Lecture 5

Foundations of Data Flow Analysis

I. Meet operator
II. Transfer functions
III. Correctness, Precision, Convergence
IV. Efficiency

Reference: Muchnick 8.2-8.5
Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
Marlowe&Ryder, Properties of data flow frameworks: a unified model
Rutgers tech report, Apr. 1988

A Unified Framework

- Data flow problems are defined by
 - Domain of values: \(V \)
 - Meet operator \((V \times V \rightarrow V) \), initial value
 - A set of transfer functions \((V \rightarrow V) \)

- Usefulness of unified framework
 - To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
 - If meet operators and transfer functions have properties \(X \), then we know \(Y \) about the above.
 - Re-use code

I. Meet Operator

- Properties of the meet operator
 - Commutative: \(x \land y = y \land x \)
 - Idempotent: \(x \land x = x \)
 - Associative: \(x \land (y \land z) = (x \land y) \land z \)
 - There is a Top element \(\top \) such that \(x \land \top = x \)

- Meet operator defines a partial ordering on values
 - \(x \leq y \) if and only if \(x \land y = x \)
 - Transitivity: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)
 - Antisymmetry: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Reflexivity: \(x \leq x \)

Partial Order

- Example: let \(V = \{ x \mid \text{such that } x \subseteq \{ d_1, d_2, d_3 \} \} \), \(\land = \cap \)

- Top and Bottom elements
 - Top \(\top \) such that \(x \land \top = x \)
 - Bottom \(\bot \) such that \(x \land \bot = \bot \)

- Values and meet operator in a data flow problem define a semi-lattice: there exists a \(\top \), but not necessarily a \(\bot \).
- \(x, y \) are ordered: \(x \leq y \) then \(x \land y = x \)
- What if \(x \) and \(y \) are not ordered?
 - \(x \land y \leq x \), \(x \land y \leq y \), and if \(x \leq \bot \), \(\bot \leq y \), then \(w \leq x \land y \)

One vs. All Variables/Definitions

- Lattice for each variable: e.g. intersection

1

0

- Lattice for three variables:

Lattice for three variables:

\[
\begin{array}{cccc}
 & x_{111} & & \\
& x_{110} & x_{11} & \\
& x_{10} & x_{01} & x_{00} \\
& x_{000} & & \\
\end{array}
\]

Descending Chain

- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.

 \[x_0 > x_1 > \ldots\]

- Height of values in reaching definitions?

- Important property: finite descending chain

- Can an infinite lattice have a finite descending chain?

- Example: Constant Propagation/Folding
 - To determine if a variable is a constant

- Data values
 - undef, ... -1, 0, 1, 2, ..., not-a-constant

II. Transfer Functions

- Basic Properties \(f : V \to V \)
 - Has an identity function
 - There exists an \(f \) such that \(f(x) = x \), for all \(x \).
 - Closed under composition
 - If \(f_1, f_2 \in F \), \(f_1 \circ f_2 \in F \)

Monotonicity

- A framework \((F, V, \land)\) is monotone if and only if
 - \(x \leq y \) implies \(f(x) \leq f(y) \),

 i.e., a “smaller or equal” input to the same function will always give a “smaller or equal” output

- Equivalently, a framework \((F, V, \land)\) is monotone if and only if
 - \(f(x \land y) \leq f(x) \land f(y) \),

 i.e. merge input, then apply \(f \) is smaller than or equal to apply the transfer function individually then merge result
Example

- Reaching definitions: \(f(x) = \text{Gen} \cup (x - \text{Kill}) \), \(\land = \cup \)
 - Definition 1:
 - \(x_1 \leq x_2 \), \(\text{Gen} \cup (x_1 - \text{Kill}) \leq \text{Gen} \cup (x_2 - \text{Kill}) \)
 - Definition 2:
 - \((\text{Gen} \cup (x_1 - \text{Kill})) \cup (\text{Gen} \cup (x_2 - \text{Kill})) \)
 - \(= (\text{Gen} \cup ((x_1 \cup x_2) - \text{Kill})) \)
- Note: Monotone framework does not mean that \(f(x) \leq x \)
 - e.g. Reaching definition for two definitions in program
 - suppose: \(f_1 : \text{Gen}_x = \{d_1, d_2\}; \text{Kill}_x = \{\} \)

- If input(second iteration) \(\leq \) input(first iteration)
 - result(second iteration) \(\leq \) result(first iteration)

III. Data Flow Analysis

- Definition
 - Let \(f_1, ..., f_m : e \rightarrow F \), \(f_i \) is the transfer function for node \(i \)
 - \(p = f_{n_k} \cdot ... \cdot f_{n_1} \cdot p \) is a path through nodes \(n_1, ..., n_k \)
 - \(f_p = \) identify function, if \(p \) is an empty path
- Ideal data flow answer:
 - For each node \(n \) :
 - \(\land f_p (\top) \), for all possibly executed paths \(p \) reaching \(n \).

- Determine all possibly executed paths is undecidable

Distributivity

- A framework \((F, V, \land) \) is distributive if and only if
 - \(f(x \land y) = f(x) \land f(y) \),
 - i.e. merge input, then apply \(f \) is equal to apply the transfer function individually then merge result

- Example: Constant Propagation

\[
\begin{align*}
 f(x) & = \{a=2, b=3\} \\
 f(x) & = \{a=3, b=2\} \\
 c & = a + b
\end{align*}
\]

Meet-Over-Paths MOP

- Err in the conservative direction
- Meet-Over-Paths MOP
 - For each node \(n \):
 - \(\text{MOP} (n) = \land f_{p_i} (\top) \), for all paths \(p_i \) reaching \(n \)
 - a path exists as long there is an edge in the code
 - consider more paths than necessary
 - \(\text{MOP} = \) Perfect-Solution \(\land \) Solution-to-Unexecuted-Paths
 - \(\text{MOP} \leq \) Perfect-Solution
 - Potentially more constrained, solution is small
 => conservative
 - It is not safe to be > Perfect-Solution!
- Desirable solution: as close to MOP as possible
Solving Data Flow Equations

- Example: Reaching definition
 - \(\text{out(entry)} = {} \)
 - Values = (subsets of definitions)
 - Meet operator: \(\cup \)
 - \(\text{in(b)} = \cup \text{out(p)}, \text{for all predecessors p of b} \)
 - Transfer functions:
 - \(\text{out(b)} = \text{gen}_{b} \cup (\text{in(b)} - \text{kill}_{b}) \)

- Any solution satisfying equations = Fixed Point Solution (FP)

- Iterative algorithm
 - initializes \(\text{out(b)} \) to \({} \)
 - If converges, it computes Maximum Fixed Point (MFP):
 - MFP is the largest of all solutions to equations

- Properties:
 - \(\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{Perfect-solution} \)
 - \(\text{FP, MFP are safe} \)
 - \(\text{in(b)} \leq \text{MOP(b)} \)

Partial Correctness of Algorithm

- If data flow framework is monotone then if the algorithm converges, \(\text{IN[b]} \leq \text{MOP[b]} \)

- Proof: Induction on path lengths
 - Define \(\text{IN[entry]} = \text{OUT[entry]} \)
 and transfer function of entry = Identity function
 - Base case: path of length 0
 - Proper initialization of \(\text{IN[entry]} \)
 - If true for path of length \(k \), \(\rho_{k} = (n_{1}, ..., n_{k}) \)
 - Assume: \(\text{IN}[n_{k}] \leq f_{n_{k}-1}(f_{n_{k-2}}(...f_{n_{1}}(\text{IN}[\text{entry}]))) \)
 - \(\text{IN}[n_{k+1}] = \text{OUT}[n_{k}] \land ... \leq \text{OUT}[n_{k}] \)
 - \(\leq f_{n_{k}}(\text{IN}[n_{k}]) \)
 - \(\leq f_{n_{k}}(f_{n_{k-2}}(...f_{n_{1}}(\text{IN}[\text{entry}]))) \)

Precision

- If data flow framework is distributive then if the algorithm converges, \(\text{IN[b]} = \text{MOP[b]} \)

- Monotone but not distributive: behaves as if there are additional paths

Additional Property to Guarantee Convergence

- Data flow framework (monotone) converges if there is a finite descending chain
 - For each variable \(\text{IN}[b], \text{OUT}[b] \), consider the sequence of values set to each variable across iterations
 - If sequence for \(\text{IN}[b] \) is monotonically decreasing
 - sequence for \(\text{OUT}[b] \) is monotonically decreasing
 - \(\text{out(b)} \) initialized to \({} \)
 - sequence of \(\text{IN}[b] \) is monotonically decreasing
IV. Speed of Convergence

- Speed of convergence depends on order of node visits

- Reverse "direction" for backward flow problems

Reverse Postorder

- Step 1: depth-first post order

  ```
  main ()
  count = 1;
  Visit (root);
  ``

  ```
 Visit (n)
 for each successor s that has not been visited
 Visit (s);
 PostOrder(n) = count;
 count = count+1;
  ```

- Step 2: reverse order

  ```
 For each node i
 rPostOrder = NumNodes - PostOrder(i)
  ```

Depth-First Iterative Algorithm (forward)

```
input: control flow graph CFG = (N, E, Entry, Exit)

/* Initialize */
out(Entry) = init_value
For all nodes i
 out(i) = T
change = True

/* iterate */
While Change {
 Change = False
 For each node i in rPostOrder {
 in[i] = \land (out[p]), for all predecessors p of i
 oldout = out[i]
 out[i] = f(i, in[i])
 if oldout \neq out[i]
 Change = True
 }
}
```

Speed of Convergence

- If cycles do not add information
  - information can flow in one pass down a series of nodes of increasing order number
    1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
  - passes determined by number of back edges in the path
  - essentially the nesting depth of the graph
  - Number of iterations = number of back edges in any acyclic path + 2
    (two is necessary even if there are no cycles)
  - What is the depth?
    - corresponds to depth of intervals for "reducible" graphs
    - In real programs: average of 2.75
A Check List on Data Flow Problems

- **Semi-lattice**
  - set of values
  - meet operator
  - top, bottom
  - finite descending chain?

- **Transfer functions**
  - function of each basic block
  - monotone
  - distributive?

- **Algorithm**
  - initialization step (entry/exit, other nodes)
  - visit order: rPostOrder
  - depth of the graph