Common loop optimizations

- Hoisting of loop-invariant computations
 - pre-compute before entering the loop
- Elimination of induction variables
 - change p=ix+w+b to p=b, p+=w, when w,b invariant
- Loop unrolling
 - to improve scheduling of the loop body

<table>
<thead>
<tr>
<th>Software pipelining</th>
<th>Requires understanding data dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>- To improve scheduling of the loop body</td>
<td></td>
</tr>
<tr>
<td>Loop permutation</td>
<td>- to improve cache memory performance</td>
</tr>
</tbody>
</table>

Why Dependence Analysis

- Goal is to find best schedule:
 - Improve memory locality
 - Increase parallelism
 - Decrease scheduling stalls
- Before we schedule we need to know possible legal schedules and impact of schedule on performance

Example to improve locality

for i=0 to N
 for j=0 to M

Is there a better schedule?

Iteration space

Unroll to see deps

|-----|-------------|-------------|-------------|-------------|

...
Example to improve locality

for i=0 to N
for j=0 to M

Is there a better schedule?

Old Iteration space

for i=0 to N
for j=0 to M

for j=0 to M

New Iteration space

for i=0 to N
for j=0 to M

for j=0 to M

What about ...

for i=0 to N
for j=0 to M

Is there a better schedule?

Iteration space

Unroll to see deps

- A[0] = f(A[0])
- B[0] = f(B[0])
- B[0] = f(B[0])
- ... A[N] = f(A[N])
- B[0] = f(B[0])
- A[0] = f(A[0])
- B[1] = f(B[1])

What about ...

for i=0 to N
for j=0 to M

Is there a better schedule?

Iteration space

Unroll to see deps

- A[0] = f(A[0])
- B[0] = f(B[0])
- B[0] = f(B[0])
- ... A[N] = f(A[N])
- B[0] = f(B[0])
- A[0] = f(A[0])
- B[1] = f(B[1])
But, what if ...

for i=0 to N
for j=1 to M

Can we reschedule?

Iteration space

Unroll to see deps
A[1] = f(A[0])
...
A[N] = f(A[N-1])
A[1] = f(A[0])
...

But, what if ...

for i=0 to N
for j=1 to M

Can we reschedule?

Iteration space

So, how do we know when/how?

When should we transform a loop?
What transforms are legal?
How should we transform the loop.

Dependence information helps with all three questions.

In short,
• Determine all dependence information
• Use dependence information to analyze loop
• Guide transformations using dependence info

• Key is:
 Any transformation* that preserves every dependence in a program preserves the meaning of the program
Dependencies in Loops

- Loop independent data dependence occurs between accesses in the same loop iteration.
- Loop-carried data dependence occurs between accesses across different loop iterations.
- There is data dependence between access a at iteration i-k and access b at iteration i when:
 - a and b access the same memory location
 - There is a path from a to b
 - Either a or b is a write

Defining Dependencies

- Flow Dependence \(W \rightarrow R \) \(\delta^f \) \{ true \}
- Anti-Dependence \(R \rightarrow W \) \(\delta^a \) \{ false \}
- Output Dependence \(W \rightarrow W \) \(\delta^o \)

Example Dependencies

S1) \(a=0; \)
S2) \(b=a; \)
S3) \(c=a+d+e; \)
S4) \(d=b; \)
S5) \(b=5+e; \)

Example Dependencies Diagram:

- Source type target due to
 - S1 \(\delta^f \) S2 a
 - S1 \(\delta^f \) S3 a
 - S2 \(\delta^f \) S4 b
 - S3 \(\delta^a \) S4 d
 - S4 \(\delta^a \) S5 b
 - S2 \(\delta^o \) S5 b

What can we do with this information?
What are anti- and flow- called "false" dependences?

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}
```
Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}
```

Data Dependence

- There is a data dependence from statement S_1 to statement S_2 (S_2 depends on S_1) if:
 1. Both statements access the same memory location and at least one of them stores onto it, and
 2. There is a feasible run-time execution path from S_1 to S_2

Iteration Space

Every iteration generates a point in an n-dimensional space, where n is the depth of the loop nest.

```
for (i=0; i<n; i++) {
    for (j=0; j<4; j++) {
        ***
    }
}
```

Iteration Vectors

- Need to consider the nesting level of a loop.
- Nesting level of a loop is equal to one more than the number of loops that enclose it.
- Given a nest of n loops, the iteration vector i of a particular iteration of the innermost loop is a vector of integers that contains the iteration numbers for each of the loops in order of nesting level.
- Thus, the iteration vector is: $\{i_1, i_2, ..., i_n\}$ where $i_k, 1 \leq k \leq n$ represents the iteration number for the loop at nesting level k.
Iteration Space

Every iteration generates a point in an n-dimensional space, where n is the depth of the loop nest.

```c
for (i=0; i<n; i++) {
    for (j=0; j<4; j++) {
        ...
    }
}
```

Ordering of Iteration Vectors

- Dan ordering for iteration vectors
- Use an intuitive, lexicographic order
- Iteration i precedes iteration j, denoted i < j, iff:
 1. $i[1:n-1] < j[1:n-1]$, or
 2. $i[1:k-1] = j[1:k-1]$ and $i_k < j_k$

Example Iteration Space

```c
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

- each position represents an iteration

Visitation Order in Iteration Space

```c
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

- Note: iteration space is not data space
Formal Def of Loop Dependence

• There exists a dependence from statements S_1 to statement S_2 in a common nest of loops iff there exist two iteration vectors i and j for the nest, st.
 (1) (a) $i < j$ or
 (b) $i = j$ and there is a path from S_1 to S_2 in the body of the loop,
 (2) statement S_1 accesses memory location M on iteration i and statement S_2 accesses location M on iteration j, and
 (3) one of these accesses is a write.

• 1a: Loop carried and 1b: Loop independent
• S_1 is source of dependence, S_2 is sink or target of dep

Dependence Distance

• Using iteration vectors and def of dependence we can determine the distance of a dependence:
• In n-deep loop nest if
 - S_1 is source in iteration i
 - S_2 is sink in iteration j
• Distance of dependence is represented with a distance vector: D
 - Vector of length n, where
 - $d_k = j_k - i_k$

Distance Vector

```c
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}
```

Distance vector is the difference between the target and source iterations.

\[d = l_t - l_s \]

Exactly the distance of the dependence, i.e.,

\[l_s + d = l_t \]

Example of Distance Vectors

```c
for (i=0; i<n; i++)
    for (j=0; j<m; j++)
      {
        A[i][j] = ;
        B[i][j] = ;
        C[i][j] = ;
        A[i+1][j] = ;
        B[i+1][j] = ;
        C[i+1][j] = ;
      }
```

Distance vector is the difference between the target and source iterations.

\[d = l_t - l_s \]

Exactly the distance of the dependence, i.e.,

\[l_s + d = l_t \]
Example of Distance Vectors

for (i=0; i<n; i++)
 for (j=0; j<m; j++) {
 A[i,j] = ;
 B[i,j] = A[i,j];
 C[i,j] = ;
 C[i,j] = A[i,j];
 C[i,j] = B[i,j];
 }

Direction Vectors

- Less precise than distance vectors, but often good enough
- In n-deep loop nest if
 - S1 is source in iteration i
 - S2 is sink in iteration j
- Distance vector: F - Vector of length n, where
 \(f_k = j_k - i_k \)
- Direction vector also vector of length n, where
 \(d_k = \begin{cases} < & \text{if } f_k > 0, \text{ or } j_k < i_k \\ = & \text{if } f_k = 0, \text{ or } j_k = i_k \\ > & \text{if } f_k < 0, \text{ or } j_k > i_k \end{cases} \)

Example:

\[
\begin{align*}
\text{DO } I = 1, N \\
\text{DO } J = 1, M \\
\text{DO } K = 1, L \\
S_1 \quad A(I+1, J, K-1) = A(I, J, K) + 10 \\
\text{ENDDO} \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

- \(S_1 \) has a true dependence on itself.
- Distance Vector: (1, 0, -1)
- Direction Vector: (\(<, =, >\)
Note on vectors

- A dependence cannot exist if it has a direction vector whose leftmost non "=" component is not "<" as this would imply that the sink of the dependence occurs before the source.
- Likewise, the first non-zero distance in a distance vector must be positive.

The Key

- Any reordering transformation that preserves every dependence in a program preserves the meaning of the program.
- A reordering transformation may change order of execution but does not add or remove statements.

Finding Data Dependences

Main Theme

- Determining whether dependencies exist between two subscripted references to the same array in a loop nest
- Several tests to detect these dependencies
The General Problem

\[
\begin{align*}
& \text{DO } i_1 = L_1, U_1 \\
& \text{DO } i_2 = L_2, U_2 \\
& \quad \text{DO } i_n = L_n, U_n \\
& \text{S}_1 \quad A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
& \text{S}_2 \quad \ldots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)) \\
& \text{ENDDO} \\
& \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]

A dependence exists from S1 to S2 if:
- There exist \(\alpha \) and \(\beta \) such that
 - \(\alpha < \beta \) (control flow requirement)
 - \(f_i(\alpha) = g_i(\beta) \) for all \(1 \leq i \leq m \) (common access requirement)

Basics: Conservative Testing

- Consider only linear subscript expressions
- Finding integer solutions to system of linear Diophantine Equations is NP-Complete
- Most common approximation is Conservative Testing, i.e., See if you can assert
 “No dependence exists between two subscripted references of the same array”
- Never incorrect, may be less than optimal

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a pair of references
Subscript: A PAIR of subscript positions in a pair of array references
For Example:
\[
A(i,j) = A(i,k) + C \\
<1,I> \text{ is the first subscript} \\
<j,k> \text{ is the second subscript}
\]

Basics: Complexity

A subscript is said to be
- \(\text{ZIV} \) if it contains no index zero index variable
- \(\text{SIV} \) if it contains only one index single index variable
- \(\text{MIV} \) if it contains more than one index multiple index variable
For Example:
\[
A(5,i+1,j) = A(i,i,k) + C \\
\text{First subscript is ZIV} \\
\text{Second subscript is SIV} \\
\text{Third subscript is MIV}
\]
Basics: Separability

- A subscript is separable if its indices do not occur in other subscripts.
- If two different subscripts contain the same index they are coupled.

For Example:
\[A(I+1,j) = A(k,j) + C \]
Both subscripts are separable.
\[A(I,j,j) = A(I,j,k) + C \]
Second and third subscripts are coupled.

Basics: Coupled Subscript Groups

- Why are they important?
 Coupling can cause imprecision in dependence testing.

\[\text{DO } I = 1, 100 \]
\[S1 \quad A(I+1,I) = B(I) + C \]
\[S2 \quad D(I) = A(I,I) * E \]
\[\text{ENDDO} \]

Dependence Testing: Overview

- Partition subscripts of a pair of array references into separable and coupled groups.
- Classify each subscript as ZIV, SIV or MIV.
 - Reason for classification is to reduce complexity of the tests.
- For each separable subscript apply single subscript test. Continue until prove independence.
- Deal with coupled groups.
 - If independent, done.
 - Otherwise, merge all direction vectors computed in the previous steps into a single set of direction vectors.

Step 1: Subscript Partitioning

- Partitions the subscripts into separable and minimal coupled groups.
- Notations

 // \(S \) is a set of \(m \) subscript pairs \(S_1, S_2, ... S_m \) each enclosed in \(n \) loops with indexes \(I_1, I_2, ... I_n \), which is to be partitioned into separable or minimal coupled groups.
 // \(P \) is an output variable, containing the set of partitions
 // \(n_p \) is the number of partitions.
Subscript Partitioning Algorithm

procedure partition(S, P, n_p)
 n_p = m;
 for i := 1 to m do P_i = {S_i};
 for i := 1 to n do begin
 k := <none>
 for each remaining partition P_j do
 if there exists s ∈ P_j such that s contains I_i then
 if k = <none> then k = j;
 else begin P_k = P_k ∪ P_j; discard P_j; n_p = n_p - 1; end
 end
 end partition

Step 2: Classify as ZIV/SIV/MIV

• Easy step
• Just count the number of different indices in a subscript

Step 3: Applying Single Subscript Tests

• ZIV Test
• SIV Test
 - Strong SIV Test
 - Weak SIV Test
 • Weak-zero SIV
 • Weak Crossing SIV
• SIV Tests in Complex Iteration Spaces

ZIV Test

DO j = 1, 100
S A(e1) = A(e2) + B(j)
ENDDO

e1, e2 are constants or loop invariant symbols
If (e1 - e2) != 0 No Dependence exists
Strong SIV Test
- Strong SIV subscripts are of the form \(\langle ai + c, ai + c \rangle \)
- For example the following are strong SIV subscripts \(\langle i + 1, i \rangle \), \(\langle 4i + 2, 4i + 4 \rangle \)

Strong SIV Test Example
```
DO k = 1, 100
  DO j = 1, 100
    S1 A(j+1,k) = ...S2 ...
    . . . = A(j,k) + 32
  ENDDO
ENDDO
```

Weak SIV Tests
- Weak SIV subscripts are of the form \(\langle ai + c, ai + c \rangle \)
- For example the following are weak SIV subscripts \(\langle i + 1, 5 \rangle \), \(\langle 2i + 1, i + 5 \rangle \), \(\langle 2i + 1, -2i \rangle \)

Geometric View of Strong SIV Tests
- Dependence exists if \(|d| \leq U - L|\)
Geometric view of weak SIV

- Geometric View of Strong SIV Tests

Weak-zero SIV Test

- Special case of Weak SIV where one of the coefficients of the index is zero
- The test consists merely of checking whether the solution is an integer and is within loop bounds

\[i = \frac{c_2 - c_1}{a_1} \]

Weak-zero SIV & Loop Peeling

DO i = 1, N
S1 \[Y(1, N) = Y(1, N) + Y(N, N) \]
ENDDO

Can be loop peeled to...

\[Y(1, N) = Y(1, N) + Y(N, N) \]

DO i = 2, N-1
S1 \[Y(1, N) = Y(1, N) + Y(N, N) \]
ENDDO

\[Y(N, N) = Y(1, N) + Y(N, N) \]
Weak-crossing SIV Test

• Special case of Weak SIV where the coefficients of the index are equal in magnitude but opposite in sign
• The test consists merely of checking whether the solution index is 1. within loop bounds and is 2. either an integer or has a non-integer part equal to 1/2

Weak-crossing SIV & Loop Splitting

```
DO i = 1, N
  A(i) = A(N-i+1) + C
ENDDO
```

This loop can be split into...

```
DO i = 1, (N+1)/2
  A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1, N
  A(i) = A(N-i+1) + C
ENDDO
```

Complex Iteration Spaces

• Till now we have applied the tests only to rectangular iteration spaces
• These tests can also be extended to apply to triangular or trapezoidal loops
 - Triangular: One of the loop bounds is a function of at least one other loop index
 - Trapezoidal: Both the loop bounds are functions of at least one other loop index
Next Time...

- Complex iteration spaces
- MIV Tests
- Tests in Coupled groups
- Merging direction vectors