Static Single Assignment

Values ≠ Locations

for (i=0; i++; i<10) {
 ...
 ...
 ...
 for (i=j; i++; i<20) {
 ...
 ...
 }
}

Def-use chains help solve the problem.

Def-Use chains are expensive

foo(int i, int j) {
 switch (i) {
 case 0: x=3; break;
 case 1: x=1; break;
 case 2: x=6; break;
 case 3: x=7; break;
 default: x = 11;
 }
 switch (j) {
 case 0: y=x+7; break;
 case 1: y=x+4; break;
 case 2: y=x-2; break;
 case 3: y=x+1; break;
 default: y=x+9;
 }
 ...
}

In general, N defs M uses
⇒ O(NM) space and time

A solution is to limit each var to ONE def site

A solution is to limit each var to ONE def site

Copyright © Seth Copen Goldstein 2001
Advantages of SSA

- Makes du-chains explicit
- Makes dataflow analysis easier
- Improves register allocation
 - Automatically builds Webs
 - Makes building interference graphs easier
- For most programs reduces space/time requirements

SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)

Straight-line SSA

\[
\begin{align*}
 a & \leftarrow x + y \\
 b & \leftarrow a + x \\
 a & \leftarrow b + 2 \\
 c & \leftarrow y + 1 \\
 a & \leftarrow c + a
\end{align*}
\]

Merging at Joins

\[
\begin{align*}
 c & \leftarrow 12 \\
 \text{if (i) } & \\
 \{ \\
 a & \leftarrow x + y \\
 b & \leftarrow a + x \\
 \} \text{ else } \\
 \{ \\
 a & \leftarrow b + 2 \\
 c & \leftarrow y + 1 \\
 \} \\
 a & \leftarrow c + a
\end{align*}
\]
SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text.
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)
- What about at joins in the CFG?
 - Use a notional fiction: A Φ function

Merging at Joins

```
\begin{align*}
\text{c}_1 & \leftarrow 12 \\
\text{if (i)} \\
\text{\quad a}_1 & \leftarrow x + y \\
\text{\quad b}_1 & \leftarrow a_1 + x \\
\text{\quad c}_1 & \leftarrow c_1 \\
\text{\quad a}_2 & \leftarrow b + 2 \\
\text{\quad c}_2 & \leftarrow y + 1 \\
\end{align*}
```

```
\begin{align*}
\text{a}_1 & \leftarrow \Phi(\text{a}_1, \text{a}_2) \\
\text{c}_1 & \leftarrow \Phi(\text{c}_1, \text{c}_2) \\
\text{b}_2 & \leftarrow \Phi(\text{b}_1, \text{?}) \\
\text{a}_4 & \leftarrow c_3 + a_3
\end{align*}
```

The Φ function

- Φ merges multiple definitions along multiple control paths into a single definition.
- At a BB with p predecessors, there are p arguments to the Φ function.

 $x_{\text{NEW}} \leftarrow \Phi(x_1, x_2, x_3, \ldots, x_p)$

- How do we choose which x_i to use?
 - We don’t really care!
 - If we care, use moves on each incoming edge

“Implementing” Φ

```
\begin{align*}
\text{c}_1 & \leftarrow 12 \\
\text{if (i)} \\
\text{\quad a}_1 & \leftarrow x + y \\
\text{\quad b}_2 & \leftarrow a_1 + x \\
\text{\quad a}_2 & \leftarrow b + 2 \\
\text{\quad a}_3 & \leftarrow y + 1 \\
\text{\quad c}_3 & \leftarrow c_1 + a_3
\end{align*}
```

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

```
\begin{align*}
x & \leftarrow 1 \\
y & \leftarrow x \\
z & \leftarrow y + x
\end{align*}
```

Way too many Φ functions inserted.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

```
\begin{align*}
x & \leftarrow 1 \\
y & \leftarrow x \\
z & \leftarrow y + x
\end{align*}
```
Another Example

```
a ← 0
```

```
b ← a + 1
c ← c + b
a ← b * 2
a < N
return c
```

Another Example

```
a ← 0
```

```
b ← a + 1
c ← c + b
a ← b * 2
a < N
return c
```

When do we insert \(\Phi \)?

- We insert a \(\Phi \) function for variable \(A \) in block \(Z \) iff:
 - \(A \) was defined more than once before (i.e., \(A \) defined in \(X \) and \(Y \) AND \(X \neq Y \))
 - There exists a non-empty path from \(x \) to \(z \), \(P_{xz} \), and a non-empty from \(y \) to \(z \), \(P_{yz} \). s.t.
 - \(P_{xz} \cap P_{yz} = \{ z \} \)
 - \(z \not\in P_{xq} \) or \(z \not\in P_{xr} \) where \(P_{xz} = P_{xq} \) or \(P_{xz} = P_{xr} \)
 - Entry block contains an implicit def of all vars
 - Note: \(A = \Phi(\ldots) \) is a def of \(A \)

Dominance Property of SSA

- In SSA definitions dominate uses.
 - If \(x_i \) is used in \(x \leftarrow \Phi(\ldots, x_i, \ldots) \), then \(BB(x_i) \) dominates \(i \)th pred of \(BB(\Phi) \)
 - If \(x \) is used in \(y \leftarrow \ldots x \ldots \), then \(BB(x) \) dominates \(BB(y) \)
- We can use this for an efficient alg to convert to SSA

Dominance

\(x \) strictly dominates \(w \) (\(sdom \ w \)) iff \(x \) dom \(w \) AND \(x \neq w \)

© Seth Copen Goldstein 2001-2
The dominance Frontier of a node $x = \{w \mid x \text{ dom pred}(w) \text{ AND } (x \text{ sdom } w)\}$

x strictly dominates w ($s \text{ sdom } w$) iff $x \text{ dom } w$ AND $x = w$