
15-745 Lecture 715-745 Lecture 7

Data Dependence in Loops – 2
Complex spacesComplex spaces

Delta Test
Merging vectorsMerging vectors

C i ht © S th G ld t i 2008 9

Lecture 7 15-745 © 2005-9 1

Copyright © Seth Goldstein, 2008-9
Based on slides from Allen&Kennedy

The General Problem
DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDOENDDO

A dependence exists from S1 to S2 if:
h d h h– There exist α and β such that

• α < β (control flow requirement)
• f (α) = g (β) for all i 1 ≤ i ≤ m (common access req)• fi (α) = gi (β) for all i, 1 ≤ i ≤ m (common access req)

Lecture 7 215-745 © 2005-9

ZIV Test
DO j = 1, 100

S A(e1) = A(e2) + B(j)S A(e1) = A(e2) + B(j)

ENDDO

e1,e2 are constants or loop invariant
symbolsy

If (e1-e2)!=0 No Dependence exists

Lecture 7 315-745 © 2005-9

DO i1 = L1, U1
DO i = L U

Strong SIV Test
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...1 (1(1, , n), , m(1, , n))
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDO
• Strong SIV test when

• f(...) = aik+c1 and g(…) = aik+c2
• Plug in α,β and solve for dependence:

 ()/• β-α = (c1 – c2)/a
• A dependence exists from S1 to S2 if:

• β α is an integer• β-α is an integer
• |β-α| ≤ Uk- Lk

Lecture 7 415-745 © 2005-9

Can extend to symbolic constants
• Determine d symbolically
• If d is a constant use previous procedureIf d is a constant, use previous procedure
• Otherwise, calculate U-L symbolically
• Compare U L and d symbolically (& hope)• Compare U-L and d symbolically (& hope)

E g • E.g.,
for i=1 to N

A[i+2*N] = A[i]A[i 2 N] A[i]

Lecture 7 15-745 © 2005-9 5

DO i1 = L1, U1
DO i = L U

Weak-zero SIV Test
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...1 (1(1, , n), , m(1, , n))
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDO
• Weak-Zero SIV test when

• f(...) = aik+c1 and g(…) = c2
• Plug in α,β and solve for dependence:

/• α = (c2 – c1)/a
• A dependence exists from S1 to S2 if:

• is an integer• α is an integer
• Lk ≤ α ≤ Uk

Lecture 7 615-745 © 2005-9

DO i1 = L1, U1
DO i = L U

Weak-crossing SIV Test
DO i2 = L2, U2

...
DO in = Ln, Un

S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...1 (1(1, , n), , m(1, , n))
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDO
• Weak-Zero SIV test when

• f(...) = aik+c1 and g(…) = -aikc2
• To find crossing point, set α = β and solve:

/• α = (c2 – c1)/2a
• A dependence exists from S1 to S2 if:

• 2α is an integer• 2α is an integer
• Lk ≤ α ≤ Uk

Lecture 7 715-745 © 2005-9

Non-rectangular spaces
• Triangular iteration space when only one loop

bound depends on an outer loop indexbound depends on an outer loop ndex
• Trapezoidal space when both loop bounds

depend on an outer loop indexp p

• Example:Example
for i=1 to N

for j=L0+L1*I to U0+U1*IA[j+D] = …
… = A[j]

– Is d in loop bounds?
Lecture 7 15-745 © 2005-9 8

Complex Iteration Spaces
• For example consider this special case of a strong SIV

subscript

DO I = 1,N
DO J = L0 + L1*I, U0 + U1*I0 0

S1 A(J + d) =
S2 = A(J) + B

ENDDO
ENDDO

Lecture 7 915-745 © 2005-9

Complex Iteration Spaces
• Strong SIV test gives dependence if

d ≤U0 −L0 + U1 −L1()I0 0 1 1()

I ≥
d − U0 −L0()

U1 −L1

• Unless this inequality is violated for all values of
I in its iteration range we must assume a

U1 1

I in its iteration range, we must assume a
dependence in the loop

Lecture 7 1015-745 © 2005-9

Breaking Conditions
• Consider the following example

DO I = 1, L,
S1 A(I + N) = A(I) + B

ENDDO
• If L<=N, then there is no dependence from S1 to

itself
• L<=N is called the Breaking Condition

Lecture 7 1115-745 © 2005-9

Using Breaking Conditions
• Using breaking conditions the vectorizer can generate

alternative code
IF (L<=N) THEN
A(N+1:N+L) = A(1:L) + B
ELSEELSE
DO I = 1, L

S1 A(I + N) = A(I) + BS1 A(I + N) A(I) + B
ENDDO
ENDIF

Lecture 7 1215-745 © 2005-9

Index Set Splitting
DO I = 1,100

DO J = 1, IDO J 1, I
S1 A(J+20) = A(J) + B

ENDDOENDDO
ENDDO

()
For values of I <

d − U0 −L0()
U1 −L1

=
20− −1()

1
=21

there is no dependence

Lecture 7 1315-745 © 2005-9

Index Set Splitting
• This condition can be used to partially vectorize

S1 by Index set splitting as shownS by Index set spl tt ng as shown
DO I = 1,20

DO J = 1, I
S1a A(J+20) = A(J) + B

ENDDO
Now the inner loop for ENDDO

DO I = 21,100
DO J = 1 Ix

Now the inner loop for
the first nest can be
vectorized.

DO J = 1, Ix
S1b A(J+20) = A(J) + B

ENDDO
ENDDO

Lecture 7 1415-745 © 2005-9

How are we doing so far?
• Empirical study froom Goff, Kennedy, & Tseng

– Look at how often independence and exact
d p nd nc inf m ti n is f und in 4 suit s f dependence information is found in 4 suites of
fortran programs

– Compare ZIV, SIV (strong, weak-0, weak-crossing, mp , (g, , g,
exact), MIV, Delta

– Check usefulness of symbolic analysis
• ZIV used 44% of time and proves 85% of indep
• Strong-SIV used 33% of time and proves 5%

(success per application 97%)(success per application 97%)
• S-SIV, 0-SIV, x-SIV used 41%
• MIV used only 5% of timey
• Delta used 8% of time, proves 5% of indep
• Coupled subscripts rare (20% overall, but concentrated)Lecture 7 15-745 © 2005-9 15

Basics:Coupled Subscript Groups
• Why are they important?

Coupling can cause imprecision in dependence Coupling can cause imprecision in dependence
testing

DO I = 1, 100
S1 A(I+1,I) = B(I) + C(,) ()
S2 D(I) = A(I,I) * E

ENDDO

Lecture 7 1615-745 © 2005-9

Dealing w/ Coupled Groups
• subscript-by-subscript testing too imprecise

However we could intersect depsHowever, we could intersect deps
DO I = 1, 100

S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

ENDDO
fi t i ld d 1 d d 0 Th t’ first yields d=+1, second d=0. That’s
impossible. Therefore, no dependence

• Delta test uses this intuition when the • Delta test uses this intuition when the
subscripts are SIV to apply information
between indicestw n n c

Lecture 7 15-745 © 2005-9 17

Constraints
• An assertion about an index that must hold for

a dependence to exist.a dependence to ex st.
• So, when intersection of constraints is empty,

must be independentp
• In Delta test we generate constraints from

SIV tests, so distance (or direction vector) is
sufficient

Lecture 7 15-745 © 2005-9 18

Type of Constraints
• Dependence distance: <d>

For I

first subscript → d = 1

For I
A[I+1][I+2] = A[I][I] + c

second subscript → <i i’= 1>

For I
A[I][I] = A[I][I-1] + c

second subscript → <i-i =-1>
• Dependence line: <ax+by = c>

For I

first subscript → 2i-i’=N+1

For I
A[I][I] = A[N-I+1][I] + c

first subscript → 2i i N 1
• Dependence Point: <x,y>

Lecture 7 15-745 © 2005-9 19

Delta Test
Procedure delta(subscr, constr)

Init constraint vector C to <none>

while exist untested SIV subscripts in subscr
apply SIV test to all untested SIV subscripts
return independence, or derive new constraint vector C’.

C’ <- C ∩ C’
If C’ = Ø then return independence
else if C != C’ then
C < C’C <- C’
propagate C into MIV subscripts
apply ZIV test to untested ZIV subscripts
return independence if no solutionp

while exist untested RDIV subscripts
test and propogate RDIV constants

test remaining MIV subscripts using MIV tests

Lecture 7 15-745 © 2005-9 20

intersect direction vectors with C, and return

Examples
For I

For J
Apply SIV to yield: ΔI=1

For J
A[I+1,I+J] = …

 = A[I I+J 1]

I0+J0 = I0+ΔI +J0+ΔJ-1
0 = ΔI + ΔJ-1

 1 ΔJ 1… = A[I, I+J-1]

For I For J For K

= 1 + ΔJ-1
ΔJ = 0

For I, For J, For K
A[J-I,I+1,J+K] = A[J-I,I,J+K]

Apply SIV to yield: ΔI=1
J0-I0 = J0+ΔJ-I0-ΔI

0 = ΔJ ΔI

J0+K0 = J0+ΔJ+K0+ΔK
0 = ΔJ +ΔK

Lecture 7 15-745 © 2005-9 21

0 = ΔJ -ΔI
0 = ΔJ-1

ΔJ = 1

0 = 1 +ΔK
ΔK = -1

RDIV
• Propagating MIV constraints is often expensive
• Restricted double index variable constraints Restricted double index variable constraints

are a special case which can often be done
exactly.y

For I
For J
A[I+1][J+2] = A[J][I] + c

RDIV form: I+c1, J+c2 & J+c3, I+c4
U D lt b i t

A[I+1][J+2] A[J][I] + c

• Use Delta across subscripts.
I+1 = J+ΔJ
J+2 = I+ΔI → ΔI+ΔJ = 3

Lecture 7 15-745 © 2005-9 22

J+2 = I+ΔI → ΔI+ΔJ = 3

Merging Results
• After we test all subscripts we have vectors

for each partition. Now we need to merge for each part t on. Now we need to merge
these into a set of direction vectors for the
memory reference

• Since we partitioned into separable sets we can
do cross-product of vectors from each

i ipartition.
• Start with a single vector = (*,*,…,*) of length

d th f l tdepth of loop nest.
• Foreach parition, for each index involved in

vector create new set from vector create new set from
old vector-these indicies x this set

Lecture 7 15-745 © 2005-9 23

Example Merge
For I

For JFor J
S1 A[J-1] = …
S = A[J]S2 … = A[J]

For 1st subscript in A using S as source and S as For 1st subscript in A using S1 as source and S2 as
target: J has DV of -1
Merge 1 into (* *) > (* 1) What does this mean?Merge -1 into (,) -> (,-1). What does this mean?
• (<,-1): true dep in outer loop

(1): anti dep from S to S (1)

Lecture 7 15-745 © 2005-9 24

• (=,-1): anti-dep from S2 to S1 (=,1)
• (>,-1): anti-dep from S2 to S1 in outer loop (<,-1)

Next Time...
• Improving cache locality using dependence

informationnformat on

Lecture 7 2515-745 © 2005-9

