PRE and Loop Invariant
Code Motion

15-745 Fall 2009

Common Subexpression Elimination

Find computations that are always
performed at least twice on an execution
path and eliminate all but the first

Usually limited to algebraic expressions

e put in some cannonical form

Almost always improves performance

e except when?

CSE Limitation

Searches for “totally” redundant expressions

e An expression is totally redundant if it is recomputed
along all paths leading to the redundant expression

e An expression is partially redundant if it is recomputed
along some but not all paths

partially redundant 3

fully redundant

Loop-Invariant Code Motion

Moves computations that produce the
same value on every iteration of a loop
outside of the loop

When is a statement loop invariant?

e when all its operands are loop invariant...

Loop Invariance

An operand is loop-invariant if

1.it is a constant,

2.all defs (use ud-chain) are located
outside the loop, or

3.has a single def (ud-chain again) which is
inside the loop and that def is itself loop
invariant

Can use iterative algorithm to
compute loop invariant statements

Loop Invariant Code Motion

Naive approach: move all loop-
invariant statements to the preheader

Not always valid for statements which
define variables

If statement s defines v, can only
move s if

e s dominates all uses of v in the loop

e s dominates all loop exits
Why?

Loop Invariant Code Motion

Loop invariant expressions are a form
of partially redundant expressions.
Why?

X«y*z
*
X<y z a«<b*c

*
a<b*c acb*c

Partial Redundancy Elimination

Moves computations that are at least partially
redundant to their optimal computation points and
eliminates totally redundant ones

Encompasses CSE and loop-invariant code motion

a:i=x+y

Optimal Computation Point PRE Example
What expression is

partially redundant?

Optimal?

+1 What are the optimal
computation points?

e Result used and never recalculated

e Expression placed late as possible /\

Why? B2 B3

z < 7

PRE Example PRE Example
What expression is What expression is
partially redundant? partially redundant?
B1 B1
z = a +1 What are the optimal z = a +1 What are the optimal
x >3 computation points? x >3 computation points?
/\ /\
B2 B3
tl=x * y tl= x * y
2= z <7 Not quite perfect

11

PRE Example
What expression is
partially redundant?
Bl
z = a +1 What are the optimal
x >3 computation points?

13

Critical Edge Splitting

In order for PRE to work well, we must split
critical edges

A critical edge is an edge that connects a
block with multiple successors to a block
with multiple predecessors

B2 B3

a=x%*y

y <5

b=x*y

14

Critical Edge Splitting

In order for PRE to work well, we must split
critical edges

A critical edge is an edge that connects a
block with multiple successors to a block
with multiple predecessors

a=x*y z < 7
Yy 5
/; | Bsa/\
/
B4 B5 | |B6 |

b=x*%*y 15

PRE History

PRE was first formulated as a
bidirectional data flow analysis by
Morel and Renvoise in 1979

Knoop, Riuthing, and Steffen came up
with a way to do it using several
unidirectional analysis in 1992 (called
their approach lazy code motion)

e this is a much simpler method
e but it is still very complicated

16

PRE Example
Must compute several data flow

properties in order to find

B1
z = a +1 optimal placement for partially
x > 3 redundant expressions
/\
B2 B3
a=x*y z <7
y <5

17

General Approach to analysis

e Computationally Optimal Placement

* Anticipatable

computing exp is useful along any path

to exit
* Earliest

p is the earliest point to compute exp

« Compute exp Ant N Earliest
* Increases register Pressure

e Lazy Code Motion

18

General Approach to analysis

e Computationally Optimal Placement

e Lazy Code Motion

e Latest
Cannot move exp past p on any path

* Isolated _ _
all uses of exp follow immediately after p

« Compute exp at Latest N ~Isolated

19

Local Transparency (TRANSIoc)

An expression’s value is

) Block | TRANSIloc
locally transparent in a entry | {ar Ly}
block if there are no Bl |{atlx*y}
assignments in the block to B2 ooyy
variables within the B2a |{a+l.x*y}
expression B3 |{a+1,x*y}

e ie, expression not killed B3a |{a+lx*y}
B4 {a+1,x*y}
B5 {a+1,x*y}
B6 {a+1,x*y}
B7 {a+1,x*y}
exit |{a+1,x*y}

20

Local Anticipatable (ANTIloc)

An expression’s value is
locally anticipatable in a
block if

e there is a computation of
the expression in the block

e the computation can be
safely moved to the
beginning of the block

Block ANTloc
entry {3
Bl {a+1}
B2 {x*y}
B2a {}
B3 {}
B3a {3}
B4 {*y}
B5 {3
B6 {}
B7 {*y}
exit {r

21

Globally Anticipatable (ANT)

An expression’s value is globally
anticipatable on entry to a block if

e every path from this point includes a
computation of the expression

e it would be valid to place a computation
of an expression anywhere along these
paths

This is like liveness, only for expressions

22

Globally Anticipatable (ANT)
ANTin(i) = ANTloc(i) w (TRANSIoc(i) » ANTout(i))

ANTout(i)= (") ANTin(j)

. . Block ANTIN ANTout
j esucc(i)
. entry {a+1} {a+1}
ANTout(exit) ={} B1 {a+1} O
B2 <y} <y}
B2a {x*y} {x*y}
B3 a8 383
B3a {x*y} {x*y}
B4 {x*y} {4
B5 <y} <y}
B6 a8 a8
B7 {3y} a8
exit {3 {3

23

Earliest (EARL)

An expression’s value is earliest on
entry to a block if

e no path from entry to the block
evaluates the expression to produce the
same value as evaluating it at the
block’s entry would

Intuition:

at this point if we compute the expression we are
computing something completely new

says nothing about usefulness of computing expression ,,

Earliest (EARL)
EARLin(i)= |] EARLout(j)

jepred(i)

EARLout(i) = TRANSloc(i) U (ANTin(i) » EARLIn(i))

. Block EARLIN EARLout
EARLin(entry) =U oy ooy ooy arss

B1 {x*y,a+i} | {xX*y}

B2 {3y} {a+1}

B2a {a+1} {a+1}

B3 {x*y} {x*y}

B3a {xX*y} {xX*y}

B4 {a+1} {a+1}

B5 {a+1} {a+1}

B6 {xX*y} {x*y}

B7 {a+1} {a+1}
exit {a+1} {a+1} °

Computationally Optimal

It is computationally optimal to
compute exp at entry to block if

exp € ANTin(block) N EARLin(block)

But, it may increase register pressure.

26

Delayedness (DELAY)

An expression is delayed on entry to a
block if

e All paths from entry to block contain a
anticipatable and early computation of
exp (could be this block) AND all uses of
exp follow this block.

e l.e., exp can be delayed to at least this
block.

27

Delayedness (DELAY)

DELAYin(i) = (ANTin(i) » EARLin(i))u () DELAYout(j)

jepred (i)
DELAYout(i) = ANTloc(i) » DELAYin(i)
DELAYin(entry) = ANTin(entry) n EARLin(entry)

Block | DELAYin |DELAYout
entry {a+1} {a+1}
Bl {a+1} {3
B2 {*v} {
Block | ANTin(i) n EARLIN(i) B2a a8 {
B3 { {
1
oy e B3 | vy | oevd
52 Oy B4 s} 5}
B3a {x*y} B5 { a8
B6 { o %

Lateness (LATE)

An expression is latest on entry to a
block if

e it is the optimal point for computing the
expression and

e 0N every path from the block entry to
exit, any other optimal computation
point occurs after an expression
computation in the original flowgraph

i.e., there is no “later” placement for this expression
29

Latestness (LATE)

LATEin(i) = DELAYin(i) m[

Block

LATEIn

entry

{

Bl

{a+1}

B2

Xy}

B2a

s

B3

O

B3a

£y}

B4

{

BS

O

B6

185

B7

s

exit

O

j esucc(i)

ANTloc(i)w (") DELAYin(j)

|

30

Isolatedness (ISOL)

An optimal placement in a block for
the computation of an expression is
iIsolated iff

e 0N every path from a successor of the
block to the exit block, every original
computation is preceded by the optimal
placement point

31

Isolatedness (ISOL)

ISOLin(i) = LATEin(i) w (ANTloc(i) n ISOLout(i))
ISOLout(i) = (") ISOLin(j)

ISOLout(exit) ={}

Block ISOLiIn 1SOLout
j esucc(i) entry { {
Bl {a+1} {3
B2 {y} a8
B2a {3 {3
B3 a8 a8
B3a {x*y} 285
B4 O O
B5 a8 a8
B6 a8 a8
B7 a8 a8
exit {3 {}

32

Optimal Placement

The set of expression for which a given
block is the optimal computation point
Is the set of expressions that are latest
and not isolated

OPT (i) = LATEin(i) ~ 1ISOLout (i)

33

Redundant Computations

The set of redundant expressions in a
block consist of those used in the block
that are neither isolated nor latest

REDN (i) = ANTloc(i) ~ LATEin(i) U 1SOLout(i)

34

OPT and REDN

Block OPT REDN
entry O {3
B1 {a+1} {3
insert these BBzza {X{*;/ > g
(if necessary) 53 o O
B3a {x*y} {3
B4 '8} {x*y}
B5 {3 O
B6 {3 i85 remove these
B7 {3 {x*y}
exit {3 {

35

Block | OPT | REDN

BL |{a+1}| {}

B2 | {¢vyvi| {3

B3a | {x*v}| {3

PRE Example
B1
zZ = a +1
x 3
/\
B2 B3
a=x%*y z < 7

B4 O &y

B7 O[Oy

36

PRE Example

4 data flow analyses later...

37

