
15-745 © Seth Copen Goldstein 2000-5 1

15-745

Instruction Scheduling

Copyright © Seth Copen Goldstein 2000-5

(some slides borrowed from M. Voss) 15-745 © Seth Copen Goldstein 2000-5 2

Instruction-level Parallelism
• Most modern processors have the ability to

execute several adjacent instructions
simultaneously.
– Pipelined machines.
– Very-long-instruction-word machines (VLIW).
– Superscalar machines.
– Dynamic scheduling/out-of-order machines.

• ILP is limited by several kinds of execution
constraints:
– Data dependence constraints.
– Resource constraints (“hazards”)
– Control hazards

15-745 © Seth Copen Goldstein 2000-5 3

Execution Constraints
• Data-dependence constraints:

– If instruction A computes a value that is
read by instruction B, then B cannot execute
before A is completed.

• Resource hazards:
– Limited # of functional units.

• If there are n functional units of a particular kind (e.g., n
multipliers), then only n instructions that require that kind
of unit can execute at once.

– Limited instruction issue.
• If the instruction-issue unit can issue only n instructions at

a time, then this limits ILP.
– Limited register set.

• Any schedule of instructions must have a valid register
allocation.

For example:
ld [%fp-28], %o1

add %o1, %l2, %l3

15-745 © Seth Copen Goldstein 2000-5 4

Instruction Scheduling
• The purpose of instruction scheduling (IS) is to

order the instructions for maximum ILP.
– Keep all resources busy every cycle.
– If necessary, eliminate data dependences and

resource hazards to accomplish this.
• The IS problem is NP-complete (and bad in

practice).
– So heuristic methods are necessary.

15-745 © Seth Copen Goldstein 2000-5 5

Instruction Scheduling
• There are many different techniques for IS.

– Still an open area of research.
• Most optimizing compilers perform good local

IS, and only simple global IS.
• The biggest opportunities are in scheduling the

code for loops.

15-745 © Seth Copen Goldstein 2000-5 6

Should the Compiler Do IS?
• Many modern machines perform dynamic reordering of

instructions.
– Also called “out-of-order execution” (OOOE).
– Not yet clear whether this is a good idea.
– Pro:

• OOOE can use additional registers and register renaming to
eliminate data dependences that no amount of static IS can
accomplish.

• No need to recompile programs when hardware changes.

– Con:
• OOOE means more complex hardware (and thus longer cycle times

and more wattage).
• And can’t be optimal since IS is NP-complete.

15-745 © Seth Copen Goldstein 2000-5 7

What we will cover
• Scheduling basic blocks

– List scheduling
– Long-latency operations
– Delay slots

• Software Pipelining
• Scheduling for clusters architectures (next week)

• What we need to know
– pipeline structure
– data dependencies
– register renaming
– scalar replacement

15-745 © Seth Copen Goldstein 2000-5 8

• In the von Neumann model of execution an instruction starts
only after its predecessor completes.

• This is not a very efficient model of execution.
– von Neumann bottleneck or the memory wall.

time

instr 1 instr 2

Instruction Scheduling

15-745 © Seth Copen Goldstein 2000-5 9

Instruction Pipelines

• Almost all processors today use instructions pipelines to allow
overlap of instructions (Pentium 4 has a 20 stage pipeline!!!).

• The execution of an instruction is divided into stages; each stage is
performed by a separate part of the processor.

• Each of these stages completes its operation in one cycle (shorter
the the cycle in the von Neumann model).

• An instruction still takes the same time to execute.

F D E M W

F: Fetch instruction from cache or memory.
D: Decode instruction.
E: Execute. ALU operation or address calculation.
M: Memory access.
W: Write back result into register.

time
instr

15-745 © Seth Copen Goldstein 2000-5 10

Instruction Pipelines
• However, we overlap these stages in time to complete an

instruction every cycle.

F D E M W

time

instr 1

F D E M W

F D E M W

F D E M W

F D E M W

instr 2

instr 3

instr 4

instr 5

F D E M W

F D E M W

instr 6

instr 7

Filling the
pipeline

Draining the
pipeline

Steady state

4

15-745 © Seth Copen Goldstein 2000-5 11

Pipeline Hazards
• Structural Hazards

– two instructions need the same resource at the same time
– memory or functional units in a superscalar.

• Data Hazards
– an instructions needs the results of a previous instruction

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

– solved by forwarding and/or stalling
– cache miss?

• Control Hazards
– jump & branch address not known until later in pipeline
– solved by delay slot and/or prediction

15-745 © Seth Copen Goldstein 2000-5 12

Jump/Branch Delay Slot(s)

• Control hazards, i.e. jump/branch instructions.

F D E M W

F D E M W

F D E M W

F D E M W

jump/branch

instr 2

instr 3

instr 4

unconditional jump address available only after Decode.
conditional branch address available only after Execute.

15-745 © Seth Copen Goldstein 2000-5 13

Jump/Branch Delay Slot(s)
• One option is to stall the pipeline (hardware solution).

• Another option is to insert a no-op instructions (software).

• Both degrade performance!

F D E M W

F D E M W

jump

instr 2

F D E M W

F D E M W

F D E M W

jump

instr 2

nop

15-745 © Seth Copen Goldstein 2000-5 14

Jump/Branch Delay Slot(s)
• another option is for the branch take effect after

the delay slots.
• I.e., some instructions always get executed after the

branch but before the branching takes effect.

F D E M W

F D E M W

F D E M W

F D E M W

bra

instr 2

F D E M Winstr 3

instr x

instr y

15-745 © Seth Copen Goldstein 2000-5 15

Jump/Branch Delay Slots
• In other words, the instruction(s) in the delay slots of the

jump/branch instruction always get(s) executed when the
branch is executed (regardless of the branch result).

• Fetching from the branch target begins only after these
instructions complete.

• What instruction(s) to use?

bgt r3, L1

:
:

L1:

15-745 © Seth Copen Goldstein 2000-5 16

Branch Prediction

• Current processors will speculatively execute at
conditional branches
– if a branch direction is correctly guessed, great!
– if not, the pipeline is flushed before instructions

commit (WB).
• Why not just let compiler schedule?

– The average number of instructions per basic block
in typical C code is about 5 instructions.

– branches are not statically predictable
– What happens if you have a 20 stage pipeline?

15-745 © Seth Copen Goldstein 2000-5 17

Data Hazards

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

F D E M W

F D E M W

r2 + r3 available here

[r2] available here

15-745 © Seth Copen Goldstein 2000-5 18

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

• Output Dependence W W δo

• Input Dependence R R δi

true

false

S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

Not generally
defined

15-745 © Seth Copen Goldstein 2000-5 19

Example Dependencies
S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e; S1 δf S2 due to a

S1 δf S3 due to a
S2 δf S4 due to b
S3 δa S4 due to d
S4 δa S5 due to b
S2 δo S5 due to b
S3 δi S5 due to a

1

2

3

4

5

15-745 © Seth Copen Goldstein 2000-5 20

Renaming of Variables
• Sometimes constraints are not “real,” in the

sense that a simple renaming of
variables/registers can eliminate them.
– Output dependence (WW):

A and B write to the same variable.
– Anti dependence (RW):

A reads from a variable to which B writes.
• In such cases, the order of A and B cannot be

changed unless variables are renamed.
– Can sometimes be done by the hardware, to a

limited extent.

15-745 © Seth Copen Goldstein 2000-5 21

Register Renaming Example
r1 ← r2 + 1

[fp+8] ← r1

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

[fp+8] ← r7

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

r1 ← r3 + 2

[fp+8] ← r7

[fp+12] ← r1

• Can perform register renaming after register
allocation
• Constrained by available registers
• Constrained by live on entry/exit

• Instead, do scheduling before register allocation

Phase ordering problem

15-745 © Seth Copen Goldstein 2000-5 22

Scheduling a BB
• x ← w * 2 * x * y * z
r1 ← [fp+w]
r2 ← 2
r1 ← r1 * r2
r2 ← [fp+x]
r1 ← r1 * r2
r2 ← [fp+y]
r1 ← r1 * r2
r2 ← [fp+z]
r1 ← r1 * r2
[fp+w] ← r1

• What do we need to know?
• Latency of operations
• # of registers

• Assume:
• load 5
• store 5
• mult 2
• others 1

• Also assume,
• operations are non-blocking

15-745 © Seth Copen Goldstein 2000-5 23

Scheduling a BB
• x ← w * 2 * x * y * z
1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+w] ← r1
33 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations

are non-
blocking

15-745 © Seth Copen Goldstein 2000-5 24

We can do better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations

are non-
blocking

We can do even
better if we

assume what?

15-745 © Seth Copen Goldstein 2000-5 25

Defining Better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+w] ← r1
33 r1 can be used again

15-745 © Seth Copen Goldstein 2000-5 26

The Scheduler
• Given:

– Code to schedule
– Resources available (FU and # of Reg)
– Latencies of instructions

• Goal:
– Correct code
– Better code [fewer cycles, less power,

fewer registers, …]
– Do it quickly

15-745 © Seth Copen Goldstein 2000-5 27

More Abstractly
• Given a graph G = (V,E) where

– nodes are operations
• Each operation has an associated delay and type

– edges between nodes represent dependencies
– The number of resources of type t, R(t)

• A schedule assigns to each node a cycle number:
– S(n) ≥ 0
– If (n,m) ∈ G, S(m) ≥ S(n) + delay(n)
– |{ n | S(n) = x and type(n) = t}| <= R(t)

• Goal is shortest length schedule, where length
– L(S) = max over n, S(n)+delay(n)

15-745 © Seth Copen Goldstein 2000-5 28

List Scheduling
• Keep a list of available instructions, I.e.,

– If we are at cycle k, then all predecessors, p,
in graph have all been scheduled so that
S(p)+delay(p) ≤ k

• Pick some instruction, n, from queue such that
there are resources for type(n)

• Update available instructions and continue

• It is all in how we pick instructions

15-745 © Seth Copen Goldstein 2000-5 29

Lots of Heuristics
• forward or backward
• choose instructions on critical path
• ASAP or ALAP
• Balanced paths
• depth in schedule graph

15-745 © Seth Copen Goldstein 2000-5 30

DLS (1995)
• Aim: avoid pipeline hazards in load/store unit

– load followed by use of target reg
– store followed by load

• Simplifies in two ways
– 1 cycle latency for load/store
– includes all dependencies (WaW included)

15-745 © Seth Copen Goldstein 2000-5 31

The algorithm
• Construct Scheduling dag
• Make srcs of dag candidates
• Pick a candidate

– Choose an instruction with an interlock
– Choose an instruction with a large number of

successors
– Choose with longest path to root

• Add newly available instruction to candidate list

15-745 © Seth Copen Goldstein 2000-5 32

1) ld r1 ← [a]
2) ld r2 ← [b]
3) add r1 ← r1 + r2
4) ld r2 ← [c]
5) ld r3 ← [d]
6) mul r4 ← r2 * r3
7) add r1 ← r1 + r4
8) add r2 ← r2 + r3
9) mul r2 ← r2 * r3
10) add r1 ← r1 + r2
11) st [a] ← r1

15-745 © Seth Copen Goldstein 2000-5 33

Trace Scheduling
• Basic blocks typically contain a small number of instrs.
• With many FUs, we may not be able to keep all the units

busy with just the instructions of a BB.
• Trace scheduling allows block scheduling across BBs.
• The basic idea is to dynamically determine which blocks

are executed more frequently. The set of such BBs is
called a trace.

The trace is then scheduled as a single BB.
• Blocks that are not part of the trace must be modified

to restore program semantics if/when execution goes
off-trace.

B C

A

15-745 © Seth Copen Goldstein 2000-5 34

Trace Scheduling

A

B C

D

E

F G

H

A

B

E

G

H

J

S

J

S

C

F

D

15-745 © Seth Copen Goldstein 2000-5 35

Trace Scheduling

x>10?

a=b+c

d=a-3 a=b+c
f=a+3

a=b+c

x>10?

d=a-3 f=a+3

a=e*f

d=a-3

a=b+c
x=x+1 a=e*f

d=a-3

……

a=b+c
x=x+1
d=a-3

15-745 © Seth Copen Goldstein 2000-5 36

Software Pipelining
• Software pipelining is an IS technique that reorders

the instructions in a loop.
– Possibly moving instructions from one iteration to

the previous or the next iteration.
– Very large improvements in running time are possible.

• The first serious approach to software pipelining was
presented by Aiken & Nicolau.
– Aiken’s 1988 Ph.D. thesis.
– Impractical as it ignores resource hazards (focusing

only on data-dependence constraints).
• But sparked a large amount of follow-on research.

15-745 © Seth Copen Goldstein 2000-5 37

Goal of SP
• Increase distance between dependent

operations by moving destination operation to a
later iteration

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d ← d + 4

Assume all have latency of 2

BA C D

15-745 © Seth Copen Goldstein 2000-5 38

Can we decrease the latency?
• Lets unroll

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d ← d + 4
A1: a ← ld [d]
B1: b ← a * a
C1: st [d], b
D1: d ← d + 4

DCBA B1A1 C1 D1

15-745 © Seth Copen Goldstein 2000-5 39

Rename variables

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d ← d1 + 4

DCBA B1A1 C1 D1

15-745 © Seth Copen Goldstein 2000-5 40

Schedule

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d ← d1 + 4

A

B

C

D

A1

B1

C1
D1

B1
C

A1
B

D
A

C1
D1

15-745 © Seth Copen Goldstein 2000-5 41

Unroll Some More
A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2
D2

C1B1A1D
C

A2

B

D1

A

C2B2

D2

15-745 © Seth Copen Goldstein 2000-5 42

Unroll Some More
A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3C2B2A2D1
C1B1A1D

A3

C

D2

BA

C3B3

D3

D2

A3

B3

C3

15-745 © Seth Copen Goldstein 2000-5 43

One More Time
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D

C3B3A3D2
B4

C2B2A2D1
C1B1A1D

C

D3

BA

C4A4

D4

D2

A3

B3

C3
A

B

C

15-745 © Seth Copen Goldstein 2000-5 44

Can Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D

C3B3A3D2
B4

C2B2A2D1
C1B1A1D

C

D3

BA

C4A4

D4

D2

A3

B3

C3
A

B

C

15-745 © Seth Copen Goldstein 2000-5 45

Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
B3
C2B2A2D1

C1B1A1D

D2

CBA

C3A3

D3

D2

A3

B3

C3

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

15-745 © Seth Copen Goldstein 2000-5 46

Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

B3
C2B2A2D1

C1B1A1D

D2

CBA

C3A3

D3

D2

A3

B3

C3

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

15-745 © Seth Copen Goldstein 2000-5 47

SP Loop
A: a ← ld [d]
B: b ← a * a
D: d1 ← d + 4
A1: a1 ← ld [d1]
D1: d2 ← d1 + 4

C: st [d], b
B1: b1 ← a1 * a1
A2: a2 ← ld [d2]
D2: d ← d2 + 4

B2: b2 ← a2 * a2
C1: st [d1], b1
D3: d2 ← d1 + 4
C2: st [d2], b2

D2
A2
B1
C

C2B2A2A2D1
C1B1B1A1D

D2

CBA

D2

D3C

Prolog

Body

Epilog

15-745 © Seth Copen Goldstein 2000-5 48

Goal of SP
• Increase distance between dependent

operations by moving destination operation to a
later iteration

A

B

C

dependencies
in initial loop

A

B

C

iteration i i+1 i+2

after SP

15-745 © Seth Copen Goldstein 2000-5 49

Example
Assume operating on a infinite wide machine

A0

A1 B0

A2 B1 C0

A3 B2 C1

B3 C2

C3

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

15-745 © Seth Copen Goldstein 2000-5 50

Example
Assume operating on a infinite wide machine

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

Prolog

epilog

loop body

15-745 © Seth Copen Goldstein 2000-5 51

for (i=0; i<N; i++)
{

Ai
Bi
Ci

}

Dealing with exit conditions

i=0
if (i >= N) goto done
A0

B0

if (i+1 == N) goto last
i=1
A1

if (i+2 == N) goto epilog
i=2

loop:
Ai

Bi-1

Ci-2

i++
if (i < N) goto loop

epilog:
Bi

Ci-1

last:
ci

done:
15-745 © Seth Copen Goldstein 2000-5 52

Loop Unrolling V. SP
For SuperScalar
• Loop Unrolling reduces loop overhead
• Software Pipelining reduces fill/drain
• Best is if you combine them

Software Pipelining

Loop Unrolling

of
overlapped
iterations

Time

15-745 © Seth Copen Goldstein 2000-5 53

Aiken/Nicolau Scheduling
Step 1

Perform scalar replacement to eliminate memory
references where possible.

for i:=1 to N do
a := j ⊕ V[i-1]
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

15-745 © Seth Copen Goldstein 2000-5 54

Aiken/Nicolau Scheduling
Step 2

Unroll the loop and compute the data-dependence
graph (DDG).

DDG for rolled loop:
for i:=1 to N do

a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

a

b

c

d

e

fg
h

j

15-745 © Seth Copen Goldstein 2000-5 55

Aiken/Nicolau Scheduling
Step 2, cont’d

DDG for unrolled loop:

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

a1
b1

c1
d1
e1

j1
f1

g1 h1a2
b2
a3
b3

g2
j2
f2

c2
d2
e2

h1

c3

15-745 © Seth Copen Goldstein 2000-5 56

Aiken/Nicolau Scheduling
Step 3

Build a tableau of iteration number vs cycle time.

acfj fj fj fj fj fj
bd
egh a

cb
dg a
eh b

cg a
d b
eh g a

c b
d g a
eh b

c g
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

a1
b1

c1
d1
e1

j1
f1

g1 h1a2
b2
a3
b3

g2
j2
f2

c2
d2
e2

h1

c3

15-745 © Seth Copen Goldstein 2000-5 57

Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

acfj fj fj fj fj fj
bd
egh a

cb
dg a
eh b

cg a
d b
eh g a

c b
d g a
eh b

c g
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

15-745 © Seth Copen Goldstein 2000-5 58

Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

acfj fj fj fj fj fj
bd
egh a

cb
dg a
eh b

cg a
d b
eh g a

c b
d g a
eh b

c g
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

15-745 © Seth Copen Goldstein 2000-5 59

Aiken/Nicolau Scheduling
Step 5

“Coalesce” the slopes.

acfj
bd fj
egh a

cb fj
dg a
eh b fj

cg a
d b
eh g fj

c a
d b
eh g

c
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

acfj fj fj fj fj fj
bd
egh a

cb
dg a
eh b

cg a
d b
eh g a

c b
d g a
eh b

c g
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

15-745 © Seth Copen Goldstein 2000-5 60

Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

acfj
bd fj
egh a

cb fj
dg a
eh b fj

cg a
d b
eh g fj

c a
d b
eh g

c
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

15-745 © Seth Copen Goldstein 2000-5 61

Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

acfj
bd fj
egh a

cb fj
dg a
eh b fj

cg a
d b
eh g fj

c a
d b
eh g

c
d
eh

iteration
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

Prologue/entry code

Loop body

Epilogue/exit code

15-745 © Seth Copen Goldstein 2000-5 62

Aiken/Nicolau Scheduling
Step 7

Generate code.
(Assume VLIW-like machine for this example. The instructions on
each line should be issued in parallel.)

a1 := j0 ⊕ b0 c1 := e0 ⊕ j0 f1 := U[1] j1 := X[1]
b1 := a1 ⊕ f0 d1 := f0 ⊕ c1 f2 := U[2] j2 := X[2]
e1 := b1 ⊕ d1 V[1] := b1 W[1] := d1 a2 := j1 ⊕ b1
c2 := e1 ⊕ j1 b2 := a2 ⊕ f1 f3 := U[3] j3 := X[3]
d2 := f1 ⊕ c2 V[2] := b2 a3 := j2 ⊕ b2
e2 := b2 ⊕ d2 W[2] := d2 b3 := a3 ⊕ f2 f4 := U[4] j4 := X[4]
c3 := e2 ⊕ j2 V[3] := b3 a4 := j3 ⊕ b3 i := 3

L:
di := fi-1 ⊕ ci bi+1 := ai ⊕ fiei := bi ⊕ di W[i] := di V[i+1] := bi+1 fi+2 := U[I+2] ji+2 := X[i+2]
ci+1 := ei ⊕ ji ai+2 := ji+1 ⊕ bi+1 i := i+1 if i<N-2 goto L
dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1 v[N] := bNcN := eN-1 ⊕ jN-1dN := fN-1 + cNeN := bN ⊕ dN w[N] := dN

15-745 © Seth Copen Goldstein 2000-5 63

Aiken/Nicolau Scheduling
Step 8

• Since several versions of a variable (e.g., ji and ji+1)
might be live simultaneously, we need to add new temps
and moves
a1 := j0 ⊕ b0 c1 := e0 ⊕ j0 f1 := U[1] j1 := X[1]
b1 := a1 ⊕ f0 d1 := f0 ⊕ c1 f2 := U[2] j2 := X[2]
e1 := b1 ⊕ d1 V[1] := b1 W[1] := d1 a2 := j1 ⊕ b1
c2 := e1 ⊕ j1 b2 := a2 ⊕ f1 f3 := U[3] j3 := X[3]
d2 := f1 ⊕ c2 V[2] := b2 a3 := j2 ⊕ b2
e2 := b2 ⊕ d2 W[2] := d2 b3 := a3 ⊕ f2 f4 := U[4] j4 := X[4]
c3 := e2 ⊕ j2 V[3] := b3 a4 := j3 ⊕ b3 i := 3

L:
di := fi-1 ⊕ ci bi+1 := ai ⊕ fiei := bi ⊕ di W[i] := di V[i+1] := bi+1 fi+2 := U[I+2] ji+2 := X[i+2]
ci+1 := ei ⊕ ji ai+2 := ji+1 ⊕ bi+1 i := i+1 if i<N-2 goto L
dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1 v[N] := bNcN := eN-1 ⊕ jN-1dN := fN-1 + cNeN := bN ⊕ dN w[N] := dN

15-745 © Seth Copen Goldstein 2000-5 64

Aiken/Nicolau Scheduling
Step 8

• Since several versions of a variable (e.g., ji and ji+1)
might be live simultaneously, we need to add new temps
and moves
a1 := j0 ⊕ b0 c1 := e0 ⊕ j0 f1 := U[1] j1 := X[1]
b1 := a1 ⊕ f0 d1 := f0 ⊕ c1 f’’ := U[2] j2 := X[2]
e1 := b1 ⊕ d1 V[1] := b1 W[1] := d1 a2 := j1 ⊕ b1
c2 := e1 ⊕ j1 b2 := a2 ⊕ f1 f’ := U[3] j’ := X[3]
d2 := f1 ⊕ c2 V[2] := b2 a3 := j2 ⊕ b2
e2 := b2 ⊕ d2 W[2] := d2 b3 := a3 ⊕ f’’ f4 := U[4] j4 := X[4]
c3 := e2 ⊕ j2 V[3] := b3 a4 := j’ ⊕ b3 i := 3

L:
di := f’’ ⊕ ci bi+1 := a’ ⊕ f’ b’ := b; a’=a; f’’=f’; f’=f; j’’=j’; j’=j
ei := b’ ⊕ di W[i] := di V[i+1] := bi+1 fi+2 := U[I+2] ji+2 := X[i+2]
ci+1 := ei ⊕ j’ ai+2 := j’’ ⊕ bi+1 i := i+1 if i<N-2 goto L
dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1 v[N] := bNcN := eN-1 ⊕ jN-1dN := fN-1 + cNeN := bN ⊕ dN w[N] := dN

15-745 © Seth Copen Goldstein 2000-5 65

Next Step in SP

• AN88 did not deal with resource constraints.
• Modulo Scheduling is a SP algorithm that does.
• It schedules the loop based on

– resource constraints
– precedence constraints

15-745 © Seth Copen Goldstein 2000-5 66

Resource Constraints
• Minimally indivisible sequences, i and j, can

execute together if combined resources in a
step do not exceed available resources.

• R(i) is a resource configuration vector
R(i) is the number of units of resource i

• r(i) is a resource usage vector s.t.
0 ≤ r(i) ≤ R(i)

• Each node in G has an associated r(i)

15-745 © Seth Copen Goldstein 2000-5 67

Precedence Constraints
• Data Dependence + Latency of the

functional unit being used
• The precedence constraint between two

nodes, u and v, is the minimal delay between
starting u and v in the schedule.

j

i
delay=j-i+d

u

v
This FU has
a latency of d

15-745 © Seth Copen Goldstein 2000-5 68

Software Pipelining Goal
• Find the same schedule for each iteration.
• Stagger by iteration initiation interval, s
• Goal: minimize s.

s
s

15-745 © Seth Copen Goldstein 2000-5 69

Modulo Resource Constraints
• Combine the resource constraints of

instructions at steps i,i+s,i+2s,i+3s, etc.

Resources

Time
Resources

Time

15-745 © Seth Copen Goldstein 2000-5 70

Precedence Constraints
• Constraint becomes a tuple: <p,d>

– p is the minimum iteration delay
(or the loop carried dependence distance)

– d is the delay
• For an edge, u→v, we must have

σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
• p ≥ 0
• If data dependence is loop

– independent p=0
– loop-carried p>0

15-745 © Seth Copen Goldstein 2000-5 71

Iterative Approach
• minimum s that satisfies the constraints is NP-

Complete.
• Heuristic:

– Find lower and upper bounds for S
– foreach s from lower to upper bound

• Schedule graph.
• If succeed, done
• Otherwise try again

15-745 © Seth Copen Goldstein 2000-5 72

Lower Bounds
• Resource Constraints: SR

maximum over all resources of # of uses
divided by # available

• Precedence Constraints: SE
max over all cycles: d(c)/p(c)

What is lower bound.
Is it tight?

15-745 © Seth Copen Goldstein 2000-5 73

Acyclic Example

a

b

c

<0,2>

<0,1>

<0,3>
Lower Bound: SR=2
Upper Bound: 5

15-745 © Seth Copen Goldstein 2000-5 74

Lower Bound on s

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

a

b

c

d

e

f

g h

j

• Assume 1 ALU and 1 MU
• Assume latency Op or load is 1 cycle

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

Resources => 5 cycles
Dependencies => 3 cycles

15-745 © Seth Copen Goldstein 2000-5 75

Scheduling data structures
To schedule for initiation interval s:
• Create a resource table with s rows and R

columns
• Create a vector, σ, of length N for n

instructions in the loop
– σ[n] = the time at which n is scheduled or

NONE
• Prioritize instructions by some heuristic

– critical path
– resource critical

15-745 © Seth Copen Goldstein 2000-5 76

Scheduling algorithm
• pick an instruction, n
• Calculate earliest time due to dependence

constraints
For all x=pred(n),

earliest = max(earliest, σ(x)+d(x,n)-sp(x,n))
• try and schedule n from earliest to earliest+s-1

s.t. resource constraints are obeyed.
• If we fail, then this schedule is faulty

15-745 © Seth Copen Goldstein 2000-5 77

Scheduling algorithm – cont.
• We now schedule n at earliest, I.e., σ(n) =

earliest
• Fix up schedule

– Successors, x, of n must be scheduled s.t.
σ(x) >= σ(n)+d(n,x)-sp(n,x), otherwise they
are removed.

– All scheduled instructions (except n) that
have data dependence conflicts are removed.

• repeat this some number of times until either
– succeed, then register allocate
– fail, then increase s

15-745 © Seth Copen Goldstein 2000-5 78

Example
for i:=1 to N do

a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

Priorities: ?

a

b

c

d

e

f

g h

j
<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

15-745 © Seth Copen Goldstein 2000-5 79

Example
for i:=1 to N do

a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g h

j
<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

15-745 © Seth Copen Goldstein 2000-5 80

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: c,d,e,a,b,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

e

d

c

b

a

j

h

g

f

instr σ

15-745 © Seth Copen Goldstein 2000-5 81

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: a,b,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

e

c

2e

1d

0c

b

a

j

h

g

f

instr σ

15-745 © Seth Copen Goldstein 2000-5 82

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: b,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

a

e

c

2e

1d

0c

b

3a

j

h

g

f

instr σ

15-745 © Seth Copen Goldstein 2000-5 83

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: b,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

b

a

e

c

2e

1d

0c

4b

3a

j

h

g

f

instr σ

15-745 © Seth Copen Goldstein 2000-5 84

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: e,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

b

a

c

e

1d

0c

4b

3a

j

h

g

f

instr σ

b causes b->e edge violation

15-745 © Seth Copen Goldstein 2000-5 85

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: e,f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

b

a

e

c

7e

1d

0c

4b

3a

j

h

g

f

instr σ

e causes e->c edge violation
15-745 © Seth Copen Goldstein 2000-5 86

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities: f,j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

d

b

a

e

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σ

0

15-745 © Seth Copen Goldstein 2000-5 87

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities:j,g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

jd

b

a

e

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σ

1

0

15-745 © Seth Copen Goldstein 2000-5 88

for i:=1 to N do
a := j ⊕ b
b := a ⊕ f
c := e ⊕ j
d := f ⊕ c
e := b ⊕ d
f := U[i]

g: V[i] := b
h: W[i] := d

j := X[i]
Priorities:g,h

a
b

c

d

e

f

g
h

j

s=5

MUALU

jd

b

ha

ge

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σ

7

1

8

0

15-745 © Seth Copen Goldstein 2000-5 89

Creating the Loop
• Create the body from the schedule.
• Determine which iteration an instruction

falls into
– Mark its sources and dest as

belonging to that iteration.
– Add Moves to update registers

• Prolog fills in gaps at beginning
– For each move we will have an

instruction in prolog, and we fill in
dependent instructions

• Epilog fills in gaps at end

7e

6d

5c

4b

3a

j

h

g

f

instr σ

7

1

8

0

15-745 © Seth Copen Goldstein 2000-5 90

f0 = U[0];
j0 = X[0];

FOR i = 0 to N
f1 := U[i+1]
j1 := X[i+1]
nop
a := j0 ? b
b := a ? f0
c := e ? j0
d := f0 ? c
e := b ? d g: V[i] := b

h: W[i] := d
f0 = f1
j0 = j1

15-745 © Seth Copen Goldstein 2000-5 91

Conditionals
• What about internal control structure, I.e.,

conditionals
• Three approaches

– Schedule both sides and use conditional
moves

– Schedule each side, then make the body of
the conditional a macro op with appropriate
resource vector

– Trace schedule the loop

15-745 © Seth Copen Goldstein 2000-5 92

What to take away
• Dependence analysis is very important
• Software pipelining is cool
• Registers are a key resource

