
15-745 Lecture 515-745 Lecture 5

Control flow analysis
Natural loopsNatural loops

Classical Loop Optimizations
D d iDependencies

C i ht © S th G ld t i 2008

Lecture 5 15-745 © 2008 1

Copyright © Seth Goldstein, 2008
Based on slides from Lee & Callahan

Loops are Key
• Loops are extremely important

– the “90-10” rulethe 90 10 rule
• Loop optimization involves

– understanding control flow structure– understanding control-flow structure
– Understanding data-dependence information

sensitivity to side effecting operations– sensitivity to side-effecting operations
– extra care in some transformations such as

register spillingregister spilling

Lecture 5 15-745 © 2008 2

Common loop optimizations

• Hoisting of loop-invariant computations Scalar opts,
DF l i– pre-compute before entering the loop

• Elimination of induction variables
h i* b b h b i i

DF analysis,
Control flow analysis

– change p=i*w+b to p=b,p+=w, when w,b invariant
• Loop unrolling

to improve scheduling of the loop body– to improve scheduling of the loop body
• Software pipelining

– To improve scheduling of the loop body
Requires
understanding
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data
dependencies

Lecture 5 15-745 © 2008 3

Finding Loops
• To optimize loops, we need to find them!
• Could use source language loop information in Could use source language loop information in

the abstract syntax tree…
• BUT:

– There are multiple source loop constructs: for, while,
do-while, even goto in C

– Want IR to support different languages
– Ideally, we want a single concept of a loop so all have

same analysis same optimizationssame analysis, same optimizations
– Solution: dismantle source-level constructs, then

re-find loops from fundamentals

Lecture 5 15-745 © 2008 4

Finding Loops
• To optimize loops, we need to find them!
• Specifically:Specifically

– loop-header node(s)
• nodes in a loop that have immediate predecessors

not in the loop

– back edge(s)
c nt l fl d s t • control-flow edges to
previously executed nodes

– all nodes in the loop bodyp y

Lecture 5 15-745 © 2008 5

Control-flow analysis
• Many languages have goto and other complex

control, so loops can be hard to find in generalcontrol, so loops can be hard to f nd n general

• Determining the control structure of a program g p g
is called control-flow analysis

• Based on the notion of dominators

Lecture 5 15-745 © 2008 6

Dominators
• a dom b

– node a dominates b if every possible node a dom nates b f every poss ble
execution path from entry to b includes a

• a sdom b
– a strictly dominates b if a dom b and a != b

• a idom b
 i di l d i b if d b ND – a immediately dominates b if a sdom b, AND

there is no c such that a sdom c and c sdom b

Lecture 5 15-745 © 2008 7

Back edges and loop headers
• A control-flow edge

from node B3 to B2
Entry

from node B3 to B
is a back edge if

B2 dom B3

k = false
i = 1
j = 2

B1

• Furthermore, in
i <= n B2

that case node B2
is a loop header

j = j*2
k = true
i = i+1

..k..

print j i = i+1

B4
B3

print j i = i+1

exit
B6B5

Lecture 5 15-745 © 2008 8

Natural loop
• Consider a back edge from node n to node h

• The natural loop of n→h is the set of nodes L
such that for all x∈L:such that for all x∈L:
– h dom x and
– there is a path from x to n not containing hthere is a path from x to n not containing h

Lecture 5 15-745 © 2008 9

Examples

Simple example:

(often it’s more
complicated, since
 FOR l f d i a FOR loop found in

the source code
might need an if/then

Lecture 5 15-745 © 2008 10

g
guard)

Examples

Try this: a

b

d

c

e

f

Lecture 5 15-745 © 2008 11

Examples

for (..) {
if {
…
} else {
…
if (x) { eif (x) {

e;
break;

)
}

}

Lecture 5 15-745 © 2008 12

Examples

for (..) {
if {
…
} else {
…
if (x) { e

lexically, in loop,
but not in
natural loopif (x) {

e;
break;

)
}

}

Lecture 5 15-745 © 2008 13

Examples

for (..) {
if {
…
} else {
…
if (x) { e

lexically, in loop,
but not in
natural loopif (x) {

e;
break;

) and another
reason why CFG }

}
y

analysis is
preferred over
source/AST
loops

Lecture 5 15-745 © 2008 14

loops

Examples
• Yes, it can happen in C

Lecture 5 15-745 © 2008 15

Natural Loops

What are the natural loops?
One loop per header..

00 0
{0 1 2}

11 21
{0,1,2}

22 0
33

0

21
{}

21
{1,2},{0,1,2,3}{1,2,3}

Lecture 5 1615-745 © 2008

Nested Loops
• Unless two natural loops have the same header,

they are either disjoint or nested within each they are e ther d sjo nt or nested w th n each
other

• If A and B are loops (sets of blocks) with p ()
headers a and b such that a ≠ b and b ∈ A
– B ⊂ A
– loop B is nested within A
– B is the inner loopp

• Can compute the loop-nest tree

Lecture 5 1715-745 © 2008

General Loops

• A more general looping structure is a strongly
t d t f th t l fl hconnected component of the control flow graph

– subgraph <Nscc,Escc> such that

every block in Nscc is reachable from every
other node using only edges in Eother node using only edges in Escc

00

21
scc

21
Not very useful definition of a loop

Lecture 5 1815-745 © 2008

Reducible Flow Graphs

There is a special class of flow graphs, called p g p ,
reducible flow graphs, for which several code-
optimizations are especially easy to perform.

In reducible flow graphs loops are unambiguously In reducible flow graphs loops are unambiguously
defined and dominators can be efficiently
computed.computed.

19Lecture 5 15-745 © 2008

Reducible flow graphs
Definition: A flow graph G is reducible iff we can partition
the edges into two disjoint groups, forward edges and back
edges with the following two propertiesedges, with the following two properties.

1. The forward edges form an acyclic graph in which every
node can be reached from the initial node of Gnode can be reached from the initial node of G.

2. The back edges consist only of edges whose heads
dominate their tails.

0
Why isn’t this
reducible? 0

21This flow graph has no back edges Thus it would be

20

21This flow graph has no back edges. Thus, it would be
reducible if the entire graph were acyclic, which is
not the case.

Lecture 5 15-745 © 2008

Alternative definition
• Definition: A flow graph G is reducible if we can

repeatedly collapse (reduce) together blocks (x,y)
where x is the only predecessor of y (ignoring self where x is the only predecessor of y (ignoring self
loops) until we are left with a single node

0 0 0 0
1

1,2 1,2,3
1,2,3

2
,

3

, ,

0 1 2 3
21

3 3 0,1,2,3
Lecture 5 15-745 © 2008

Properties of Reducible Flow Graphs

• In a reducible flow graph,g p ,
all loops are natural loops

• Can use DFS to find loopsp
• Many analyses are more efficient

– polynomial versus exponential

22Lecture 5 15-745 © 2008

Good News
• Most flow graphs are reducible
• Languages can prohibit irreducibilityLanguages can prohibit irreducibility

– goto free C
– Java– Java

• Programmers usually don’t use such constructs
even if they’re availableeven if they re available
– >90% of old Fortran code reducible

23Lecture 5 15-745 © 2008

Dealing with Irreducibility
• Don’t
• Can split nodes and duplicate code to get Can split nodes and duplicate code to get

reducible graph
– possible exponential blowuppossible exponential blowup

• Other techniques…

0
0

0

21
21

21 2a
Lecture 5 15-745 © 2008

L ti i ti s:Loop optimizations:
Hoisting of loop-invariantg p

computations

Lecture 5 15-745 © 2008 25

Loop-invariant computations
• A definition

t = x op yt = x op y
in a loop is (conservatively) loop-invariant if
– x and y are constants or– x and y are constants, or
– all reaching definitions of x and y are

outside the loop oroutside the loop, or
– only one definition reaches x (or y), and

that definition is loop-invariantthat definition is loop invariant
• so keep marking iteratively

Lecture 5 15-745 © 2008 26

Loop-invariant computations
• Be careful:

t = expr;
for () {() {

s = t * 2;
t = loop_invariant_expr;

2x = t + 2;
…

}}

• Even though t’s two reaching expressions are

Lecture 5 15-745 © 2008 27

p
each invariant, s is not invariant…

Hoisting
• In order to “hoist” a loop-invariant computation

out of a loop, we need a place to put itout of a loop, we need a place to put t

• We could copy it to all immediate predecessors We could copy it to all immediate predecessors
(except along the back-edge) of the loop
header...

• ...But we can avoid code duplication by inserting p y g
a new block, called the pre-header

Lecture 5 15-745 © 2008 28

Hoisting

AA

B

Lecture 5 15-745 © 2008 29

Hoisting

A A’
preheaders

A

B
A

B

B’

Lecture 5 15-745 © 2008 30

Hoisting conditions
• For a loop-invariant definition

d: t = x op yd: t = x op y
• we can hoist d into the loop’s pre-header only if

1 d’s block dominates all loop exits at which t is live-1. d s block dominates all loop exits at which t is live
out, and

2. d is only the only definition of t in the loop, and
3. t is not live-out of the pre-header

Lecture 5 15-745 © 2008 31

We need to be careful...
• All hoisting conditions must be satisfied!

L0 L0 L0L0:
t = 0
L1:
i = i + 1
t a * b

L0:
t = 0
L1:
if i>=N goto L2
i i + 1

L0:
t = 0
L1:
i = i + 1
t a * bt = a * b

M[i] = t
if i<N goto L1
L2:
x t

i = i + 1
t = a * b
M[i] = t
goto L1
L2:

t = a * b
M[i] = t
t = 0
M[j] = t
if i<N goto L1x = t L2:

x = t
if i<N goto L1
L2:

OK violates 1,3 violates 2

Lecture 5 15-745 © 2008 32

We need to be careful...
• All hoisting conditions must be satisfied!

L0 L0 L0L0:
t = 0
L1:
i = i + 1
t a * b

L0:
t = 0
L1:
if i>=N goto L2
i i + 1

L0:
t = 0
L1:
i = i + 1
t a * b thi d ft = a * b

M[i] = t
if i<N goto L1
L2:
x t

i = i + 1
t = a * b
M[i] = t
goto L1
L2:

t = a * b
M[i] = t
t = 0
M[j] = t
if i<N goto L1

this def
reaches

x = t L2:
x = t

if i<N goto L1
L2:this def

reaches

OK violates 1,3 violates 2

Lecture 5 15-745 © 2008 33

Loop optimizations:
Induction variableInduction-variable
Strength reduction

Lecture 5 15-745 © 2008 34

The basic idea of IVE
• Suppose we have a loop variable

– i initially 0; each iteration i = i + 1i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:• and a variable that linearly depends on it:
x = i * c1 + c2

• In such cases, we can try to
i iti li i * 1 2 ()– initialize x = io * c1 + c2 (execute once)

– increment x by c1 each iteration

Lecture 5 15-745 © 2008 35

Simple Example of IVE

i 0

for i = 0 to n

i <- 0
H:

if i >= n goto exit
j <- i * 4a[i] = 0 j <- i * 4
k <- j + a
M[k] <- 0
i <- i + 1i < i + 1
goto H

Clearly, j & k do not need to be computer anew
each time since they are related to i and i

Lecture 5 15-745 © 2008 36

y
changes linearly.

Simple Example of IVE

i <- 0
i <- 0

H:
if i >= n goto exit

j' <- 0
k' <- a

H:goto e t
j <- i * 4
k <- j + a
M[k] <- 0

if i >= n goto exit
j <- j'
k <- k'

i <- i + 1
goto H

M[k] <- 0
i <- i + 1
j' <- j' + 4
k' < k' + 4k' <- k' + 4
goto H

B t th d 't d j (j')

Lecture 5 15-745 © 2008 37

But, then we don't even need j (or j')

Simple Example of IVE

i <- 0
j' <- 0
k' <- a

H:
i <- 0
k' <- a

H:
if i >= n goto exit
j <- j'
k <- k'

:
if i >= n goto exit
k <- k'
M[k] <- 0

M[k] <- 0
i <- i + 1
j' <- j' + 4
k' < k' + 4

i <- i + 1
k' <- k' + 4
goto H

k' <- k' + 4
goto H

D d i?

Lecture 5 15-745 © 2008 38

Do we need i?

Simple Example of IVE
Rewrite comparison

i <- 0
k' <- a

H:

i <- 0
k' <- a

H: :
if k' >= a+(n*4) goto exi
k <- k'
M[k] <- 0

:
if i >= n goto exit
k <- k'
M[k] <- 0

k' <- k' + 4
goto H

i <- i + 1
k' <- k' + 4
goto H

But a+(n*4) is loop invariant

Lecture 5 15-745 © 2008 39

But, a+(n*4) is loop invariant

Simple Example of IVE
Invariant code motion on a+(n*4)

i <- 0
k' <- a

H:

k' <- a
n' <- a + (n * 4)

H::
if k' >= a+(n*4)goto exit
k <- k'
M[k] <- 0

:
if k' >= n' goto exit
k <- k'
M[k] <- 0

k' <- k' + 4
goto H

k' <- k' + 4
goto H

 d ti d li i t k

Lecture 5 15-745 © 2008 40

now, we do copy propagation and eliminate k

Simple Example of IVE

Copy propagation

k' <- a
n' <- a + (n * 4)

H:

k' <- a
n' <- a + (n * 4)

H: :
if k' >= n' goto exit
M[k'] <- 0
k' <- k' + 4

:
if k' >= n' goto exit
k <- k'
M[k] <- 0

goto Hk' <- k' + 4
goto H

Voila!

Lecture 5 15-745 © 2008 41

Voila!

Simple Example of IVE

k' <- a

Compare original and result of IVE

n' <- a + (n * 4)
H:

if k' >= n' goto exit

i <- 0
H:

if i >= n goto exit
j i * 4 M[k'] <- 0

k' <- k' + 4
goto H

j <- i * 4
k <- j + a
M[k] <- 0
i < i + 1i <- i + 1
goto H

Voila!

Lecture 5 15-745 © 2008 42

Voila!

What we did
• identified induction variables (i,j,k)
• strength reduction (changed * into +)strength reduction (changed into +)
• dead-code elimination (j <- j')
• useless variable elimination (j' < j' + 4)• useless-variable elimination (j <- j + 4)

(This can also be done with ADCE)
• loop invariant identification & code-motionloop invariant identification & code-motion
• almost useless-variable elimination (i)
• copy propagation• copy propagation

Lecture 5 15-745 © 2008 43

Is it faster?

• On some hardware adds are much faster than On some hardware, adds are much faster than
multiplies

• Furthermore, one fewer value is computed,
– thus potentially saving a registerthus potentially saving a register
– and decreasing the possibility of spilling

Lecture 5 15-745 © 2008 44

Loop preparation
• Before attempting IVE, it is best to first

perform :perform
– constant propagation & constant folding
– copy propagationcopy propagation
– loop-invariant hoisting

Lecture 5 15-745 © 2008 45

How to do it, step 1
• First, find the basic IVs

– scan loop body for defs of the formscan loop body for defs of the form
x = x + c or x = x – c

where c is loop-invariantwhere c is loop invariant
– record these basic IVs as

x = (x 1 c)x = (x, 1, c)
– this represents the IV: x = x * 1 + c

Lecture 5 15-745 © 2008 46

Representing IVs
• Characterize all induction variables by:

(base-variable, offset, multiple)
– where the offset and multiple are loop-p p

invariant
• IOW, after an induction variable is defined it

equals:

ff t lti l * b i bl offset + multiple * base-variable

Lecture 5 15-745 © 2008 47

How to do it, step 2
• Scan for derived IVs of the form

k = i * c1 + c2k = i c1 + c2
– where i is a basic IV,

this is the only def of k in the loop andthis is the only def of k in the loop, and
c1 and c2 are loop invariant

• We say k is in the family of iWe say k is in the family of i
• Record as k = (i, c1, c2)

Lecture 5 15-745 © 2008 48

How to do it, step 3
• Iterate, looking for derived IVs of the form

k = j * c1 + c2k = j c1 + c2
– where IV j =(i, a, b), and
– this is the only def of k in the loop and– this is the only def of k in the loop, and
– there is no def of i between the def of j and

the def of kthe def of k
– c1 and c2 are loop invariant

• Record as k = (i a*c1 b*c1+c2)• Record as k = (i, a c1, b c1+c2)

Lecture 5 15-745 © 2008 49

Simple Example of IVE

i <- 0
H:

if i >= n goto exit
j <- i * 4
k <- j + a
M[k] <- 0
i <- i + 1
goto H

i: (i, 1, 1) i.e., i = 1 + 1 * i
j: (i, 0, 4) i.e., j = 0 + 4 * i
k: (i, a, 4) i.e., k = a + 4 * i

S j & k i f il f i
Lecture 5 15-745 © 2008 50

So, j & k are in family of i

Finding the IVs
• Maintain three tables: basic & maybe & other
• Find basic Ivs:Find basic Ivs:

Scan stmts. If var ∉ maybe, and of proper
form, put into basic. Otherwise, put var in , p , p
other and remove from maybe.

• Find compound Ivs:p
– If var defined more than once, put into other
– For all stmts of proper form that use a basic p p

IV
» FIX THIS SLIDE

Lecture 5 15-745 © 2008 51

How to do it, step 4
• This is the strength reduction step

• For an induction variable k = (i, c1, c2)

– initialize k = i * c1 + c2 in the preheader
replace k’s def in the loop by– replace k s def in the loop by

k = k + c1

– make sure to do this after i’s defmake sure to do this after i s def

Lecture 5 15-745 © 2008 52

How to do it, step 5
• This is the comparison rewriting step

• For an induction variable k = (i, ak, bk)
– If k used only in definition and comparison– If k used only in definition and comparison
– There exists another variable, j, in the same

class and is not “useless” and j=(i aj bj)class and is not useless and j=(i, aj, bj)
• Rewrite k < n as

j < (bj/bk)(n-ak)+ajj < (bj/bk)(n ak)+aj

• Note: since they are in same class:
(j-a)/b = (k-ak)/bk

Lecture 5 15-745 © 2008 53

(j-aj)/bj = (k-ak)/bk

Notes
• Are the c1, c2 constant, or just invariant?

– if constant then you can keep folding them: if constant, then you can keep folding them:
they’re always a constant even for derived IVs

– otherwise they can be expressions of loop-otherwise, they can be expressions of loop
invariant variables

• But if constant, can find IVs of the type
x = i/bx i/b

and know that it’s legal, if b evenly divides the
stride…

Lecture 5 15-745 © 2008 54

stride…

Is it faster? (2)
• On some hardware, adds are much faster than

multipliesmult pl es
• But…not always a win!

– Constant multiplies might otherwise be Constant multiplies might otherwise be
reduced to shifts/adds that result in even
better code than IVE

– Scaling of addresses (i*4) might come for
free on your processor’s address modes

• So maybe: only convert i*c1+c2 when c1 is
loop invariant but not a constant

Lecture 5 15-745 © 2008 55

Common loop optimizations

• Hoisting of loop-invariant computations
– pre-compute before entering the loop

• Elimination of induction variables
h i* b b h b i i– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling
to to improve scheduling of the loop body– to to improve scheduling of the loop body

• Software pipelining
– To improve scheduling of the loop body

Requires
understanding
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data
dependencies

Lecture 5 15-745 © 2008 56

Dependencies in Loops

• Loop independent data dependence occurs
between accesses in the same loop iterationbetween accesses in the same loop iteration.

• Loop-carried data dependence occurs between
accesses across different loop iterationsaccesses across different loop iterations.

• There is data dependence between
access a at iteration i-k and acc ss a at t rat on an
access b at iteration i when:

– a and b access the same memory locationy
– There is a path from a to b
– Either a or b is a write

Lecture 5 15-745 © 2008 57

E ther a or b s a wr te

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

true

Anti-Dependence R W δ
• Output Dependence W W δo false

S1) a=0;
S2) b=a;
S3) c=a+d+e;S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

15-745 © 2008 58

S5) b 5+e;

Lecture 5

Example Dependencies
S1) a=0;S1) a=0;
S2) b=a;
S3) c=a+d+e;

1These are scalar dependencies. The
same idea holds for memory accesses.S3) c a+d+e;

S4) d=b;
S5) b=5+e; source type target due to

S1 δf S2 a

2

S1 δf S2 a
S1 δf S3 a
S2 δf S4 b

3

S2 δ S4 b
S3 δa S4 d
S4 δa S5 b

4

S2 δo S5 b
5

15-745 © 2008 59

What can we do with this information?
What are anti- and flow- called “false” dependences?

Lecture 5

Data Dependence in Loops
• Dependence can flow across iterations of

the loop.p
• Dependence information is annotated with

iteration information.
• If dependence is across iterations it is loop

carried otherwise loop independent.

for (i=0; i<n; i++) {for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 60

}

Data Dependence in Loops
• Dependence can flow across iterations of

the loop.p
• Dependence information is annotated with

iteration information.
• If dependence is across iterations it is loop

carried otherwise loop independent.

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

} δf loop independent

δf loop carried

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 61

} p p

Unroll Loop to Find Dependencies
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

δf loop carried

B[i+1] = A[i];
} δf loop independent

A[0] = B[0]; i=0

B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] B[2]

i=1

Distance/Direction of the
dependence is also important.

A[2] = B[2];
B[3] = A[2];

i=2

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 62

Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of
th l stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)
3
2

for (j=0; j<4; j++) {

}

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 63

Distance Vector

for (i=0; i<n; i++) {
A[i] = B[i];[] []
B[i+1] = A[i];

} Distance vector is the difference between
the target and source iterations.

A[0] = B[0]; i=0

d = It-Is

Exactly the distance of the dependence, i.e.,

B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] B[2]

i=1

Is + d = It

A[2] = B[2];
B[3] = A[2];

i=2

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 64

Example of Distance Vectors

for (i=0; i<n; i++) ()
for (j=0; j<m; j++){

A[i,j] = ;
[i j]

A0,2= =A0,2
B0,3= =B0,2
C1,2= =C0,3

A1,2= =A1,2
B1,3= =B1,2
C2,2= =C1,3

A2,2= =A2,2
B2,3= =B2,2
C3,2= =C2,3= A[i,j];

B[i,j+1] = ;
= B[i,j];

A0,1= =A0,1
B0,2= =B0,1
C1 1= =C0 2

A1,1= =A1,1
B1,2= =B1,1
C2 1= =C1 2

A2,1= =A2,1
B2,2= =B2,1
C3 1= =C2 2

j

C[i+1,j] = ;
= C[i,j+1] ;

}
A0,0= =A0,0
B0,1= =B0,0

C1,1 C0,2

A1,0= =A1,0
B1,1= =B1,0

C2,1 C1,2

A2,0= =A2,0
B2,1= =B2,0

C3,1 C2,2

} C1,0= =C0,1 C2,0= =C1,1 C3,0= =C2,1

i

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 65

Example of Distance Vectors
for (i=0; i<n; i++)

for (j=0; j<m; j++){ A0,2= =A0,2
B0 3= =B0 2

A1,2= =A1,2
B1 3= =B1 2

A2,2= =A2,2
B2 3= =B2 2A[i,j] = ;

= A[i,j];
B[i,j+1] = ; j

A0,1= =A0,1
B B

0,3 0,2
C1,2= =C0,3

A1,1= =A1,1
B B

1,3 1,2
C2,2= =C1,3

A2,1= =A2,1
B B

2,3 2,2
C3,2= =C2,3

[,j] ;
= B[i,j];

C[i+1,j] = ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1= =C0,2

A1 0= =A1 0

B1,2= =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2= =B2,1
C3,1= =C2,2

= C[i,j+1] ;
}

A0,0 A0,0
B0,1= =B0,0
C1,0= =C0,1

A1,0 A1,0
B1,1= =B1,0
C2,0= =C1,1

A2,0 A2,0
B2,1= =B2,0
C3,0= =C2,1

A yields: 0
0 B yields: 0

1 C yields: 1
-1

i

11/20/01 15-411 Fall '01 © Seth Copen Goldstein 2001 66

0

Data Dependences
Loop carried: between two statements instances

in two different iterations of a loop.
L i d d t b t t t t t Loop independent: between two statements

instances in the same loop iteration.

Lexically forward: the source comes before the target .
Lexically backward: otherwise.L y w w .

The right-hand side of an assignment is considered
to precede the left-hand side.

67Lecture 5 15-745 © 2008

Review of Linear Algebra
Lexicographic Orderg p

T d b l b if b 1 iTwo n-vectors a and b are equal, a = b, if ai = bi, 1 ≤ i ≤ n.

We say that a is less than b, a<b, if ai<bi, 1 ≤ i ≤ n.y , , i i,

We say that a is lexicographically less than b, at level j,
a « b if a = b 1 ≤ i < j and a <ba «j b, if ai = bi, 1 ≤ i < j and aj<bj.

We say that a is lexicographically less than b, a « b, if
th i j 1 j h th t bthere is a j, 1 ≤ j ≤ n, such that a «j b.

68Lecture 5 15-745 © 2008

Lexicographic Order
Example of vectorsExample of vectors

:below and vectorsheConsider t ba

1
1

1
1

⎥
⎥
⎤

⎢
⎢
⎡
−⎥

⎥
⎤

⎢
⎢
⎡
−

1
1

2
0

ba

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣−

=

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

tsimply thaor3levelat
 than lesshically lexicograp is say that We

12

baba
 ba

≺≺

⎦⎣⎦⎣

db
positivehically lexicograp are and Both

. t simply thaor , 3, levelat

b00
ba

baba 3 ≺≺

69

. and , because b0a0 ≺≺

Lecture 5 15-745 © 2008

Properties of Lexicographic Order

Let n ≥ 1, and i, j, k denote arbitrary vectors in Rn

1 For each u in 1 ≤ u ≤ n, the relation «u in Rn is
irreflexive and transitive.

2 Th l ti s i is disj i t 2 The n relations «u are pairwise disjoint:
i «u j and i «v j imply that u = v.

3 If i ≠ j there is a unique integer u such that 1 ≤ u ≤3 If i ≠ j, there is a unique integer u such that 1 ≤ u ≤
n and exactly one of the following two conditions
holds:
i « j or j « ii «u j or j «u i.

4 i «u j and j «v k together imply that i «w k, where
w = min (u,v).

70

w min (u,v).

Lecture 5 15-745 © 2008

Data Dependence in LoopsData Dependence in Loops
An Example
Fi d th d d l ti d t th X i th Find the dependence relations due to the array X in the program

below:

(S1) for i = 2 to 9 do(S1) for i 2 to 9 do
(S2) X[i] = Y[i] + Z[i]
(S3) A[i] = X[i-1] + 1
(S4) end for

Solution
To find the data dependence relations in a simple loop, we can unroll

the loop and see which statement instances depend on which the loop and see which statement instances depend on which
others:

i = 2 i = 3 i = 4

71

(s2) X[2]=Y[2]+Z[2] X[3] =Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) A[2]=X[1]+1 A[3] =X[2]+1 A[4]=X[3]+1

Lecture 5 15-745 © 2008 From Wolfe

Data Dependence in LoopsData Dependence in Loops

S2

S3

(1,3)
(S1) for i = 2 to
9 do
(S2) X[i] =
Y[i] + Z[i] 3

Data dependence graph for statements in a loop
(1,3) := iteration distance is 1, latency is 3.

(S3) A[i] =
X[i-1] + 1
(S4) end for

i = 2 i = 3 i = 4

(s2) X[2]=Y[2]+Z[2] X[3]=Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) A[2]=X[1]+1 A[3]=X[2]+1 A[4]=X[3]+1

There is a loop-carried, lexically forward, flow
d d f S t S

72

dependence from S2 to S3.

Lecture 5 15-745 © 2008 From Wolfe

