Lecture 10
Interval Analysis

I Basic Idea
II Algorithm
III Optimization and Complexity
IV Comparing interval analysis with iterative algorithms

Reference: Munchnik 8.6

Motivation for Studying Interval Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - This lecture: can we use structure for speed?
 - Iterative algorithm for data flow
 - This lecture: an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for “harder” analyses
 - Useful for analyses related to structure
- Theoretically interesting - better understanding of data flow

Basic Idea

- In iterative analysis
 - DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B
- In interval analysis
 - DEFINITION: Transfer function $F_{R,B}$: summarize effect from beginning of R to end of basic block B
 - Recursively construct a larger region R from smaller regions
 - construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region
 - Let P be the region for the entire program, and v be initial value at entry node
 - $\text{out}[B] = F_{P,B} (v)$
 - $\text{in}[B] = \bigwedge_B \text{out}[B]$, where B' is a predecessor of B
II. Algorithm

- (a) Operations on transfer functions
- (b) How to build nested regions?
- (c) How to construct transfer functions that correspond to the larger regions?

(a) Operations on Transfer Functions

Example: Reaching Definitions

\[F(x) = \text{Gen} \cup (x \cdot \text{Kill}) \]

\[F_2(F_1(x)) = \text{Gen}_2 \cup (F_1(x) \cdot \text{Kill}_2) \]

\[= \text{Gen}_2 \cup (\text{Gen}_1 \cup (x \cdot \text{Kill}_1) \cdot \text{Kill}_2) \]

\[= \text{Gen}_2 \cup (\text{Gen}_1 \cdot (x \cdot \text{Kill}_1) \cdot \text{Kill}_2) \]

\[= \text{Gen}_2 \cup (\text{Gen}_1 \cdot \text{Kill}_2) \cup (x \cdot (\text{Kill}_1 \cup \text{Kill}_2)) \]

\[F_1(x) \land F_2(x) = \text{Gen}_1 \cup (x \cdot \text{Kill}_1) \cup \text{Gen}_2 \cup (x \cdot \text{Kill}_2) \]

\[= (\text{Gen}_1 \cup \text{Gen}_2) \cup (x \cdot (\text{Kill}_1 \cap \text{Kill}_2)) \]

\[F^*(x) \leq F^n(x), \forall n \geq 0 \]

\[= x \cup F(x) \cup F(F(x)) \cup ... \]

\[= x \cup (\text{Gen} \cup (x \cdot \text{Kill})) \cup (\text{Gen} \cup ((\text{Gen} \cup (x \cdot \text{Kill}) \cdot \text{Kill})) \cup ... \]

\[= \text{Gen} \cup (x \cdot \emptyset) \]

(b) Structure of Nested Regions (An example)

- A region in a flow graph is a set of nodes that
 - includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge n->n, delete that edge
 - T2: Remove a vertex
 If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

Example

In reduced graph:

- each vertex represents a subgraph of original graph (a region).
- each edge represents an edge in original graph

Limit flow graph: result of exhaustive application of T1 and T2

- independent of order of application.
- if limit flow graph has a single vertex => reducible

Can define larger regions (e.g. Allen&Cocke's intervals)

Simple regions=>simple composition rules for transfer functions
Transfer Functions for T2 Rule

- **Transfer function**
 - $F_{R,B}$: summarizes the effect from beginning of R to end of B
 - $F_{R,in(H_2)}$: summarizes the effect from beginning of R to beginning of H_2
 - Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R_1,B}$)
 - $F_{R,in(H_2)} = \bigwedge p F_{R,p}$, where p is a predecessor of H_2
 - For blocks B in region R_2: $F_{R,B} = F_{R_2,B} \cdot F_{R,in(H_2)}$

First Example

Transfer Functions for T1 Rule

- **Transfer function** $F_{R,B}$
 - $F_{R,in(H)} = (\bigwedge p F_{R,p})^*$, where p is a predecessor of H in R
 - $F_{R,B} = F_{R_1,B} \cdot F_{R,in(H)}$

III. Complexity of Algorithm

<table>
<thead>
<tr>
<th>R</th>
<th>T1/T2</th>
<th>R'</th>
<th>$F_{R,in(R')}$</th>
<th>$F_{R,B1}$</th>
<th>$F_{R,B2}$</th>
<th>$F_{R,B3}$</th>
<th>$F_{R,B4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>T2</td>
<td>B2</td>
<td>F_{B1}</td>
<td>F_{B1}</td>
<td>$F_{B2}F_{B1,in(B2)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>T1</td>
<td>B1</td>
<td>F_{B1}</td>
<td>F_{B1}</td>
<td>$F_{B2}F_{B1,in(B2)}$</td>
<td>F_{B3}</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>T2</td>
<td>B1</td>
<td>F_{B1}</td>
<td>F_{B1}</td>
<td>$F_{B2}F_{B1,in(B2)}$</td>
<td>F_{B3}</td>
<td>F_{B4}</td>
</tr>
<tr>
<td>R4</td>
<td>T2</td>
<td>B4</td>
<td>F_{B4}</td>
<td>F_{B4}</td>
<td>$F_{B5}F_{B4,in(B4)}$</td>
<td>F_{B5}</td>
<td>F_{B5}</td>
</tr>
</tbody>
</table>

- R: region name
- R': region whose header will be subsumed
Optimization

- Let \(m \) = number of edges, \(n \) = number of nodes

- Ideas for optimization
 - If we compute \(F_{R,B} \) for every region \(B \) is in, then it is very expensive
 - We are ultimately only interested in the entire region \(E \); we need to compute only \(F_{E,B} \) for every \(B \).
 - There are many common subexpressions between \(F_{E,B_1}, F_{E,B_2}, \ldots \)
 - Number of \(F_{E,B} \) calculated = \(m \)
 - Also, we need to compute \(F_{R,in}(R') \), where \(R' \) represents the region whose header is subsumed.
 - Number of \(F_{R,B} \) calculated, where \(R \) is not final = \(n \)
 - Total number of \(F_{R,B} \) calculated: \((m + n) \)
 - Data structure keeps “header” relationship
 - Practical algorithm: \(O(m \log n) \)
 - Complexity: \(O(m \alpha(m,n)) \), \(\alpha \) is inverse Ackermann function

Reducibility

- If no \(T_1, T_2 \) is applicable before graph is reduced to single node
 - split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow

- Applicability
 - Definitions of \(F^* \) can make technique more powerful than iterative algorithms
 - Backward flow -- reverse graph is not typically reducible. Requires more effort to adapt to backward flow than iterative alg.
 - More important for interprocedural optimization

- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious “irreducibility” can be slow with elimination
 - Reducible graph & Cycles do not add information (common)
 - Iterative: \((\text{depth} + 2) \) passes
 - depth is 2.75 average, independent of code length
 - Elimination: Theoretically almost linear, typically \(O(m \log n) \)
 - Reducible & Cycles add information
 - Iterative takes longer to converge
 - Elimination remains the same