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Loops are Key
• Loops are extremely important

– the “90-10” rulethe 90 10  rule
• Loop optimization involves

– understanding control flow structure– understanding control-flow structure
– Understanding data-dependence information

sensitivity to side effecting operations– sensitivity to side-effecting operations
– extra care in some transformations such as 

register spillingregister spilling
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Common loop optimizations

• Hoisting of loop-invariant computations Scalar opts,
DF l i– pre-compute before entering the loop

• Elimination of induction variables
h  i* b  b  h  b i i

DF analysis,
Control flow analysis

– change p=i*w+b to p=b,p+=w, when w,b invariant
• Loop unrolling

to improve scheduling of the loop body– to improve scheduling of the loop body
• Software pipelining

– To improve scheduling of the loop body
Requires 
understanding 
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data 
dependencies
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Finding Loops
• To optimize loops, we need to find them!
• Could use source language loop information in Could use source language loop information in 

the abstract syntax tree…
• BUT:

– There are multiple source loop constructs: for, while, 
do-while, even goto in C

– Want IR to support different languages
– Ideally, we want a single concept of a loop so  all have 

same analysis  same optimizationssame analysis, same optimizations
– Solution: dismantle source-level constructs, then 

re-find loops from fundamentals
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Finding Loops
• To optimize loops, we need to find them!
• Specifically:Specifically

– loop-header node(s)
• nodes in a loop that have immediate predecessors 

not in the loop

– back edge(s)
c nt l fl  d s t  • control-flow edges to 
previously executed nodes

– all nodes in the loop bodyp y
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Control-flow analysis
• Many languages have goto and other complex 

control, so loops can be hard to find in generalcontrol, so loops can be hard to f nd n general

• Determining the control structure of a program g p g
is called control-flow analysis

• Based on the notion of dominators
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Dominators
• a dom b

– node a dominates b if every possible node a dom nates b f every poss ble 
execution path from entry to b includes a

• a sdom b
– a strictly dominates b if a dom b and a != b

• a idom b
 i di l  d i  b if  d  b  ND – a immediately dominates b if a sdom b, AND 

there is no c such that a sdom c and c sdom b

Lecture 5 15-745  ©  2008 7

Back edges and loop headers
• A control-flow edge 

from node B3 to B2 
Entry

from node B3 to B  
is a back edge if 

B2 dom B3

k = false
i = 1
j = 2

B1

• Furthermore, in 
i <= n B2

that case node B2 
is a loop header

j = j*2
k = true
i = i+1

..k..

print j i = i+1

B4
B3

print j i = i+1

exit
B6B5
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Natural loop
• Consider a back edge from node n to node h

• The natural loop of n→h is the set of nodes L 
such that for all x∈L:such that for all x∈L:
– h dom x and
– there is a path from x to n not containing hthere is a path from x to n not containing h
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Examples

Simple example:

(often it’s more 
complicated, since
 FOR l  f d i  a FOR loop found in 

the source code
might need an if/then 
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g
guard)

Examples

Try this: a

b

d

c

e

f
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Examples

for (..) {
if {
…
} else {
…
if (x) { eif (x) {

e;
break;

)
}

}
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Examples

for (..) {
if {
…
} else {
…
if (x) { e

lexically, in loop, 
but not in 
natural loopif (x) {

e;
break;

)
}

}
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Examples

for (..) {
if {
…
} else {
…
if (x) { e

lexically, in loop, 
but not in 
natural loopif (x) {

e;
break;

) and another 
reason why CFG }

}
y

analysis is 
preferred over   
source/AST 
loops  
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loops  

Examples
• Yes, it can happen in C
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Natural Loops

What are the natural loops?
One loop per header..

00 0
{0 1 2}

11 21
{0,1,2}

22 0
33

0

21
{}

21
{1,2},{0,1,2,3}{1,2,3}
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Nested Loops
• Unless two natural loops have the same header, 

they are either disjoint or nested within each they are e ther d sjo nt or nested w th n each 
other

• If A and B are loops (sets of blocks) with p ( )
headers a and b such that a ≠ b and b ∈ A
– B ⊂ A
– loop B is nested within A
– B is the inner loopp

• Can compute the loop-nest tree
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General Loops

• A more general looping structure is a strongly 
t d t f th  t l fl  hconnected component of the control flow graph

– subgraph <Nscc,Escc> such that

every block in Nscc is reachable from every 
other node using only edges in Eother node using only edges in Escc

00

21
scc

21
Not very useful definition of a loop
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Reducible Flow Graphs

There is a special class of flow graphs, called p g p ,
reducible flow graphs, for which several code-
optimizations are especially easy to perform.

In reducible flow graphs loops are unambiguously In reducible flow graphs loops are unambiguously 
defined and dominators can be efficiently 
computed.computed.
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Reducible flow graphs
Definition: A  flow graph G is reducible iff we can partition 
the edges into two disjoint groups, forward edges and back 
edges  with the following two propertiesedges, with the following two properties.

1. The forward edges form an acyclic graph in which every 
node can be reached from the initial node of Gnode can be reached from the initial node of G.

2. The back edges consist only of edges whose heads 
dominate their tails. 

0
Why isn’t this 
reducible? 0

21This flow graph has no back edges  Thus  it would be 

20

21This flow graph has no back edges. Thus, it would be 
reducible if the entire graph were acyclic, which is 
not the case.
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Alternative definition
• Definition: A  flow graph G is reducible if we can 

repeatedly collapse (reduce) together blocks (x,y) 
where x is the only predecessor of y (ignoring self where x is the only predecessor of y (ignoring self 
loops) until we are left with a single node

0 0 0 0
1

1,2 1,2,3
1,2,3

2
,

3

, ,

0 1 2 3
21

3 3 0,1,2,3
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Properties of Reducible Flow Graphs

• In a reducible flow graph,g p ,
all loops are natural loops

• Can use DFS to find loopsp
• Many analyses are more efficient 

– polynomial versus exponential
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Good News
• Most flow graphs are reducible
• Languages can prohibit irreducibilityLanguages can prohibit irreducibility

– goto free C
– Java– Java

• Programmers usually don’t use such constructs 
even if they’re availableeven if they re available
– >90% of old Fortran code reducible

23Lecture 5 15-745  ©  2008

Dealing with Irreducibility
• Don’t
• Can split nodes and duplicate code to get Can split nodes and duplicate code to get 

reducible graph
– possible exponential blowuppossible exponential blowup

• Other techniques…

0
0

0

21
21

21 2a
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L  ti i ti s:Loop optimizations:
Hoisting of loop-invariantg p

computations
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Loop-invariant computations
• A definition

t = x op yt = x op y
in a loop is (conservatively) loop-invariant if
– x and y are constants  or– x and y are constants, or
– all reaching definitions of x and y are 

outside the loop  oroutside the loop, or
– only one definition reaches x (or y), and

that definition is loop-invariantthat definition is loop invariant
• so keep marking iteratively
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Loop-invariant computations
• Be careful:

t = expr;
for () {() {

s = t * 2;
t = loop_invariant_expr;

2x = t + 2;
…

}}

• Even though t’s two reaching expressions are 
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p
each invariant, s is not invariant…

Hoisting
• In order to “hoist” a loop-invariant computation 

out of a loop, we need a place to put itout of a loop, we need a place to put t

• We could copy it to all immediate predecessors We could copy it to all immediate predecessors 
(except along the back-edge) of the loop 
header...

• ...But we can avoid code duplication by inserting p y g
a new block, called the pre-header
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Hoisting

AA

B
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Hoisting

A A’
preheaders

A

B
A

B

B’
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Hoisting conditions
• For a loop-invariant definition

d: t = x op yd: t = x op y
• we can hoist d into the loop’s pre-header only if

1  d’s block dominates all loop exits at which t is live-1. d s block dominates all loop exits at which t is live
out, and

2. d is only the only definition of t in the loop, and
3. t is not live-out of the pre-header
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We need to be careful...
• All hoisting conditions must be satisfied!

L0 L0 L0L0:
t = 0
L1:
i = i + 1
t a * b

L0:
t = 0
L1:
if i>=N goto L2
i i + 1

L0:
t = 0
L1:
i = i + 1
t a * bt = a * b

M[i] = t
if i<N goto L1
L2:
x t

i = i + 1
t = a * b
M[i] = t
goto L1
L2:

t = a * b
M[i] = t
t = 0
M[j] = t
if i<N goto L1x = t L2:

x = t
if i<N goto L1
L2:

OK violates 1,3 violates 2
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We need to be careful...
• All hoisting conditions must be satisfied!

L0 L0 L0L0:
t = 0
L1:
i = i + 1
t a * b

L0:
t = 0
L1:
if i>=N goto L2
i i + 1

L0:
t = 0
L1:
i = i + 1
t a * b thi  d ft = a * b

M[i] = t
if i<N goto L1
L2:
x t

i = i + 1
t = a * b
M[i] = t
goto L1
L2:

t = a * b
M[i] = t
t = 0
M[j] = t
if i<N goto L1

this def
reaches 

x = t L2:
x = t

if i<N goto L1
L2:this def

reaches 

OK violates 1,3 violates 2
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Loop optimizations:
Induction variableInduction-variable
Strength reduction
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The basic idea of IVE
• Suppose we have a loop variable

– i initially 0; each iteration i = i + 1i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:• and a variable that linearly depends on it:
x = i * c1 + c2

• In such cases, we can try to
i iti li    i * 1  2   (  )– initialize x = io * c1 + c2   (execute once)

– increment x by c1 each iteration
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Simple Example of IVE

i 0

for i = 0 to n

i <- 0
H:

if i >= n goto exit
j <- i * 4a[i] = 0 j <- i * 4
k <- j + a
M[k] <- 0
i <- i + 1i < i + 1
goto H

Clearly, j & k do not need to be computer anew 
each time since they are related to i and i
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y
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Simple Example of IVE

i <- 0
i <- 0

H:
if i >= n goto exit

j' <- 0
k' <- a

H:goto e t
j <- i * 4
k <- j + a
M[k] <- 0

if i >= n goto exit
j <- j'
k <- k'

i <- i + 1
goto H

M[k] <- 0
i <- i + 1
j' <- j' + 4
k' < k' + 4k' <- k' + 4
goto H

B t  th   d 't  d j (  j')
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But, then we don't even need j (or j')

Simple Example of IVE

i <- 0
j' <- 0
k' <- a

H:
i <- 0
k' <- a

H:
if i >= n goto exit
j <- j'
k <- k'

:
if i >= n goto exit
k <- k'
M[k] <- 0

M[k] <- 0
i <- i + 1
j' <- j' + 4
k' < k' + 4

i <- i + 1
k' <- k' + 4
goto H

k' <- k' + 4
goto H

D   d i?
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Do we need i?

Simple Example of IVE
Rewrite comparison

i <- 0
k' <- a

H:

i <- 0
k' <- a

H: :
if k' >= a+(n*4) goto exi
k <- k'
M[k] <- 0

:
if i >= n goto exit
k <- k'
M[k] <- 0

k' <- k' + 4
goto H

i <- i + 1
k' <- k' + 4
goto H

But  a+(n*4) is loop invariant
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But, a+(n*4) is loop invariant

Simple Example of IVE
Invariant code motion on a+(n*4)

i <- 0
k' <- a

H:

k' <- a
n' <- a + (n * 4)

H::
if k' >= a+(n*4)goto exit
k <- k'
M[k] <- 0

:
if k' >= n' goto exit
k <- k'
M[k] <- 0

k' <- k' + 4
goto H

k' <- k' + 4
goto H

  d   ti  d li i t  k
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now, we do copy propagation and eliminate k



Simple Example of IVE

Copy propagation

k' <- a
n' <- a + (n * 4)

H:

k' <- a
n' <- a + (n * 4)

H: :
if k' >= n' goto exit
M[k'] <- 0
k' <- k' + 4

:
if k' >= n' goto exit
k <- k'
M[k] <- 0

goto Hk' <- k' + 4
goto H

Voila!
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Voila!

Simple Example of IVE

k' <- a

Compare original and result of IVE

n' <- a + (n * 4)
H:

if k' >= n' goto exit

i <- 0
H:

if i >= n goto exit
j i * 4 M[k'] <- 0

k' <- k' + 4
goto H

j <- i * 4
k <- j + a
M[k] <- 0
i < i + 1i <- i + 1
goto H

Voila!
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Voila!

What we did
• identified induction variables (i,j,k)
• strength reduction (changed * into +)strength reduction (changed  into +)
• dead-code elimination (j <- j')
• useless variable elimination (j' < j' + 4)• useless-variable elimination (j  <- j  + 4)

(This can also be done with ADCE)
• loop invariant identification & code-motionloop invariant identification & code-motion
• almost useless-variable elimination (i)
• copy propagation• copy propagation
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Is it faster?

• On some hardware  adds are much faster than On some hardware, adds are much faster than 
multiplies

• Furthermore, one fewer value is computed,
– thus potentially saving a registerthus potentially saving a register
– and decreasing the possibility of spilling
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Loop preparation
• Before attempting IVE, it is best to first 

perform :perform 
– constant propagation & constant folding
– copy propagationcopy propagation
– loop-invariant hoisting
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How to do it, step 1
• First, find the basic IVs

– scan loop body for defs of the formscan loop body for defs of the form
x = x + c or x = x – c

where c is loop-invariantwhere c is loop invariant
– record these basic IVs as

x = (x  1  c)x = (x, 1, c)
– this represents the IV: x = x * 1 + c
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Representing IVs
• Characterize all induction variables by:

(base-variable, offset, multiple)
– where the offset and multiple are loop-p p

invariant 
• IOW, after an induction variable is defined it 

equals:

ff t  lti l  * b i bl  offset + multiple * base-variable 
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How to do it, step 2
• Scan for derived IVs of the form

k = i * c1 + c2k = i  c1 + c2
– where i is a basic IV,

this is the only def of k in the loop  andthis is the only def of k in the loop, and
c1 and c2 are loop invariant

• We say k is in the family of iWe say k is in the family of i
• Record as k = (i, c1, c2)
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How to do it, step 3
• Iterate, looking for derived IVs of the form

k = j * c1 + c2k = j  c1 + c2
– where IV j =(i, a, b), and
– this is the only def of k in the loop  and– this is the only def of k in the loop, and
– there is no def of i between the def of j and 

the def of kthe def of k
– c1 and c2 are loop invariant

• Record as k = (i  a*c1  b*c1+c2)• Record as k = (i, a c1, b c1+c2)
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Simple Example of IVE

i <- 0
H:

if i >= n goto exit
j <- i * 4
k <- j + a
M[k] <- 0
i <- i + 1
goto H

i: (i, 1, 1) i.e., i = 1 + 1 * i
j: (i, 0, 4) i.e., j = 0 + 4 * i
k: (i, a, 4) i.e., k = a + 4 * i

S  j & k  i  f il  f i
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So, j & k are in family of i

Finding the IVs
• Maintain three tables: basic & maybe &  other
• Find basic Ivs:Find basic Ivs:

Scan stmts.  If var ∉ maybe, and of proper 
form, put into basic. Otherwise, put var in , p , p
other and remove from maybe.

• Find compound Ivs:p
– If var defined more than once, put into other
– For all stmts of proper form that use a basic p p

IV 
» FIX THIS SLIDE
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How to do it, step 4
• This is the strength reduction step

• For an induction variable k = (i, c1, c2)

– initialize k = i * c1 + c2 in the preheader
replace k’s def in the loop by– replace k s def in the loop by

k = k + c1

– make sure to do this after i’s defmake sure to do this after i s def
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How to do it, step 5
• This is the comparison rewriting step

• For an induction variable k = (i, ak, bk)
– If k used only in definition and comparison– If k used only in definition and comparison
– There exists another variable, j, in the same 

class and is not “useless” and j=(i  aj  bj)class and is not useless  and j=(i, aj, bj)
• Rewrite k < n as

j < (bj/bk)(n-ak)+ajj < (bj/bk)(n ak)+aj

• Note: since they are in same class:
(j-a )/b = (k-ak)/bk
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(j-aj)/bj = (k-ak)/bk

Notes
• Are the c1, c2 constant, or just invariant?

– if constant  then you can keep folding them: if constant, then you can keep folding them: 
they’re always a constant even for derived IVs

– otherwise  they can be expressions of loop-otherwise, they can be expressions of loop
invariant variables

• But if constant, can find IVs of the type
x = i/bx  i/b

and know that it’s legal, if b evenly divides the 
stride…
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stride…

Is it faster? (2)
• On some hardware, adds are much faster than 

multipliesmult pl es
• But…not always a win!

– Constant multiplies might otherwise be Constant multiplies might otherwise be 
reduced to shifts/adds that result in even 
better code than IVE

– Scaling of addresses (i*4) might come for 
free on your processor’s address modes

• So maybe: only convert i*c1+c2 when c1 is 
loop invariant but not a constant
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Common loop optimizations

• Hoisting of loop-invariant computations
– pre-compute before entering the loop

• Elimination of induction variables
h  i* b  b  h  b i i– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling
to to improve scheduling of the loop body– to to improve scheduling of the loop body

• Software pipelining
– To improve scheduling of the loop body

Requires 
understanding 
data To improve scheduling of the loop body

• Loop permutation
– to improve cache memory performance

data 
dependencies
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Dependencies in Loops

• Loop independent data dependence occurs 
between accesses in the same loop iterationbetween accesses in the same loop iteration.

• Loop-carried data dependence occurs between 
accesses across different loop iterationsaccesses across different loop iterations.

• There is data dependence between 
access a at iteration i-k and acc ss a at t rat on  an  
access b at iteration i when: 

– a and b access the same memory locationy
– There is a path from a to b
– Either a or b is a write
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E ther a or b s a wr te

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

true

Anti-Dependence R W δ
• Output Dependence W W δo false

S1) a=0;
S2) b=a;
S3) c=a+d+e;S3) c=a+d+e;
S4) d=b;
S5) b=5+e;
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S5) b 5+e;

Lecture 5

Example Dependencies
S1) a=0;S1) a=0;
S2) b=a;
S3) c=a+d+e;

1These are scalar dependencies.  The 
same idea holds for memory accesses.S3) c a+d+e;

S4) d=b;
S5) b=5+e; source type target due to

S1 δf S2 a

2

S1 δf S2 a
S1 δf S3 a
S2 δf S4 b

3

S2 δ S4 b
S3 δa S4 d
S4 δa S5 b

4

S2 δo S5 b
5
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What can we do with this information?
What are anti- and flow- called “false” dependences?

Lecture 5

Data Dependence in Loops
• Dependence can flow across iterations of 

the loop.p
• Dependence information is annotated with 

iteration information.
• If dependence is across iterations it is loop 

carried otherwise loop independent.

for (i=0; i<n; i++) {for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}
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}



Data Dependence in Loops
• Dependence can flow across iterations of 

the loop.p
• Dependence information is annotated with 

iteration information.
• If dependence is across iterations it is loop 

carried otherwise loop independent.

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

} δf loop independent

δf loop carried
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} p p

Unroll Loop to Find Dependencies
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

δf loop carried

B[i+1] = A[i];
} δf loop independent

A[0] = B[0]; i=0

B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] B[2]

i=1

Distance/Direction of the 
dependence is also important.

A[2] = B[2];
B[3] = A[2];

i=2
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Iteration Space
Every iteration generates a point in an n-
dimensional space, where n is the depth of 
th  l  stthe loop nest.

4

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++) 
3
2

for (j=0; j<4; j++) {

}
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Distance Vector

for (i=0; i<n; i++) {
A[i] = B[i];[ ] [ ]
B[i+1] = A[i];

} Distance vector is the difference between 
the target and source iterations.

A[0] = B[0]; i=0

d = It-Is

Exactly the distance of the dependence, i.e.,

B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] B[2]

i=1

Is + d = It

A[2] = B[2];
B[3] = A[2];

i=2
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Example of Distance Vectors

for (i=0; i<n; i++) ( )
for (j=0; j<m; j++){

A[i,j] =   ;
[i j]

A0,2=   =A0,2
B0,3=   =B0,2
C1,2=   =C0,3

A1,2=   =A1,2
B1,3=   =B1,2
C2,2=   =C1,3

A2,2=   =A2,2
B2,3=   =B2,2
C3,2=   =C2,3= A[i,j];

B[i,j+1] =   ;
= B[i,j];

A0,1=   =A0,1
B0,2=   =B0,1
C1 1= =C0 2

A1,1=   =A1,1
B1,2=   =B1,1
C2 1= =C1 2

A2,1=   =A2,1
B2,2=   =B2,1
C3 1= =C2 2

j

C[i+1,j] =   ;
= C[i,j+1] ;

}
A0,0=   =A0,0
B0,1=   =B0,0

C1,1    C0,2

A1,0=   =A1,0
B1,1=   =B1,0

C2,1    C1,2

A2,0=   =A2,0
B2,1=   =B2,0

C3,1    C2,2

} C1,0=   =C0,1 C2,0=   =C1,1 C3,0=   =C2,1

i
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Example of Distance Vectors
for (i=0; i<n; i++) 

for (j=0; j<m; j++){ A0,2=   =A0,2
B0 3=   =B0 2

A1,2=   =A1,2
B1 3=   =B1 2

A2,2=   =A2,2
B2 3=   =B2 2A[i,j] =   ;

= A[i,j];
B[i,j+1] =   ; j

A0,1=   =A0,1
B B

0,3 0,2
C1,2=   =C0,3

A1,1=   =A1,1
B B

1,3 1,2
C2,2=   =C1,3

A2,1=   =A2,1
B B

2,3 2,2
C3,2=   =C2,3

[ ,j ] ;
= B[i,j];

C[i+1,j] =   ;
= C[i j+1] ;

j

A0 0= =A0 0

B0,2= =B0,1
C1,1=   =C0,2

A1 0= =A1 0

B1,2=   =B1,1
C2,1= =C1,2

A2 0= =A2 0

B2,2=   =B2,1
C3,1=   =C2,2

= C[i,j+1] ;
}

A0,0    A0,0
B0,1=   =B0,0
C1,0=   =C0,1

A1,0    A1,0
B1,1=   =B1,0
C2,0=   =C1,1

A2,0    A2,0
B2,1=   =B2,0
C3,0=   =C2,1

A yields: 0
0 B yields: 0

1 C yields: 1
-1

i
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0

Data Dependences
Loop carried: between two statements instances

in two different iterations of a loop.
L  i d d t b t  t  t t t  Loop independent: between two statements 

instances in the same loop iteration.

Lexically forward: the source comes before the target .
Lexically backward: otherwise.L y w w .

The right-hand side of an assignment is considered
to precede the left-hand side.
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Review of Linear Algebra 
Lexicographic Orderg p

T   d b  l   b if  b  1 iTwo n-vectors a and b are equal, a = b, if ai = bi, 1 ≤ i ≤ n.

We say that a is less than b, a<b, if ai<bi, 1 ≤ i ≤ n.y , , i i,

We say that a is lexicographically less than b, at level j,
a « b  if a = b  1 ≤ i < j and a <ba «j b, if ai = bi, 1 ≤ i < j and aj<bj.

We say that a is lexicographically less than b, a « b, if 
th  i   j  1 j  h th t  bthere is a j, 1 ≤ j ≤ n, such that a «j b.
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Lexicographic Order
Example of vectorsExample of vectors

:below and    vectorsheConsider t  ba

1
1

1
1

⎥
⎥
⎤

⎢
⎢
⎡
−⎥

⎥
⎤

⎢
⎢
⎡
−

1
1

            

2
0

ba

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣−

=

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

tsimply thaor3levelat
 than lesshically lexicograp is say that  We

12

baba
 ba

≺≺

⎦⎣⎦⎣

db
positivehically lexicograp are  and Both 

. t simply thaor  , 3,  levelat 

b00
ba

baba 3 ≺≺

69

. and ,   because b0a0 ≺≺
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Properties of Lexicographic Order

Let n ≥ 1, and i, j, k denote arbitrary vectors in Rn

1  For each u in 1 ≤ u ≤ n, the relation «u in Rn is 
irreflexive and transitive.

2  Th  l ti s  i is  disj i t  2  The n relations «u are pairwise disjoint: 
i «u j and i «v j imply that u = v.

3  If i ≠ j  there is a unique integer u such that 1 ≤ u ≤3  If i ≠ j, there is a unique integer u such that 1 ≤ u ≤
n and exactly one of the following two conditions 
holds: 
i « j or  j « ii «u j or  j «u i.

4  i «u j and j «v k together imply that i «w k, where 
w = min (u,v).

70

w  min (u,v).
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Data Dependence in LoopsData Dependence in Loops
An Example
Fi d th  d d  l ti  d  t  th   X i  th   Find the dependence relations due to the array X in the program 

below:

(S1) for i = 2 to 9 do(S1) for i  2 to 9 do
(S2) X[i] = Y[i] + Z[i]
(S3) A[i] = X[i-1] + 1
(S4) end for

Solution
To find the data dependence relations in a simple loop, we can unroll 

the loop and see which statement instances depend on which the loop and see which statement instances depend on which 
others:

i = 2 i = 3 i = 4

71

(s2) X[2]=Y[2]+Z[2]      X[3] =Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) A[2]=X[1]+1           A[3] =X[2]+1 A[4]=X[3]+1
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Data Dependence in LoopsData Dependence in Loops

S2

S3

(1,3)
(S1) for i = 2 to
9 do
(S2) X[i] = 
Y[i] + Z[i] 3

Data dependence graph for statements in a loop
(1,3) := iteration distance is 1, latency is 3.

(S3) A[i] = 
X[i-1] + 1
(S4) end for

i = 2 i = 3 i = 4

(s2) X[2]=Y[2]+Z[2]      X[3]=Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) A[2]=X[1]+1          A[3]=X[2]+1 A[4]=X[3]+1

There is a loop-carried, lexically forward, flow 
d d f  S t  S  

72

dependence from S2 to S3. 
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