

A		B		C		D		A 1		B 1		$C 1$		D 1

Unroll Some More

A: $a \leftarrow I d[d]$
$B: b \leftarrow a{ }^{*} a$
$C: \quad s+[d], b$
$D: d 1 \leftarrow d+4$
$A 1: a 1 \leftarrow I d[d 1]$
$B 1: b 1 \leftarrow a 1^{*} a 1$
$C 1:$
$D 1: d 2 \leftarrow d 1+d 1], b 1$
$A 2: a 2 \leftarrow I d[d 2]$
$B 2: b 2 \leftarrow a 2^{*} a 2$
$C 2:$
$D 2: d \leftarrow d[d 2], b 2$

A		B		C		$D 2$	
D		$A 1$		$B 1$		$C 1$	
	$D 1$		$A 2$		$B 2$		$C 2$

Unroll Some More

One More Time

Can Rearrange

A		B		C		$D 4$			
D		$A 1$		$B 1$		$C 1$			
	$D 1$	\rightarrow	$A 2$		$B 2$		$C 2$		
		$D 2$	\rightarrow	$A 3$		$B 3$		$C 3$	
			$D 3$		$A 4$		$B 4$		$C 4$

Rearrange

SP Loop

A:	$a \leftarrow$	Id [d]	Prolog	
B:	$\mathrm{b} \leftarrow$	$a^{*} \mathrm{a}$		
D:	$\mathrm{d} 1 \leftarrow$	d+4		
A1:	$\mathrm{a} 1 \leftarrow$	Id [d1]		
D1:	d2 \leftarrow	d1 + 4		
C: \quad st [d], b				
B1:	$\mathrm{b} 1 \leftarrow$	a1 * 11	Body	
A2:	a $2 \leftarrow$	Id [d2]		
V				
B2:	$\mathrm{b} 2 \leftarrow$	a2 * ${ }^{2}$	Epilog	
${ }^{\text {C1: }}$		st [d1], b1		
D3:	d2 \leftarrow	d1 +4		
C2:		st [d2], b2		

Rearrange

Goal of SP

- Increase distance between dependent operations by moving destination operation to a later iteration

Example

Assume operating on a infinite wide machine

Dealing with exit conditions

A_{i}	$i=0$	loop:
B_{i}	if ($\mathrm{i}>=\mathrm{N}$) goto done	A_{i}
	A_{0}	$\mathrm{B}_{\mathrm{i}-1}$
	B_{0}	$C_{\text {i-2 }}$
	if ($\mathrm{i}+1=\mathrm{N}$) goto last	i++
	$i=1$	if (i<N) goto loop
	A_{1}	epilog:
	if (i+2 == N) goto epilog	B_{i}
	$i=2$	C_{i-1}
		last:
		c_{i}
		done:

Example

Assume operating on a infinite wide machine

For SuperScalar

- Loop Unrolling reduces loop overhead
- Software Pipelining reduces fill/drain
- Best is if you combine them

Aiken/Nicolau Scheduling Step 1

Perform scalar replacement to eliminate memory references where possible.
for i:=1 to N do
a $:=\mathbf{j} \oplus V[i-1]$
b $:=\mathbf{a} \oplus f$
c : $=\mathbf{e} \oplus \mathbf{j}$
$d:=f \oplus c$
$\mathbf{e}:=\mathbf{b} \oplus \mathbf{d}$
f := U[i]
g: V[i] := b
h: $w[i]:=d$
j : = X[i]
for $i:=1$ to N do
$\mathrm{a}:=\mathrm{j} \oplus \mathrm{b}$
b $:=\mathbf{a} \oplus f$
c $:=\mathbf{e} \oplus j$
d $:=\mathrm{f} \oplus \mathrm{c}$
$\mathbf{e}:=\mathbf{b} \oplus \mathbf{d}$
$\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
g: V[i] := b
$h: W[i]:=d$
$\mathrm{j}:=\mathrm{X}[\mathrm{i}]$

Aiken/Nicolau Scheduling Step 2, cont'd

DDG for unrolled loop:
for i:=1 to N do
$\mathbf{a}:=\mathbf{j} \oplus \mathbf{b}$
b $:=a \oplus f$
c : = e $\oplus \mathbf{j}$
$d:=f \oplus c$
$\mathbf{e}:=\mathrm{b} \oplus \mathbf{d}$
f := U[i]
g: V[i] := b
h: W[i] := d
j := X[i]

Aiken/Nicolau Scheduling Step 2

Unroll the loop and compute the data-dependence graph (DDG).

DDG for rolled loop:
for $i:=1$ to N do
$\mathbf{a}:=\mathbf{j} \oplus \mathbf{b}$
b $:=\mathbf{a} \oplus f$
c $:=\mathbf{e} \oplus j$
d $:=f \oplus \mathbf{c}$
$\mathbf{e}:=\mathrm{b} \oplus \mathbf{d}$
f := U[i]
g: V[i] := b
h: W[i] := d
$\mathrm{j}:=\mathrm{X}[\mathrm{i}]$

Aiken/Nicolau Scheduling Step 3

Build a tableau of iteration number vs cycle time.

Aiken/Nicolau Scheduling Step 4

Find repeating patterns of instructions.

Aiken/Nicolau Scheduling Step 5

"Coalesce" the slopes.

	1	2	$\text { Ition } \begin{gathered} \end{gathered}$	4	5	6
1	acfj					
2	bd	fj				
3	egh	a				
4		cb	fj			
5		dg	a			
$\bigcirc 6$		eh	b	fj		
प 7			cg	a		
$\bigcirc 8$			d	b		
9			eh	g	fj	
10				c	a	
11				d	b	
12				eh	g	
13					c	
14					d	
15					eh	

Aiken/Nicolau Scheduling Step 4

Find repeating patterns of instructions.

Aiken/Nicolau Scheduling Step 6

Find the loop body and "reroll" the loop.

Aiken/Nicolau Scheduling Step 6

Find the loop body and "reroll" the loop.

Aiken/Nicolau Scheduling Step 8

- Since several versions of a variable (e.g., j_{i} and j_{i+1}) might be live simultaneously, we need to add new temps and moves

Aiken/Nicolau Scheduling Step 7

Generate code.

(Assume VLIW-like machine for this example. The instructions on each line should be issued in parallel.)

```
a1 \(:=j 0 \oplus\) b0
c1 := e0 \(\oplus\) j0 f1 \(:=U[1]\)
```



```
\(\mathrm{e} 1:=\mathrm{b} 1 \oplus \mathrm{~d} 1 \quad \mathrm{~V}[1]:=\mathrm{b} 1 \quad \mathrm{~W}[1]:=\mathrm{d} 1 \quad \mathrm{a} 2:=\mathrm{j} 1 \oplus \mathrm{~b} 1\)
```



```
L:
\(d_{i}:=f_{i-1} \oplus c_{i} \quad b_{i+1}:=a_{i} \oplus f_{i}\)
\(e_{i}:=b_{i} \oplus d_{i} \quad W[i] \quad:=d_{i} \quad v[i+1]:=b_{i+1} \quad f_{i+2}:=U[I+2] \quad j_{i+2}:=x[i+2]\)
\(c_{i+1}:=e_{i} \oplus j_{i} \quad a_{i+2}:=j_{i+1} \oplus b_{i+1} i \quad:=i+1 \quad\) if \(\quad\) i<N-2 goto \(L\)
\(d_{N-1}:=f_{N-2} \oplus c_{N-1} b_{N}:=a_{N} \oplus f_{N-1}\)
\(e_{N-1}:=b_{N-1} \oplus d_{N-1} w[N-1]:=d_{N-1} \quad v[N]:=b_{N}\)
\(\mathbf{c}_{\mathrm{N}}:=\mathbf{e}_{\mathrm{N}-1} \oplus \mathbf{j}_{\mathrm{N}-1}\)
\(\mathrm{d}_{\mathrm{N}}:=\mathrm{f}_{\mathrm{N}-1}+\mathrm{c}_{\mathrm{N}}\)
\(e_{N}:=b_{N} \oplus d_{N} \quad w[N]:=d_{N}\)
```


Aiken/Nicolau Scheduling Step 8

- Since several versions of a variable (e.g., j_{i} and j_{i+1}) might be live simultaneously, we need to add new temps and moves

a1 : $=$ j0 \oplus b0	c1 : = e0 \oplus j0	f1 := U[1]	j1 := X[1]	
b1 := a1 \oplus f0	d1 := f0 \oplus c1	$\mathrm{f}^{\prime \prime}$: $=\mathrm{U}$ [2]	j2 := x [2]	
e1 : $=$ b1 \oplus d1	V [1] := b1	W[1] := d1	a2 : $=$ j1 \oplus b1	
c2 := e1 \oplus j1	b2 := a2 \oplus f1	f^{\prime} : $=$ U[3]	j^{\prime} := $\mathrm{x}[3]$	
d2 : $=$ f1 \oplus c2	V[2] := b2	a3 := j2 \oplus b2		
e2 : $=\mathrm{b} 2 \oplus \mathrm{~d} 2$	W[2] := d2	b3 : $=$ a3 $\oplus \mathrm{f}^{\prime \prime}$	f4 := U[4]	j4 := X [4]
c3 : $=$ e2 \oplus j2	$\mathrm{V}[3]:=\mathrm{b} 3$	a4 $\mathbf{l}^{=} \mathrm{j}^{\prime} \oplus$ b3	i $:=3$	
$\mathrm{d}_{\mathrm{i}}:=\mathrm{f}^{\prime} \prime \oplus \mathrm{c}_{\mathrm{i}}$	$\mathrm{b}_{\mathrm{i+1}}:=\mathrm{a}^{\prime} \oplus \mathrm{f}^{\prime}$	$\mathrm{b}^{\prime}:=\mathrm{b} ; \mathrm{a}^{\prime}=\mathrm{a}$;	$\mathrm{f}^{\prime \prime}=\mathrm{f}^{\prime} ; \mathrm{f}^{\prime}=\mathrm{f}$;	$\mathrm{j}^{\prime \prime}=\mathrm{j}^{\prime} ; \mathrm{j}^{\prime}=\mathrm{j}$
$\mathrm{e}_{\mathrm{i}}:=\mathrm{b}^{\prime} \oplus \mathrm{d}_{\mathrm{i}}$,	W[i] := d_{i}	$\mathrm{V}[\mathrm{i}+1]:=\mathrm{b}_{\mathbf{i + 1}}$	$\mathrm{f}_{\text {i+2 }}:=\mathrm{U}[\mathrm{I}+2]$	$\mathrm{j}_{\mathrm{i}+2}:=\mathrm{X}[\mathrm{i}+2]$
$c_{i+1}:=e_{i} \oplus \mathrm{j}^{\prime}$	$\mathrm{a}_{\mathrm{i}+2}:=\mathrm{j}^{\prime \prime}$ (\oplus	i : $=1+1$	if $i<N-2$ goto	
$\mathrm{d}_{\mathrm{N}-1}:=\mathrm{f}_{\mathrm{N}-2} \oplus \mathrm{c}_{\mathrm{N}}$	$b_{N}:=a_{N} \oplus f_{N-1}$			
$\mathbf{e}_{\mathrm{N}-1}:=\mathrm{b}_{\mathrm{N}-1} \oplus \mathrm{~d}_{\mathrm{N}}$	$\mathrm{W}\left[\mathrm{N-1]}:=\mathrm{d}_{\mathrm{N}-1}\right.$	v [N] $:=\mathrm{b}_{\mathrm{N}}$		
$\mathrm{c}_{\mathrm{N}}:=\mathrm{e}_{\mathrm{N}-1} \oplus \mathrm{j}_{\mathrm{N}-1}$				
$\mathrm{d}_{\mathrm{N}}:=\mathrm{f}_{\mathrm{N}-1}+\mathrm{c}_{\mathrm{N}}$				
$\mathrm{e}_{\mathrm{N}}:=\mathrm{b}_{\mathrm{N}} \oplus \mathrm{d}_{\mathrm{N}}$	$\mathrm{w}[\mathrm{N}]:=\mathrm{d}_{\mathrm{N}}$			

Next Step in SP

- AN88 did not deal with resource constraints.
- Modulo Scheduling is a SP algorithm that does.
- It schedules the loop based on
- resource constraints
- precedence constraints

Resource Constraints

- Minimally indivisible sequences, i and j, can execute together if combined resources in a step do not exceed available resources.
- $R(i)$ is a resource configuration vector $R(i)$ is the number of units of resource i
- $r(i)$ is a resource usage vector s.t. $0 \leq r(i) \leq R(i)$
- Each node in G has an associated $r(i)$

Precedence Constraints

- Data Dependence + Latency of the functional unit being used
- The precedence constraint between two nodes, u and v, is the minimal delay between starting u and v in the schedule.

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
- Goal: minimize s.

Modulo Resource Constraints

- Combine the resource constraints of instructions at steps $i, i+s, i+2 s, i+3 s$, etc.

Iterative Approach

- minimum s that satisfies the constraints is NPComplete.
- Heuristic:
- Find lower and upper bounds for S
- foreach s from lower to upper bound
- Schedule graph.
- If succeed, done
- Otherwise try again

Precedence Constraints

- Constraint becomes a tuple: $\langle p, d\rangle$
- p is the minimum iteration delay
(or the loop carried dependence distance)
- d is the delay
- For an edge, $u \rightarrow v$, we must have $\sigma(v)-\sigma(u) \geq d(u, v)-s^{\star} p(u, v)$
- $p \geq 0$
- If data dependence is loop
- independent $\mathrm{p}=0$
- loop-carried p>0

Lower Bounds

- Resource Constraints: S_{R} maximum over all resources of \# of uses divided by \# available

What is lower bound. Is it tight?

- Precedence Constraints: S_{E} max over all cycles: $d(c) / p(c)$

Acyclic Example

Lower Bound: $\mathrm{S}_{\mathrm{R}}=2$
Upper Bound: 5

Lower Bound on s

- Assume 1 ALU and 1 MU
- Assume latency Op or load is 1 cycle

Scheduling algorithm

- pick an instruction, n
- Calculate earliest time due to dependence constraints
For all $x=\operatorname{pred}(n)$,
earliest $=\max ($ earliest,$\sigma(x)+d(x, n)-s p(x, n))$
- try and schedule n from earliest to earliest+s-1
s.t. resource constraints are obeyed.
- If we fail, then this schedule is faulty

Scheduling algorithm - cont.

- We now schedule n at earliest, I.e., $\sigma(n)=$ earliest
- Fix up schedule
- Successors, x, of n must be scheduled s.t. $\sigma(x)>=\sigma(n)+d(n, x)-s p(n, x)$, otherwise they are removed.
- All scheduled instructions (except n) that have data dependence conflicts are removed.
- repeat this some number of times until either
- succeed, then register allocate
- fail, then increase s

Example

for i:=1 to N do
a $:=\mathbf{j} \oplus b$
b : = a $\oplus f$
Priorities: ?
c : $=\mathbf{e} \oplus \mathbf{j}$
$d:=f \oplus c$
$\mathbf{e}:=\mathrm{b} \oplus \mathbf{d}$
f := U[i]
g: V[i] := b
h: W[i] := d
j : = X[i]

$5-745$ © Seth Copen Goldstein 2000-5

Example

for i:=1 to N do
$\mathbf{a}:=\mathbf{j} \oplus \mathbf{b}$
$b:=a \oplus f$
c : $=\mathbf{e} \oplus \mathbf{j}$
d $:=f \oplus c$
$\mathbf{e}:=\mathbf{b} \oplus \mathbf{d}$
$\mathbf{f}:=\mathbf{U}[\mathbf{i}]$
$\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
g: V[i] := b
h: W[i] := d
$\mathrm{j}:=\mathrm{X}[\mathrm{i}]$
Priorities: $c, d, e, a, b, f, j, g, h$

for i:=1 to N do
$b:=a \oplus f$ c $:=\mathbf{e} \oplus j$ d $:=f \oplus c$ $\mathbf{e}:=b \oplus \mathbf{d}$ $\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
g: V[i] := b
$h: W[i]:=d$
j := X[i]
Priorities: a, b, f, j, g, h

ALU	$M U$
c	
d	
e	

instr	σ
a	
b	
c	0
d	1
e	2
f	
g	
h	
j	

for i:=1 to N do

$$
\begin{aligned}
& a:=j \oplus b \\
& b:=\mathbf{a} \oplus f \\
& \text { c }:=\mathrm{e} \oplus \mathrm{j} \\
& d:=f \oplus c \\
& \mathbf{e}:=\mathbf{b} \oplus \mathbf{d} \\
& \mathrm{f}:=\mathrm{U}[\mathrm{i}] \\
& \text { g: V[i] := b } \\
& \text { h: W[i] := d } \\
& \text { j := X[i] }
\end{aligned}
$$

Priorities: b, f, j, g, h

$s=5$

ALU	$M U$
c	
d	
e	
a	

instr	σ
a	3
b	
c	0
d	1
e	2
f	
g	
h	
j	

for $i:=1$ to N do
$\mathbf{a}:=\mathbf{j} \oplus \mathbf{b}$
$b:=a \oplus+f$
c : = e $\oplus \mathbf{j}$
$d:=f \oplus c$
e := b $\oplus \mathbf{d}$
f := U[i]
g: V[i] := b
h: W[i] := d
$\mathrm{j}:=\mathrm{X}[\mathrm{i}]$
Priorities: b, f, j, g, h

$s=5$

ALU	MU
c	
d	
e	
a	
b	

instr	σ
a	3
b	4
c	0
d	1
e	2
f	
g	
h	
j	

for $i:=1$ to N do

$$
\begin{aligned}
& \mathbf{a}:=j \oplus b \\
& \begin{array}{l}
\mathbf{a}:=\mathrm{j} \oplus \mathbf{b} \\
\mathrm{~b}
\end{array}:=\mathbf{a} \oplus \mathbf{f} \\
& \text { c :=e e } \oplus \\
& \text { d }:=f \oplus \mathbf{c} \\
& \text { e := b } \oplus \mathbf{d} \\
& \text { f := U[i] } \\
& \text { g: V[i] := b } \\
& \text { h: W[i] := d } \\
& j:=X[i]
\end{aligned}
$$

Priorities: e,f,j,g,h

$s=5$

ALU	MU
c	
d	
a	
b	

instr	σ
a	3
b	4
c	0
d	1
e	
f	
g	
h	
j	

b causes b->e edge violation
for i:=1 to N do

$$
\begin{aligned}
& \mathbf{a}:=\mathbf{j} \oplus \mathbf{b} \\
& \mathbf{b}:=\mathbf{a} \oplus \mathbf{f} \\
& \mathbf{c}:=\mathbf{e} \oplus \mathbf{j} \\
& \mathbf{d}:=\mathbf{f} \oplus \mathbf{c} \\
& \mathbf{e}:=\mathbf{b} \oplus \mathbf{d} \\
& \mathbf{f}:=\mathrm{U}[\mathrm{i}] \\
& \mathbf{g}: \mathrm{V}[\mathbf{i}]:=\mathbf{b} \\
& \mathrm{h}: \mathrm{w}[\mathbf{i}]:=\mathbf{d} \\
& \mathbf{j}:=X[\mathbf{i}]
\end{aligned}
$$

Priorities: e,f,j,g,h

e causes e->c edge violation

instr	σ
a	3
b	4
c	0
d	1
e	7
f	
g	
h	
j	

on

for i:=1 to N do

$$
\begin{aligned}
& a:=j \oplus b \\
& \text { b }:=a \oplus f \\
& \text { c }:=\mathbf{e} \oplus j \\
& d:=f \oplus c \\
& \mathbf{e}:=b \oplus d \\
& \mathrm{f}:=\mathrm{U}[\mathrm{i}] \\
& \text { g: V[i] := b } \\
& h: W[i]:=d \\
& \text { j : = X[i] }
\end{aligned}
$$

Priorities: f, j, g, h

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	
h	
j	

$15-745$ © Seth Copen Goldstein 2000-5

$A L U$	$M U$
c	f
d	
e	
a	
b	

$s=5$
for $i:=1$ to N do
a $:=j \oplus b$
$\mathbf{b}:=\mathbf{a} \oplus f$
c : = e $\oplus \mathbf{j}$
$d:=f \oplus c$
e $:=\mathbf{b} \oplus \mathbf{d}$
$\mathrm{f}:=\mathrm{U}[\mathrm{i}]$
g: V[i] := b
h: W[i] := d
$j:=X[i]$
Priorities:j,g,h

$s=5$

ALU	MU
c	f
d	j
e	
a	
b	

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	
h	
j	1

for $i:=1$ to N do

$$
\begin{aligned}
& \text { a }:=j \oplus b \\
& \text { b }:=\mathbf{a} \oplus f \\
& \text { c }:=\mathbf{e} \oplus j \\
& \text { d }:=f \oplus \mathbf{c} \\
& \text { e := b } \oplus \mathbf{d} \\
& \text { f := U[i] } \\
& \text { g: V[i] := b } \\
& \text { h: W[i] := d } \\
& \text { j }:=X[i]
\end{aligned}
$$

Priorities:g,h

$s=5$

ALU	MU
c	f
d	j
e	g
a	h
b	

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	7
h	8
j	1

Creating the Loop

- Create the body from the schedule.
- Determine which iteration an instruction falls into
- Mark its sources and dest as belonging to that iteration.
- Add Moves to update registers
- Prolog fills in gaps at beginning
- For each move we will have an instruction in prolog, and we fill in dependent instructions
- Epilog fills in gaps at end

instr	σ
a	3
b	4
c	5
d	6
e	7
f	0
g	7
h	8
j	1

$$
\begin{aligned}
& f 0=U[0] ; \\
& j 0=X[0] ; \\
& \text { FOR } i=0 \text { fo } N \\
& f 1:=U[i+1] \\
& j 1:=X[i+1] \\
& \text { nop } \\
& a:=j 0 ? b \\
& b:=a ? f 0 \\
& c:=e ? j 0 \\
& d:=f 0 ? c \\
& e:=b ? d \\
& h: W[i]:=d \\
& f 0=f 1 \\
& j 0=j 1
\end{aligned}
$$

Conditionals

- What about internal control structure, I.e., conditionals
- Three approaches
- Schedule both sides and use conditional moves
- Schedule each side, then make the body of the conditional a macro op with appropriate resource vector
- Trace schedule the loop

What to take away

- Dependence analysis is very important
- Software pipelining is cool
- Registers are a key resource

