Partial Redundancy Elimination

- Global code motion optimization
- Remove partially redundant expressions
- Loop invariant code motion
- Can be extended to do Strength Reduction
- No loop analysis needed
- Bidirectional flow problem

References

Redundancy

- A Common Subexpression is a Redundant Computation

\[
\begin{align*}
t_1 &= a + b \\
t_2 &= a + b \\
t_3 &= a + b
\end{align*}
\]

- Occurrence of expression E at P is **redundant** if E is available there:
 - E is evaluated along every path to P, with no operands redefined since.
- Redundant expression can be eliminated

Partial Redundancy

- Partially Redundant Computation

\[
\begin{align*}
t_1 &= a + b \\
t_3 &= a + b
\end{align*}
\]

- Occurrence of expression E at P is **partially redundant** if E is partially available there:
 - E is evaluated along at least one path to P, with no operands redefined since.
- Partially redundant expression can be eliminated if we can insert computations to make it fully redundant.
Loop Invariants are Partial Redundancies

- Loop invariant expression is partially redundant

\[t1 = a + b \]

- As before, partially redundant computation can be eliminated if we insert computations to make it fully redundant.
- Remaining copies can be eliminated through copy propagation or more complex analysis of partially redundant assignments.

Partial Redundancy Elimination

- The Method:
 1. Insert Computations to make partially redundant expression(s) fully redundant.
 2. Eliminate redundant expression(s).

- Issues [Outline of Lecture]:
 1. What expression occurrences are candidates for elimination?
 2. Where can we safely insert computations?
 3. Where do we want to insert them?
- For this lecture, we assume one expression of interest, \(a + b \).
 - In practice, with some restrictions, can do many expressions in parallel.

Which occurrences might be eliminated?

- In CSE,
 - \(E \) is available at \(P \) if it is previously evaluated along every path to \(P \), with no subsequent redefinitions of operands.
 - If so, we can eliminate computation at \(P \).
- In PRE,
 - \(E \) is partially available at \(P \) if it is previously evaluated along at least one path to \(P \), with no subsequent redefinitions of operands.
 - If so, we might be able to eliminate computation at \(P \), if we can insert computations to make it fully redundant.
 - Occurrences of \(E \) where \(E \) is partially available are candidates for elimination.

Finding Partially Available Expressions

- Forward flow problem
- \(\text{Lattice} = \{ 0, 1 \}, \text{meet is union} (\cup), \text{top} = 0 \text{ (not PAVAIL)}, \text{entry} = 0 \)

\[
\text{PAVOUT}[eta] = \\
\text{PAVIN}[eta] =
\]

- For a block,
 - Expression is locally available (AVLOC) if downwards exposed.
 - Expression is killed (KILL) if any assignments to operands.
Partial Availability Example

- For expression a+b.

```
  a = ...  KILL = 1  PAVIN=
     AVLOC=0  PAVOUT=

  t1 = a + b  KILL = 0  PAVIN=
     AVLOC=1  PAVOUT=

  a = ...  KILL = 1  PAVIN=
     t2 = a + b  AVLOC=1  PAVOUT=
```

- Occurrence in loop is partially redundant.

Finding Anticipated Expressions

- Backward flow problem

- Lattice = \{ 0, 1 \}, meet is intersect (\cap), top = 1 (PANT), exit = 0

\[
PANTIN[i] = \]

\[
PANTOUT[i] =
\]

- For a block,

 - Expression locally anticipated (ANTLOC) if upwards exposed.

```
  a = ...  KILL = 1  ANTIN=
     AVLOC=0  ANTOUT=

  t1 = a + b  KILL = 0  ANTIN=
     AVLOC=1  ANTOUT=

  a = ...  KILL = 1  ANTIN=
     t2 = a + b  AVLOC=0  ANTOUT=
```

Anticipation Example

- For expression a+b.

```
  a = ...  KILL = 1  ANTIN=
     AVLOC=0  ANTOUT=

  t1 = a + b  KILL = 0  ANTIN=
     AVLOC=1  ANTOUT=

  a = ...  KILL = 1  ANTIN=
     t2 = a + b  AVLOC=0  ANTOUT=
```

- Expression is anticipated at end of first block.
 - Computation may be safely inserted there.

Where can we insert computations?

- Safety: Never introduce a new expression along any path.

```
  t1 = a + b
```

- Insertion could introduce exception, change program behavior.
- If we can add a new basic block, can insert safely in most cases.
- Solution: Insert expression only where it is anticipated.

- Performance: Never increase the number of computations on any path.
 - Under simple model, guarantees program won't get worse.
 - Reality: might increase register lifetimes, add copies, lose.
Where do we want to insert computations?

- Morel-Renvoise and variants: “Placement Possible”
 - Dataflow analysis shows where to insert:
 - PPIN = “Placement possible at entry of block or before.”
 - PPOUT = “Placement possible at exit of block or before.”
 - Insert at earliest place PP = 1.
 - Only place at end of blocks,
 - PPIN really means “Placement possible or not necessary in each predecessor block.”
 - Don’t need to insert where expression is already available.

\[\text{PPIN}[i] = \]

- Remove [upwards-exposed] computations where PPIN=1.

\[\text{DELETE}[i] = \]

Where do we want to insert? Example

\[a = \ldots \]
\[t_1 = a + b \]
\[a = \ldots \]
\[t_2 = a + b \]

Formulating the Problem

- PPOUT: we want to place at output of this block only if
 - we want to place at entry of all successors
- PPIN : we want to place at input of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we can gain something by placing it here (PAVIN)

Forward or Backward? BOTH!

Problem is bidirectional, but lattice \{0, 1\} is finite, so

- as long as transfer functions are monotone, it converges.

Computing “Placement Possible”

- PPOUT : we want to place at output of this block only if
 - we want to place at entry of all successors

\[\text{PPOUT}[i] = \]

- PPIN : we want to place at start of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we gain something by moving it up (PAVIN heuristic)

\[\text{PPIN}[i] = \]
“Placement Possible” Example 1

```
KILL = 1  PAVIN=0  PPIN= 
AVLOC=0  PAVOUT=0  PPIN= 
ANTLOC=0  AVOUT=0  PPIN= 

a = ...  

KILL = 0  PAVIN=1  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=1  AVOUT=1  PPIN= 

KILL = 1  PAVIN=1  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=0  AVOUT=1  PPIN= 

KILL = 1  PAVIN=0  PPIN= 
AVLOC=0  PAVOUT=0  PPIN= 
ANTLOC=0  AVOUT=0  PPIN= 

t1 = a + b  

t2 = a + b  
```

“Placement Possible” Example 2

```
KILL = 1  PAVIN=0  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=0  AVOUT=1  PPIN= 

KILL = 1  PAVIN=0  PPIN= 
AVLOC=0  PAVOUT=0  PPIN= 
ANTLOC=0  AVOUT=0  PPIN= 

KILL = 0  PAVIN=1  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=1  AVOUT=1  PPIN= 

KILL = 1  PAVIN=0  PPIN= 
AVLOC=0  PAVOUT=0  PPIN= 
ANTLOC=0  AVOUT=0  PPIN= 

KILL = 1  PAVIN=0  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=1  AVOUT=1  PPIN= 

KILL = 1  PAVIN=0  PPIN= 
AVLOC=1  PAVOUT=1  PPIN= 
ANTLOC=0  AVOUT=1  PPIN= 

a = ...  
	t1 = a + b  

a = ...  
	t2 = a + b  
```

“Placement Possible” Correctness

- Convergence of analysis: transfer functions are monotone.
- Safety: Insert only if anticipated.

\[
PPIN[i] = \]

\[
PPOUT[i] = \]

- INSERT \(\subseteq\) PPOUT \(\subseteq\) ANTOUT, so insertion is safe.
- Performance: Never increase the number of computations on any path
 - DELETE = PPIN \(\cap\) ANTLOC
 - On every path from an INSERT, there is a DELETE.
 - The number of computations on a path does not increase.

Morel-Renvoise Limitations

- Movement usefulness tied to PAVIN heuristic
 - Makes some useless moves, might increase register lifetimes:

```
a + b  
	  
```

- Doesn’t find some eliminations:

```
a + b  
	  
```

- Bidirectional data flow difficult to compute.
Related Work

- Don’t need heuristic
 - Dhamdhere, Drechsler-Stadel, Knoop, et al.
 - use restricted flow graph or allow edge placements.

- Data flow can be separated into unidirectional passes
 - Dhamdhere, Knoop, et al.

- Improvement still tied to accuracy of computational model
 - Assumes performance depends only on the number of computations along any path.
 - Ignores resource constraint issues: register allocation, etc.
 - Knoop, et al. give “earliest” and “latest” placement algorithms which begin to address this.

- Further issues: more than one expression at once, strength reduction, redundant assignments, redundant stores.

Eliminating Complex Expressions

- Expression \((a+b)\cdot c\):

 - How can we do this?
 - Consider 1 expression at a time, from top to bottom. - laborious.
 - Eliminate temporaries, build explicit complex expressions.

 - Eliminating Complex Expressions 2
 - If we know actual computed expression, can do sub/exp in parallel:

 - Only global operand assignments KILL the expression.
 - Restriction on placement: Additional expr occurrences never cause computation to be placed later in flow graph.

Strength Reduction (Joshi-Dhamdhere 82)

- Suppose the expression \(x = i \cdot k\) is available.
 - Assignment \(i = i + 1\) kills it, but recomputing \(x\) is trivial: \(x = x + k\)

 - Distinguish between fast and slow computations:
 - “one-unit” definition: \(x = x + k\)
 - “Q-unit” definition: \(x = i \cdot k\)

 - One Q-unit definition is worth many one-unit definitions.
 - Consider “killing” instruction which allows simple recomputation to be transparent to Q-unit computations:
 - \(i = i + c\) KILLS \(i + 3\) but is X-Transparent to \(i \cdot k\).
 - \(i = x + y\) kills \(i \cdot k\) as well (XKILL)
Strength Reduction Example

- Two placement computations - Q-unit, one-unit insertion

```plaintext
i = ...

\[ t_1 = i \]
\[ i = i + 1 \]
```

- \[\text{XKILL} = 1 \]
- \[\text{XAVLOC} = 0 \]
- \[\text{ANTLOC} = 0 \]
- \[\text{XPBIN} = 0 \]
- \[\text{XPPIN} = \]
- \[\text{XPAVOUT} = 0 \]
- \[\text{XPOUT} = \]

- \[\text{XKILL} = 0 \]
- \[\text{XAVLOC} = 1 \]
- \[\text{ANTLOC} = 1 \]
- \[\text{XPAVOUT} = 1 \]
- \[\text{XPOUT} = \]

Store Redundancy

- Dual problem with computation redundancy:

```
\[ t_1 = a + b \]
```

- First store partially redundant.

Profiling feedback

- Speculative code motion:

```
y = y + 1
x = f(y)
```

- Program quality = expected number of total computations, with expectation guided by a profiling run of program.

- Label flow graph edges with number of times taken.

- “Computationally Optimal” solution places computations on edges in a Min-Cut(killnodes, usenodes).