15-745 Lecture 5

Control flow analysis
Natural loops
Classical Loop Optimizations
Dependencies

Copyright © Seth Goldstein, 2008

Based on slides from Lee & Callahan

Lecture 5 15-745 © 2008

Loops are Key

* Loops are extremely important
- the "90-10" rule
* Loop optimization involves
- understanding control-flow structure
- Understanding data-dependence information
- sensitivity to side-effecting operations

- extra care in some transformations such as
register spilling

ecture 5 15-745 © 2008

Common loop optimizations

* Hoisting of loop-invariant computations scalar opts,
DF analysis,
Control flow analysis

 Elimination of induction variables

* Loop unrolling

+ Software pipelining 5:2:|i~';efinding
data
dependencies

* Loop permutation

Lecture 5 15-745 © 2008

Finding Loops

* To optimize loops, we need to find them!

+ Could use source language loop information in
the abstract syntax tree...

- BUT:

- There are multiple source loop constructs: for, while,
do-while, even goto in C

- Want IR to support different languages

- Ideally, we want a single concept of a loop so all have
same analysis, same optimizations

- Solution: dismantle source-level constructs, then
re-find loops from fundamentals

ecture 5 15-745 © 2008

Finding Loops

* To optimize loops, we need to find them!
« Specifically:
- loop-header node(s)

* nodes in a loop that have immediate predecessors
not in the loop

- back edge(s)

« control-flow edges to
previously executed nodes

- all nodes in the loop body

Control-flow analysis

* Many languages have goto and other complex
control, so loops can be hard to find in general

+ Determining the control structure of a program
is called control-flow analysis

+ Based on the notion of dominators

Dominators

- adomb

- node a dominates b if every possible
execution path from entry to b includes a

- asdomb

- a strictly dominates b if adombandal=b

- aidomb

eeeeee

- a immediately dominates b if a sdom b, AND
there is no ¢ such that a sdom c and ¢ sdom b

Back edges and loop headers
* A control-flow edge *
from node B3 to B2
is a back edge if
B2 dom B3

B1|X

« Furthermore, in
that case node B2
is a loop header

- X -
I n

- -

|print] | |i = i+1|

B5 B6

Natural loop

+ Consider a back edge from node n to node h

Examples

* The natural loop of n—h is the set of nodes L Simple example:
such that for all xeL: []
- h dom x and
- there is a path from x to n not containing h]
(often it's more
complicated, since
a FOR loop found in
the source code
might need an if/then
guard)
Examples Examples
Try this: for (.. {
it {
} else {
it (0 {
e;
break;
)
¥

Examples

for (..) { L
if {
lexically, in loop, el
}oelse { but not in
' natural loop | [e]

Lecture 5 15-745 © 2008

for (- { L
if {
lexically, in loop,
T else { but not in
|.f 00 { natural loop
i
break; and another
) reason why CFG
} analysis is
1 preferred over
source/AST
loops

ecture 5

Examples

15-745 © 2008 14

Examples

* Yes, it can happen in C

Lecture 5 15-745 © 2008

Lec

Natural Loops

One loop per header..

What are the natural loops?

l

0
1
2
3
{1.2,3}

ture 5

0]
. |{.1,23
1 2
|
0
{
1 2

{1.2}.{0.1,2.,3}

15-745 © 2008 16

Nested Loops

* Unless two natural loops have the same header,
they are either disjoint or nested within each
other

- If A and B are loops (sets of blocks) with
headers a and b such thata=bandb € A

-BcA
- loop B is nested within A
- B is the /nner loop
« Can compute the loop-nest tree

Lecture 5 15-745 © 2008 17

General Loops

+ A more general looping structure is a strongly
connected component of the control flow graph

- subgraph <N, E,..> such that

every block in N, is reachable from every
other node using only edges in E,,
|

o)

SCC

Not very useful definition of a loop

Lecture 5 15-745 © 2008 18

Reducible Flow Graphs

There is a special class of flow graphs, called
reducible flow graphs, for which several code-
optimizations are especially easy to perform.

In reducible flow graphs loops are unambiguously
defined and dominators can be efficiently
computed.

Lecture 5 15-74519 2008

Reducible flow graphs

Definition: A flow graph G is reducible iff we can partition
the edges into two disjoint groups, forward edges and back
edges, with the following two properties.

1. The forward edges form an acyclic graph in which every
node can be reached from the initial node of 6.

2. The back edges consist only of edges whose heads
dominate their tails.

Why isn't this l
reducible? 0
This flow graph has no back edges. Thus, it would be 1 2

reducible if the entire graph were acyclic, which is
not the case.

Lecture 5 15-7452@ 2008

Alternative definition

- Definition: A flow graph G is reducible if we can
repeatedly collapse (reduce) tfogether blocks (xy)
where x is the only predecessor of y (ignoring self
loops) until we are left with a single node

1 | | |

0 0
0 0
; ™ 133
‘ 1,2 ‘ 1,2,3 L
|
3 0,1,2.3
3]

555555555555

Properties of Reducible Flow Graphs

* Ina reducible flow graph,

all loops are natural loops

+ Can use DFS tfo find loops
* Many analyses are more efficient

- polynomial versus exponential

Good News

* Most flow graphs are reducible

+ Languages can prohibit irreducibility
- goto free C

- Java

* Programmers usually don't use such constructs
even if they're available

- >90% of old Fortran code reducible

Dealing with Irreducibility

- Don't
+ Can split nodes and duplicate code to get

reducible graph
- possible exponential blowup

* Other techniques... |
| o)
0
1 2

1 2 I
2a

Loop optimizations:
Hoisting of loop-invariant
computations

Loop-invariant computations

* A definition
t=xopy
in a loop is (conservatively) loop-invariant if
- x and y are constants, or

- all reaching definitions of x and y are
outside the loop, or

- only one definition reaches x (ory), and
that definition is loop-invariant
+ so keep marking iteratively

Loop-invariant computations

- Be careful:
t = expr;
for O {
s =tT* 2;
t = loop_invariant_expr;
X =1t + 2;
by

+ Even though t's fwo reaching expressions are
each invariant, s is not invariant...

Hoisting

* Inorder to “hoist" a loop-invariant computation

out of a loop, we need a place to put it

+ We could copy it to all immediate predecessors

(except along the back-edge) of the loop
header...

* ...But we can avoid code duplication by inserting

a new block, called the pre-header

Hoisting

L]
L L

15-745 © 2008

Hoisting

preheaders

15-745 © 2008

Hoisting conditions

* For a loop-invariant definition
d:t=xopy
- we can hoist d into the loop's pre-header only if
1. d's block dominates all loop exits at which t is live-

out, and
2. d is only the only definition of 1 in the loop, and

3. t is not live-out of the pre-header

15-745 © 2008

31

We need to be careful...

« All hoisting conditions must be satisfied!

LO: LO: LO:
t=0 t=0 t=0
L1: L1: L1:
i=i+1 if 1>=N goto L2 i=i+1
t=a*hb i=1+1 t=a*hb
MLi] = t t=a*hb M[i] = t
if i<N goto L1 M[i] = t t=0
L2: goto L1 M1 =t
X =t L2: if i<N goto L1
X =t L2:

OK violates 1,3 violates 2

15-745 © 2008

We need to be careful...

« All hoisting conditions must be satisfied!

LO: LO: LO:

t=0 t=0 t=0

L1: L1: L1

i=i+1 if i>=N goto L2 i=i+1

t=a*b i=i1+1 t=a*hb

MLi] = t t=a*hb MLi1 = t re

if i<N goto L1 MLi] = t t = ‘74

L2: goto L1 MJ] =t

X =1t L2: if i<N goto L1
this def X = t L2:
uzacher

oK violates 1,3 violates 2

Loop optimizations:
Induction-variable
Strength reduction

The basic idea of IVE

+ Suppose we have a loop variable
- i initially O; each iterationi=i+1

- and a variable that linearly depends on it:
x=i*cl+c2

* Insuch cases, we can try fo
- initialize x =i, * c1 + c2 (execute once)
- increment x by cl each iteration

Simple Example of IVE

i<-0
H:
if I >= n goto exit

for ;[i]oztg n j<-i*a
|::> k <-j + a
M[k] <- O
i<-i1+1
goto H

Clearly, j & k do not need to be computer anew
each time since they are related to i and i
changes linearly.

Simple Example of IVE

i <-0

if I >= n goto exit
jJ<-i*4
k< j+a —>
M[K] <- O
i<-i+1
goto H

i<-0

Jj" <-0
k® <- a

if 1 >= n goto exit

<=7
k <- k"

goto H

But, then we don't even need j (or j')

15-745 © 2008

Lecture

Simple Example of IVE

i<-0
J" <=0 i<-0
k" <- a k" <- a

ifi >= n goto exit if 1 >= n goto exit

J<-1] |:> k <- k"

k <- k" M[k] <- O
M[k] <- O i<-i+1

P <-1+1 k® <- k" + 4
3" <=3+ 4 goto H

k" <- k™ + 4

goto H

Do we need i?

15-745 © 2008 38

Simple Example of IVE

Rewrite comparison

i <-0
k" <- a
H:

if I >= n goto exit

k <- k- |:>
M[K] <- O

i<-i+1

k" <- k" + 4
goto H

i <-0
k" <- a

if k* >= a+(n*4) goto exi

k <- k*©

M[k] <- O

k" <- k* + 4
goto H

But, a+(n*4) is loop invariant

15-745 © 2008

Lecture

Simple Example of IVE

Invariant code motion on a+(n*4)

i<-0 k" <- a
k* <- a n" <-a+ (n*4)
H:
if k* >= a+(n*4)goto exit if K™ >= n" goto exit
k <- k" k <- k*©
M[K] <- O |:> M[K] <- O
k" <- k* + 4 k" <- k* + 4
goto H goto H

now, we do copy propagation and eliminate k

15-745 © 2008 40

Simple Example of IVE

Copy propagation

k* <- a k" <- a
n" <-a+ (n* 4) n" <-a+ (n* 4)
H:

if kK™ >= n" goto exit if k™ >= n® goto exit

k <- k- M[k*] <- O
M[K] <- O |:> K* <- k™ + 4
k® <- k* + 4 goto H

goto H

Simple Example of IVE

Compare original and result of IVE

_ k" <- a
i <-0 n" <-a+ (n*4)
H: H:
if I >= n goto exit if k™ >= n" goto exit
j<-i~*4 M[k"] <- O
k <-j + a k™ <— k" + 4
M[k] <~ 0 goto H
i <-1+1
goto H
Voilal

What we did

- idenftified induction variables (i,j k)

+ strength reduction (changed * into +)

+ dead-code elimination (j <- j')

* useless-variable elimination (j' <- j' + 4)

(This can also be done with ADCE)

* loop invariant identification & code-motion
+ almost useless-variable elimination (i)
* copy propagation

Is it faster?

+ On some hardware, adds are much faster than
multiplies

* Furthermore, one fewer value is computed,
- thus potentially saving a register
- and decreasing the possibility of spilling

Loop preparation

- Before attempting IVE, it is best to first
perform :

- constant propagation & constant folding
- copy propagation
- loop-invariant hoisting

How to do it, step 1

* First, find the basic IVs

- scan loop body for defs of the form
X=IX+COrxX=x-¢C
where c is loop-invariant
- record these basic IVs as
x=(x,1,0¢)
- this represents the IV: x = x* 1+ ¢

Representing IVs
* Characterize all induction variables by:

(base-variable, offset, multiple)

- where the offset and multiple are loop-
invariant

- TOW, after an induction variable is defined it
equals:

offset + multiple * base-variable

How to do it, step 2

« Scan for derived IVs of the form

k=i*cl+c2
- where i is a basic IV,

this is the only def of k in the loop, and
cl and c2 are loop invariant

+ We say k is in the family of i
+ Record as k = (i, c1, c2)

How to do it, step 3

+ Iterate, looking for derived IVs of the form
k=j*cl+c2

- where IV j =(i, a, b), and

- this is the only def of k in the loop, and

- there is no def of i between the def of j and
the def of k

- cl and c2 are loop invariant
+ Record as k = (i, a*cl, b*cl+c2)

Simple Example of IVE

i<-0

if I >= n goto exit
j<-1*4
k<-j+a

M[k] <- O
i<-i+1

goto H

- (i, 1, 1)
J: (@, 0, 4)
k: (1, a, 4)

=
X o
i n
®» OB
+ + +
LN
* * %

So, j & k are in family of i

Finding the IVs

* Maintain three tables: basic & maybe & other

+ Find basic Ivs:

Scan stmts. If var ¢ maybe, and of proper
form, put into basic. Otherwise, put var in
other and remove from maybe.

* Find compound Ivs:
- If var defined more than once, put into other

- For all stmts of proper form that use a basic
IV
» FIX THIS SLIDE

How to do it, step 4

* This is the strength reduction step
 For an induction variable k = (i, c1, c2)

- initialize k = i * c1 + ¢c2 in the preheader

- replace k's def in the loop by
k=k+cl

- make sure to do this after i's def

How to do it, step 5

* This is the comparison rewriting step

* For an induction variable k = (i, a,, b,)

- If k used only in definition and comparison

- There exists another variable, j, in the same
class and is not "useless” and j=(i, a;, b;)

- Rewrite k<nas

J < (by/b)(n-a)+q;

* Note: since they are in same class:

(j-a))/b; = (k-a,)/by

15-745 © 2008 53

Notes

* Are the cl, c2 constant, or just invariant?

- if constant, then you can keep folding them:
they're always a constant even for derived IVs

- otherwise, they can be expressions of loop-
invariant variables

» But if constant, can find IVs of the type
x=i/b
and know that it's legal, if b evenly divides the
stride...

Is it faster? (2)

+ On some hardware, adds are much faster than

multiplies

* But...not always a win!

- Constant multiplies might otherwise be
reduced to shifts/adds that result in even
better code than IVE

- Scaling of addresses (i*4) might come for
free on your processor's address modes

+ So maybe: only convert i*cl+c2 when cl is

loop invariant but not a constant

Common loop optimizations

* Hoisting of loop-invariant computations

- pre-compute before entering the loop
+ Elimination of induction variables

- change p=i*w+b to p=b p+=w, when w,b invariant
* Loop unrolling

- to to improve scheduling of the loop body
+ Software pipelining

Requires
understanding
data
dependencies

* Loop permutation

Dependencies in Loops

* Loop independent data dependence occurs
between accesses in the same loop iteration.

* Loop-carried data dependence occurs between
accesses across different loop iterations.

* There is data dependence between
access a at iteration i-k and
access b at iteration i when:

- aand b access the same memory location
- There is a path froma fo b
- Either aor b is a write

Lecture 5 15-745 © 2008

* Flow Dependence
- Anti-Dependence
* Output Dependence

Lecture 5

Defining Dependencies

W =>R Sf }true
R 22W ¢
W=2>W &

S1) a=0;

S2) b=a;

S3) c=a+d+e;
S4) d=b;

S5) b=5+e;

15-745 © 2008 58

Example Dependencies

S1) a=0; _

82) b=a- These are scalar dependencies. The
) b=a; same idea holds for memory accesses.

S3) c=a+d+e; l

54) d=b; source type target due to

S5) b=5+e;

S1 & S2 a
S1 " S3
S2 & S4
S3 62 S4
S4 % S5
S2 & S5

O O o T 9

What can we do with this information?
What are anti- and flow- called "false" dependences?

Lecture 5 15-745 © 2008

11/20/01

Data Dependence in Loops

- Dependence can flow across iterations of
the loop.

- Dependence information is annotated with
iteration information.

» If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {
ALi] = BLi];
B[i+1] = A[i];

15-411 Fall '01 © Seth Copen Goldstein 2001 60

Data Dependence in Loops

- Dependence can flow across iterations of
the loop.

- Dependence information is annotated with
iteration information.

+ If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

&' loop carried

11/20/01

AL = BT
< BLi+1] = A[il;

} &' loop independent

15-411 Fall '01 © Seth Copen Goldstein 2001

61

Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {
5" loop carried

ALi] = B[i];
< BLi+1] = A[il:

3} & loop independent
A[O] = B[O]; } =0
B[11 = ALO]; Distance/Direction of the
A[1] = B[1]; _ dependence is also important.
B[2] = A[L]; =1
A[2] = B[2];
BI3] = A[2];
i=2

[]

[]

°

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001

62

11/20/01

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) { ———o—o °
(XY}
}
° ° 0[3 }
2
for (i=0; i<n; i++) ° ° ° (]
for (J=0; j<4; j++) { o o o o
(XY}
} r Y r Y r Y r Y

15-411 Fall '01 © Seth Copen Goldstein 2001

63

Distance Vector

for (i=0; i<n; i++) {
AL1] = B[i];
BLi+1] = A[i];
} Distance vector is the difference between
the target and source iterations.

d=Il-lg

A[O] = B[O]: } i=0 Exactly the distance of the dependence, i.e.,
B[1] = A[0]: L+d=l,
A[1] = B[1]; .
B[2] = A[L]; } =1
A[2] = B[2];
BL3] = AL2]: }

i=2

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001

64

Example of Distance Vectors

for (i=0; i<n; i++) A
for (3J=0; j<m; j+H{ K. _

ALi,i] :_ _; C,,= =Cos [C2,= =Ci3 [C3= =C,;
= AL1.]1]1; — — —
BLi,j+1] = ; i 20,1: :'20,1 gm: :gl,l gZ,l: :gz,l
= B[i j]' 0.2 0,1 127 1,1 2,2~ 21
- - ’ 1] 11~ C02 C21— —Cl,2 C3l_ C22
C[I+1,J] =
= C[i,j+1] ; Poo= Ao Pro= TAe oo™ Az
} 01= =Boo [B11= =Bio B21= =Byp

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 65

Example of Distance Vectors

for (i=0; i<n; i++)

. - - Ao Aoy Paom A o= FAg,
for (J=0; j<m; j++ 5 g s
a J 1+01 Bos= FBoz, Pis= =Bi, Bos= =By,

ALT.J] :_) ’ C12= FCos [Co2= =Cis [Cs2= =Cys
= ALL.31;
B[i,j+1] = ; . o= tAO,l A= =Anr Poa= =Ag
- B[i.jil: J Boo= €Bo1 B~ KBZQ: =B,
) g Ci1= =Cop [C217 =Cinn[Cs1= =Cyp
CLi+l.j1 = :
= CLi,j+1] ; Poo= “Roo Pro= TAro PaoTAz

1 Bo1= =Boo [Bi1= =Bio B21= =Bap
Ci0= =Co1 [C20= =Cia Cso= =C,y

N 0 . 0 N 1
Avyields: [O] B yields: [1] C yields: [1]

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 66

Data Dependences

Loop carried: between two statements instances
in two different iterations of a loop.
Loop independent: between two statements
instances in the same loop iteration.

Lexically forward: the source comes before the target .
Lexically backward: otherwise.

The right-hand side of an assignment is considered
to precede the left-hand side.

Lecture 5 15-745 © 2008 67

Review of Linear Algebra
Lexicographic Order

Two n-vectors a and b are equal,a = b, if a;=b;, 1 <i<n.
We say that a is less than b, a<b, if ai<b;, 1 <i <n.

We say that a is lexicographically less than b, at level §j,
a «;b,if a;=b;, 1<i< jand axb;.

We say that a is lexicographically less than b, a « b, if
thereisa j, 1< j<n, such thata «; b.

Lecture 5 15-745 © 2008 68

Lexicographic Order
Example of vectors

Consider the vectors a and b below :

1 1

-1 -1
a= b:

0 1

2 -1

We say that a is lexicographically less than b
at level 3,a <, b, orsimply thata <b.

Both a and b are lexicographically positive
because0<a,and 0 < b.

cture 5 15-745 © 2008

69

ecture

Properties of Lexicographic Order

Letn>1,and i, j, k denote arbitrary vectors in R"

1 For eachuinl<u<n,the relation «,in R"is
irreflexive and transitive.

2 The n relations «, are pairwise disjoint:
i«,jandi«, j imply thatu=v.

3 Ifi # j, thereis aunique integer u such that 1 <u<

ﬂ C}r&d exactly one of the following two conditions
olds:

i«,J or j«,i.
4 i« jand j«, k together imply that i «, k, where
w = min (u,v).

15-745 © 2008 70

cture 5 15-745 © 2008

Data Dependence in Loops

An Example

Find the dependence relations due to the array X in the program
below:

(Sy) fori=2to 9do
(S2) X[i] = Y[l + Z[i]
(S3) Ali] = X[i-1] + 1
(S,) end for

Solution

To find the data dependence relations in a simple loop, we can unroll
the loop and see which statement instances depend on which
others:

i=2 i=3 i=4

(s2) X[2]=Y[2]+Z[2]
(s3) A[2]=X[1]+1

X[31 =Y[3]+Z[3]
A[3] =X[2]+1

X[4]=Y[4]+Z[4]
A[4]=X[3]+1

From Wolfe

71

ecture

5 15-745 © 2008

Data Dependence in Loops

(S,) fori =2 to ﬁ;
9 do 1,3
(Sy) XLi] = -3

Y[i1 + Z[i] C >
(S ALi] =
X[i-1] + 1 Data dependence graph for statements in a loop
(S,) end for (1,3) := iteration distance is 1, latency is 3.
i=2 i=3 i=4
(s2) X[2]=Y[2]+2Z[2] =Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) Al2]=X[1]+1 A[B]=X[2]+1 A[4]=x[3]+1

There is a loop-carried, lexically forward, flow
dependence from S, to Ss.

From Wolfe 7

