The Φ function

- Φ merges multiple definitions along multiple control paths into a single definition.
- At a BB with p predecessors, there are p arguments to the Φ function.

$$x_{new} \leftarrow \Phi(x_1, x_1, x_2, \ldots, x_p)$$

- How do we choose which x_i to use?
 - We don’t really care!
 - If we care, use moves on each incoming edge

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

Using DF to compute SSA

- place all $\Phi()$
- Rename all variables

Using DF to Place $\Phi()$

- Gather all the defsites of every variable
- Then, for every variable
 - if we haven’t put $\Phi()$ in node put one in
 - If this node didn’t define the variable before: add this node to the defsites

This essentially computes the Iterated Dominance Frontier on the fly, inserting the minimal number of $\Phi()$ necessary
Using DF to Place $\Phi()$

foreach node n {
 foreach variable v defined in n {
 $\text{orig}[n] \cup \{v\}$
 $\text{defsites}(v) \cup \{n\}$
 }
 foreach variable v {
 $W = \text{defsites}(v)$
 while W not empty {
 foreach y in $\text{DF}(n)$
 if $y \notin \Phi[v]$ {
 insert "$v \leftarrow \Phi[v]" at top of y
 $\Phi[v] = \Phi[v] \cup \{y\}$
 }
 if $v \notin \text{orig}[y]$:
 $W = W \cup \{y\}$
 }
 }
}

Renaming Variables

- Walk the D-tree, renaming variables as you go
- Replace uses with more recent renamed def
 - For straight-line code this is easy
 - If there are branches and joins?

Easy implementation:
- for each var: rename (v)
- rename(v): replace uses with top of stack
 at def: push onto stack
 call rename(v) on all children in D-tree
 for each def in this block pop from stack

Compute D-tree

$1 \leftarrow 1$
$1 \leftarrow k = 0$

$k < 100?$

$2 \leftarrow 2$
$2 \leftarrow 1$
$2 \leftarrow k = 1$

$j < 20?$

$3 \leftarrow 3$
$3 \leftarrow 1$
$3 \leftarrow j = 1$

$k < k + 1$

$4 \leftarrow 4$

$5 \leftarrow 5$
$5 \leftarrow j = k$

$k = k + 1$

$6 \leftarrow 6$
$6 \leftarrow j = k$

$k = k + 1$

$7 \leftarrow 7$

$1 \leftarrow 1$
$1 \leftarrow k = 0$

$k < 100?$

$2 \leftarrow 2$
$2 \leftarrow 1$
$2 \leftarrow k = 0$

$j < 20?$

$3 \leftarrow 3$
$3 \leftarrow 1$
$3 \leftarrow j = 1$

$k < k + 1$

$4 \leftarrow 4$

$5 \leftarrow 5$
$5 \leftarrow j = k$

$k = k + 1$

$6 \leftarrow 6$
$6 \leftarrow j = k$

$k = k + 2$

$7 \leftarrow 7$

DFs
SSA & Opts

Insert $\Phi()$

1 1 \{ \}
2 (i,j,k)
3 \{ \}
4 (j,j)
5 (k,k)
6 \{ \}
7 (j,j)

var j: W={1,5,6}
Df(1), Df(5)

Rename Vars

1 i←←←← 1
2 j←←←← 1
3 k←←←← 0
4 j←←←← ΦΦΦΦ (j,j)
5 k←←←← ΦΦΦΦ (k,k)
6 1
7 2
8 3
9 4
10 5
11 6
12 7

var k: W={1,5,6}
Rename Vars

1.
2.
3.
4.
5.
6.
7.

Computing DF(n)

n dom a
n dom b
\(\text{n dom c} \)

Computing the Dominance Frontier

The dominance Frontier of a node \(x = \{ w | x \text{ dom pred}(w) \text{ AND } (x \text{ sdom } w) \} \)

\[
\text{compute-DF}(n) = \begin{align*}
S &= \emptyset \\
\text{foreach node } y \in \text{succ}[n] \\
&\quad \text{if idom}(y) = n \\
&\quad\quad S = S \cup \{ y \} \\
\text{foreach child of } n, c, \text{ in D-tree} \\
&\quad \text{compute-DF}(c) \\
\text{foreach } w \in \text{DF}[c] \\
&\quad \text{if } \neg \text{n dom } w \\
&\quad\quad S = S \cup \{ w \} \\
\text{DF}[n] &= S
\end{align*}
\]

SSA Properties

- Only 1 assignment per variable
- definitions dominate uses

Constant Propagation

- If "v ← c", replace all uses of v with c
- If "v ← \(\Phi(c,c,c) \)" replace all uses of v with c

W ← list of all defs
while !W.isEmpty {
 Stmt S ← W.removeOne
 if S has form "v ← \(\Phi(c,c,c) \)"
 replace S with V ← c
 if S has form "v ← c" then
 delete S
 foreach stmt U that uses v,
 replace v with c in U
 W.add(U)
}
Other stuff we can do?

- Copy propagation
 - delete "$x \leftarrow \Phi(y)$" and replace all x with y
 - delete "$x \leftarrow y$" and replace all x with y
- Constant Folding
 (Also, constant conditions too!)
- Unreachable Code
 Remember to delete all edges from unreachable block

Constant Propagation

But, so what?
Conditional Constant Propagation

- Does block 6 ever execute?
- Simple CP can’t tell
- CCP can tell:
 - Assumes blocks don’t execute until proven otherwise
 - Assumes Values are constants until proven otherwise

```
1 i1 ← 1 j1 ← 1 k1 ← 0
2 j2 ← (j4, 1) k2 ← (k4, 0) k2 < 100?
3 j3 ← 1 k3 ← k2 + 1
4 return j3
j4 ← (1, j5)
k4 ← (k3, k5)
5 j5 ← k2
6 k5 ← k2 + 2
7 j6 ← (1, k6)
k6 ← (k3, k5)
```

Tracks:
- Blocks (assume unexecuted until proven otherwise)
- Variables (assume not executed, only with proof of assignments of non-constant value do we assume not constant)

Use a lattice for variables:
- TOP = we have evidence that variable can hold different values at different times
- integers = we have seen evidence that the var has been assigned a constant with the value
- BOT = not executed
Conditional Constant Propagation

i1 ← 1
j1 ← 1
k1 ← 0

j1 ← (j2, 1)
k1 ← (k2, 0)
k1 < 100?

j2 < 20?
return j2

j3 ← 1
k3 ← k2 + 1
j5 ← k2
k5 ← k2 + 2

j4 ← (1, j5)
k4 ← (k3, k5)

Dead Code Elimination

W ← list of all defs
while !W.isEmpty {
 Stmt S ← W.removeOne
 if |S.users| != 0 then continue
 if S.hasSideEffects() then continue
 foreach def in S.definers {
 def.users ← def.users - {S}
 if |def.uses| == 0 then
 W ← W UNION {def}
 }
}

Since we are using SSA, this is just a list of all variable assignments.

Example DCE

B0: i <- 0
 j <- 0
B1: i <- i * 2
 j <- j + 1
 j < 10?
B2: return j

Aggressive Dead Code Elimination

Assume a stmt is dead until proven otherwise.

init:
mark as live all stmts that have side-effects:
- I/O
- stores into memory
- returns
- calls a function that MIGHT have side-effects
As we mark S live, insert S.defs into W

while (|W| > 0) {
 Stmt S ← W.removeOne
 if |S.users| == 0 then continue;
 mark S live, insert S.defs into W
}
Example DCE

Example DCE

Fixing DCE

Fixing DCE

Control Dependence

Control Dependence

Aggressive Dead Code Elimination

Aggressive Dead Code Elimination

while (|W| > 0) {
 S <- W.removeOne()
 if (S is live) continue;
 mark S live, insert
 - forall operands, S.operand.definers into W
 - S.OD into W
}
Example DCE

B0: \(i_0 \leftarrow 0 \)
\(j_0 \leftarrow 0 \)

B1: \(j_1 \leftarrow (j_0, j_2) \)
\(i_1 \leftarrow (i_0, i_2) \)
\(l_1 \leftarrow i_1 \cdot j_1 \)
\(j_1 \leftarrow j_1 + 1 \)
\(j_1 \leftarrow 107 \)

B2: \(\text{return } j_1 \)

CCP Example

i \(\leftarrow 1 \)
\(j \leftarrow 1 \)
\(k \leftarrow 0 \)

k < 100?
\(k_2 \leftarrow \Phi(k_3, 0) \)
\(k_2 < 100? \)

\(j < 20? \)
\(\text{return } j \)

\(j \leftarrow i \)
\(k \leftarrow k + 1 \)
\(k \leftarrow k + 2 \)

CCP -> DCE

\(l_1 \leftarrow 1 \)
\(j_1 \leftarrow 1 \)
\(k_1 \leftarrow 0 \)

k_2 \leftarrow \Phi(k_3, 0) \)
\(k_2 < 100? \)

\(j_1 < j_1 + 1 \)
\(j_1 < 107 \)

\(\text{return } j_1 \)

Finding the CDG

Y is control-dependent on X if
- X branches to u and v
- \(\exists \) a path u→exit which does not go through Y
- \(\forall \) paths v→exit go through Y

IOW, X can determine whether or not Y is executed.
Finding the CDG

Y is control-dependent on X if
- X branches to u and v
- \exists a path u→exit which does not go through Y
- \forall paths v→exit go through Y

IOW, X can determine whether or not Y is executed.

Finding the CDG

- Construct CFG
- Add entry node and exit node
- Add (entry,exit)
- Create G', the reverse CFG
- Compute D-tree in G' (post-dominators of G)
- Compute DF_G(y) for all y ∈ G' (post-DF of G)
- Add (x,y) ∈ G to CDG if x ∈ DF_G(y)

CDG of example

exit: {}
2: {entry}
1: {1,entry}
0: {entry}
entry: {}