Lecture 4
Introduction to Data Flow Analysis

I Structure of data flow analysis
II Example 1: Reaching definition analysis
III Example 2: Liveness analysis
IV Generalization

Reference: Chapter 8, 8.1-4

Data Flow Analysis

• Local analysis (e.g. value numbering)
 - analyze effect of each instruction
 - compose effects of instructions to derive information
 from beginning of basic block to each instruction

• Data flow analysis
 - analyze effect of each basic block
 - compose effects of basic blocks to derive information
 at basic block boundaries
 - (from basic block boundaries,
 apply local technique to generate information on instructions)

Effects of a basic block

• Effect of a statement: a = b+c
 - Uses variables (b, c)
 - Kills an old definition (old definition of a)
 - new definition (a)

• Compose effects of statements -> Effect of a basic block
 - A locally exposed use in a b.b. is a use of a data item which is
 not preceded in the b.b. by a definition of the data item
 - any definition of a data item in the basic block kills all definitions
 of the same data item reaching the basic block.
 - A locally available definition = last definition of data item in b.b.

Across Basic Blocks

• Static program vs. dynamic execution

 • Statically: Finite program
 Dynamically: Potentially infinite possible execution paths
 • Can reason about each possible path
 as if all instructions executed are in one basic block
 • Data flow analysis:
 Associate with each static point in the program
 information true of
 the set of dynamic instances of that program point

Effects of a basic block

- a = b+c
- Uses variables (b, c)
- Kills an old definition (old definition of a)
- new definition (a)
- Compose effects of statements -> Effect of a basic block
- A locally exposed use in a b.b. is a use of a data item which is
 not preceded in the b.b. by a definition of the data item
- any definition of a data item in the basic block kills all definitions
 of the same data item reaching the basic block.
- A locally available definition = last definition of data item in b.b.

Across Basic Blocks

- Static program vs. dynamic execution

 - Statically: Finite program
 Dynamically: Potentially infinite possible execution paths
 - Can reason about each possible path
 as if all instructions executed are in one basic block
 - Data flow analysis:
 Associate with each static point in the program
 information true of
 the set of dynamic instances of that program point
II. Reaching Definitions

- A definition of a variable x is a statement that assigns, or may assign, a value to x.
- A definition d reaches a point p if there exists a path from the point immediately following d to p such that d is not killed along that path.

II.1 Reaching Definitions

- Problem statement
 - For each basic block b, determine if each definition in the program reaches b.
 - A representation:
 - $IN[b]$, $OUT[B]$: a bit vector, one bit for each definition

A1.3.1 Example

- $a = x$
- $b = a$
- $a = y$
- $d_1: a = 10$
- $d_2: b = 11$
- if e
- $d_3: a = 1$
- $d_4: b = 2$
- $d_5: c = a$
- $d_6: a = 4$

II.2 Describing Effects of the Nodes (basic blocks)

- A transfer function f_b of a basic block b:
 - $OUT[b] = f_b(IN[b])$
- incoming reaching definitions -> outgoing reaching definitions

- A basic block b
 - generate definitions: $Gen[b]$, set of locally available definitions in b
 - propagate definitions: $in[b]$ - $Kill[b]$, where $Kill[b]$=set of defs (in rest of program) killed by defs in b
 - $out[b] = Gen[b] U (in(b) - Kill[b])$

- Out[b] = $f_b(IN[b])$

II.3 Effects of the Edges (acyclic)

- Equations still hold
 - $out[b] = f_b(IN[b])$
 - in[b] = out[p_1] U out[p_2] U ... U out[p_n], where p_1, ..., p_n are all predecessors of b

II.4 Cyclic Graphs

- Equations still hold
 - $out[b] = f_b(IN[b])$
 - $in[b] = out[p_1] U out[p_2] U ... U out[p_n]$, p_1, ..., p_n pred.
 - Solve for fixed point solution
Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize
out[Entry] = \Ø // can set out[Entry] to special def
// if reaching then undefined use
For all nodes i
out[i] = \Ø // can optimize by out[i]=gen[i]
ChangedNodes = N

// iterate
While ChangedNodes ≠ \Ø{
 Remove i from Changed Nodes
 in[i] = U (out[p]), for all predecessors p of i
 oldout = out[i]
 out[i] = \{i(in[i]) // out[i]=gen[i]U(in[i]-kill[i])
 if oldout ≠ out[i] {
 for all successors s of i
 add s to ChangedNodes
 }
}

Example

III. Live Variable Analysis

- Definition
 - A variable v is live at point p if the value of v is used along some path in the flow graph starting at p.
 - Otherwise, the variable is dead.

- Motivation
 - e.g. register allocation
 for i = 0 TO n
 i
 for i = 0 to n
 i

- Problem statement
 - For each basic block
 determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable
Effects of a Basic Block (Transfer Function)

- Observation: Trace uses backwards to the definitions

 A basic block \(b \) can

 - generate live variables: \(\text{Use}[b] \), set of locally exposed uses in \(b \)

 - propagate incoming live variables: \(\text{OUT}[b] - \text{Def}[b] \), where \(\text{Def}[b] = \) set of variables defined in \(b \).

 - transfer function for block \(b \):
 \[
 \text{in}[b] = \text{Use}[b] \cup (\text{out}(b) - \text{Def}[b])
 \]

Flow Graph

- \(\text{in}[b] = f_b(\text{out}[b]) \)
- Join node: a node with multiple successors
- meet operator:
 \[
 \text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup \ldots \cup \text{in}[s_n],
 \]
 where \(s_1, \ldots, s_n \) are all successors of \(b \)

Live Variable: Worklist Algorithm

- input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

```plaintext
// Initialize
\text{in}[\text{Exit}] = \emptyset //local variables
For all nodes \( i \)
\text{in}[i] = \emptyset //can optimize by \text{in}[i] = \text{use}[i]
\text{ChangedNodes} = N

// iterate
While \( \text{ChangedNodes} \neq \emptyset \) {
  Remove \( i \) from \( \text{ChangedNodes} \)
  \text{out}[i] = \text{U} (\text{in}[s]), \text{for all successors } s \text{ of } i
  \text{oldin} = \text{in}[i]
  \text{in}[i] = f_i(\text{out}[i]) //\text{in}[i] = \text{use}[i] \cup \text{out}[i] - \text{def}[i]
  \text{if} \ \text{oldin} \neq \text{in}[i] \{
    \text{for all predecessors } p \text{ of } i
    \text{add } p \text{ to } \text{ChangedNodes}
  \}
}
```

Example
IV. Framework

<table>
<thead>
<tr>
<th></th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
<td>Sets of variables</td>
</tr>
<tr>
<td>Transfer function</td>
<td>f_b(x)</td>
<td></td>
</tr>
<tr>
<td>Generate</td>
<td>Gen_b (Gen: definitions in b)</td>
<td>Use_b (Use: var. used in b)</td>
</tr>
<tr>
<td>Propagate</td>
<td>in[b]-Kill_b (Kill_b: killed defs)</td>
<td>out[b]-Def_b (Def_b: var defined)</td>
</tr>
<tr>
<td>Merge operation</td>
<td>U (in[b]=U out[predecessors])</td>
<td>U (out[b]= U in[successors])</td>
</tr>
<tr>
<td>Initialization</td>
<td>out[entry] = ∅</td>
<td>in[exit] = ∅</td>
</tr>
<tr>
<td></td>
<td>out[b] = ∅</td>
<td>in[b] = ∅</td>
</tr>
</tbody>
</table>

Questions

- Correctness
 - equations are satisfied, if the program terminates.

- Precision: how good is the answer?
 - is the answer ONLY a union of all possible executions?

- Convergence: will the analysis terminate?
 - or, will there always be some nodes that change?

- Speed: how fast is the convergence?
 - how many times will we visit each node?