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Common Subexpression Eliminationp

Find computations that are always Find computations that are always 
performed at least twice on an execution 
path and eliminate all but the first

Usually limited to algebraic expressions

• put in some cannonical form

Almost always improves performanceAlmost always improves performance

• except when?
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CSE Limitation

Searches for “totally” redundant expressions Searches for totally  redundant expressions 

• An expression is totally redundant if it is recomputed 
along all paths leading to the redundant expression

• An expression is partially redundant if it is recomputed 
along some but not all paths

:= x+y := x+y := x+y
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:= x+y := x+y

fully redundant partially redundant

Loop-Invariant Code Motion p

Moves computations that produce the Moves computations that produce the 
same value on every iteration of a loop 
outside of the loopoutside of the loop

When is a statement loop invariant?p

• when all its operands are loop invariant...
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Loop Invariancep

An operand is loop-invariant ifAn operand is loop invariant if
1.it is a constant,

2 ll d f  (  d h i )  l t d 2.all defs (use ud-chain) are located 
outside the loop, or

3 has a single def (ud chain again) which is 3.has a single def (ud-chain again) which is 
inside the loop and that def is itself loop 
invariant

Can use iterative algorithm to 
compute loop invariant statements
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compute loop invariant statements

Loop Invariant Code Motionp

Naïve approach: move all loop-Naïve approach: move all loop
invariant statements to the preheader

Not always valid for statements which 
define variables

If statement s defines v, can only 
move s ifmove s if

• s dominates all uses of v in the loop
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• s dominates all loop exits
Why?

Loop Invariant Code Motionp

Loop invariant expressions are a form Loop invariant expressions are a form 
of partially redundant expressions. 
Why?Why?

x ← y * z
x ← y * z
a b * cx ← y  z

a ← b * c

a ← b * c

*a ← b  c a ← b * c
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*

Partial Redundancy Eliminationy

Moves computations that are at least partially Moves computations that are at least partially 
redundant to their optimal computation points and 
eliminates totally redundant ones

Encompasses CSE and loop-invariant code motion

+a := x+y

a := x+y
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a :  x y



Optimal Computation Pointp p

Optimal?Optimal?

• Result used and never recalculated

• Expression placed late as possible   
Why?

+a := x+y

a := x+y
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a :  x y

PRE Examplep
entry What expression is 

partially redundant?
B1
z = a +1
x > 3

partially redundant?

What are the optimal 
computation points?

B2
a = x * y

B3
z < 7

p p

y < 5
z < 7

B4 B5 B6
b = x * y

B7
c = x * y
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y

exit

PRE Examplep
entry What expression is 

partially redundant?
B1
z = a +1
x > 3

partially redundant?

What are the optimal 
computation points?

B2
a = x * y

B3
z < 7

p p

y < 5
z < 7

B4 B5 B6
b = x * y

B7
c = x * y
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y

exit

PRE Examplep
entry What expression is 

partially redundant?
B1
z = a +1
x > 3

partially redundant?

What are the optimal 
computation points?

B2
t1= x * y

B3
t1= x * y

p p

a = t1
y < 5

t1= x  y
z < 7

B4 B5 B6

Not quite perfect

B4
b = t1

B5 B6

B7
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c = t1

exit



PRE Examplep
entry What expression is 

partially redundant?
B1
z = a +1
x > 3

partially redundant?

What are the optimal 
computation points?

B2
t1= x * y

B3
z < 7

p p

a = t1
y < 5

B4 B5 B6

B3a
t1= x * y

B4
b = t1

B5 B6

B7
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c = t1

exit

Critical Edge Splittingg p g

In order for PRE to work well, we must split 
iti l dcritical edges

A critical edge is an edge that connects a A critical edge is an edge that connects a 
block with multiple successors to a block 
with multiple predecessors

B2
a = x * y

B3
z < 7

y < 5

B4 B5 B6
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b = x * y

Critical Edge Splittingg p g

In order for PRE to work well, we must split 
iti l dcritical edges

A critical edge is an edge that connects a A critical edge is an edge that connects a 
block with multiple successors to a block 
with multiple predecessors

B2
a = x * y

B3
z < 7

y < 5

B2a B3a
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B4
b = x * y

B5 B6

PRE Historyy

PRE was first formulated as a PRE was first formulated as a 
bidirectional data flow analysis by 
Morel and Renvoise in 1979

Knoop, Rüthing, and Steffen came up 
with a way to do it using several with a way to do it using several 
unidirectional analysis in 1992 (called 
their approach lazy code motion)pp y )

• this is a much simpler method

• but it is still very complicated
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• but it is still very complicated



PRE Examplep
entry Must compute several data flow 

properties in order to findB1
z = a +1
x > 3

properties in order to find 
optimal placement for partially 
redundant expressions

B2
a = x * y

< 5

B3
z < 7

y < 5

B4 B5

B2a B3a

B4
b = x * y

B5 B6

B7
c x * y
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c = x * y

exit

General Approach to analysispp y

• Computationally Optimal Placement• Computationally Optimal Placement

• Anticipatable
computing exp is useful along any path computing exp is useful along any path 
to exit

• Earliest
p is the earliest point to compute exp

• Compute exp Ant ∩ Earliest

• Increases register Pressure

• Lazy Code Motion
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General Approach to analysispp y

• Computationally Optimal Placement• Computationally Optimal Placement

• Lazy Code MotionLazy Code Motion

• Latest
Cannot move exp past p on any pathp p p y p

• Isolated
all uses of exp follow immediately after p

• Compute exp at Latest ∩ ~Isolated
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Local Transparency (TRANSloc)p y ( )

An expression’s value is 
locally transparent in a 

Block TRANSloc
locally transparent in a 
block if there are no 
assignments in the block to 

entry {a+1,x*y}
B1 {a+1,x*y}
B2 {x*y}

variables within the 
expression

B2 {x y}
B2a {a+1,x*y}
B3 {a+1,x*y}
B3a {a+1 x*y}• ie, expression not killed B3a {a+1,x*y}
B4 {a+1,x*y}
B5 {a+1,x*y}
B6 {a+1,x*y}
B7 {a+1,x*y}
exit {a+1,x*y}

20

{ , y}



Local Anticipatable (ANTloc)p ( )

An expression’s value is 
l ll  ti i t bl i   

Block ANTloc
locally anticipatable in a 
block if

th  i   t ti  f 

entry {}
B1 {a+1}
B2 {x*y}• there is a computation of 

the expression in the block

• the computation can be 

B2 {x y}
B2a {}
B3 {}
B3a {}• the computation can be 

safely moved to the 
beginning of the block

B3a {}
B4 {x*y}
B5 {}
B6 {}
B7 {x*y}
exit {}
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{}

Globally Anticipatable (ANT)y p ( )

An expression’s value is globally An expression s value is globally 
anticipatable on entry to a block if

 th f  thi  i t i l d   • every path from this point includes a 
computation of the expression

it ld b  lid t  l   t ti  • it would be valid to place a computation 
of an expression anywhere along these 
pathsp

This is like liveness, only for expressions
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, y p

Globally Anticipatable (ANT)
ANTin(i) = ANTloc(i)∪ TRANSloc(i)∩ ANTout(i)( )

y p ( )

ANTout(i) = ANTin( j)
j ∈succ(i)
∩

ANT ( i ) {}

Block ANTin ANTout
entry {a+1} {a+1}

  ANTout(exit) = {} B1 {a+1} {}
B2 {x*y} {x*y}
B2a {x*y} {x*y}y y
B3 {} {}
B3a {x*y} {x*y}
B4 {x*y} {}{ y} {}
B5 {x*y} {x*y}
B6 {} {}
B7 {x*y} {}
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B7 {x y} {}
exit {} {}

Earliest (EARL)( )

An expression’s value is earliest on An expression s value is earliest on 
entry to a block if

th f  t  t  th  bl k • no path from entry to the block 
evaluates the expression to produce the 
same value as evaluating it at the same value as evaluating it at the 
block’s entry would

I t itiIntuition:

at this point if we compute the expression we are 
computing something completely new
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computing something completely new

says nothing about usefulness of computing expression



Earliest (EARL)

( )

( ) ( )
j pred i

EARLin i EARLout j
∈

= ∪
( )

( )
( )

( ) ( ) ( ) ( )

j pred i

EARLout i TRANSloc i ANTin i EARLin i

∈

= ∪ ∩
Bl k EARLi EARL t( ) UEARLin entry = Block EARLin EARLout
entry {a+1,x*y} {x*y,a+1}
B1 {x*y,a+1} {x*y}
B2 { * } { 1}B2 {x*y} {a+1}
B2a {a+1} {a+1}
B3 {x*y} {x*y}
B3a {x*y} {x*y}
B4 {a+1} {a+1}
B5 {a+1} {a+1}
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B6 {x*y} {x*y}
B7 {a+1} {a+1}
exit {a+1} {a+1}

Computationally Optimalp y p

It is computationally optimal to It is computationally optimal to 
compute exp at entry to block if

( ) ( )ANTi bl k EARLi bl k∩exp ( ) ( )ANTin block EARLin block∈ ∩

But, it may increase register pressure.
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Delayedness (DELAY)y ( )

An expression is delayed on entry to a An expression is delayed on entry to a 
block if

All th  f  t  t  bl k t i   • All paths from entry to block contain a 
anticipatable and early computation of 
exp (could be this block) AND all uses of exp (could be this block) AND all uses of 
exp follow this block.

• I.e., exp can be delayed to at least this , p y
block.
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Delayedness (DELAY)

( )( ) ( ) ( ) ( )DELAYin i ANTin i EARLin i DELAYout j= ∩ ∪ ∩

y ( )

( )

( ) ( ) ( )
( ) ( ) ( )

j pred i

DELAYout i ANTloc i DELAYin i
DELAYin entry ANTin entry EARLin entry

∈

= ∩
= ∩( ) ( ) ( )DELAYin entry ANTin entry EARLin entry= ∩

Block DELAYin DELAYout
entry {a+1} {a+1}entry {a+1} {a+1}
B1 {a+1} {}
B2 {x*y} {}
B2a {} {}B2a {} {}
B3 {} {}
B3a {x*y} {x*y}
B4 {} {}

Block ANTin(i) ∩ EARLin(i)

entry {a+1}

B2 {x*y}
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B4 {} {}
B5 {} {}
B6 {} {}

{} {}

B2 {x y}

B3a {x*y}



Lateness (LATE)( )

An expression is latest on entry to a An expression is latest on entry to a 
block if

it i  th  ti l i t f  ti  th  • it is the optimal point for computing the 
expression and

  th f  th  bl k t  t  • on every path from the block entry to 
exit, any other optimal computation 
point occurs after an expression p p
computation in the original flowgraph
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i.e., there is no “later” placement for this expression

Latestness (LATE)

LATEin(i) = DELAYin(i) ∩ ANTloc(i)∪ DELAYin( j)∩
⎛ 

⎝
⎜ 

⎞ 

⎠
⎟ 

( )

  
( ) ( ) ( ) ( j)

j ∈succ( i)
∩

⎝ ⎠ 
Block LATEin
entry {}entry {}
B1 {a+1}
B2 {x*y}
B2a {}B2a {}
B3 {}
B3a {x*y}
B4 {}B4 {}
B5 {}
B6 {}
B7 {}
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B7 {}
exit {}

Isolatedness (ISOL)( )

An optimal placement in a block for An optimal placement in a block for 
the computation of an expression is 
isolated iffisolated iff

• on every path from a successor of the 
block to the exit block  every original block to the exit block, every original 
computation is preceded by the optimal 
placement point
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Isolatedness (ISOL)

ISOLin(i) = LATEin(i) ∪ ANTloc(i)∩ ISOLout(i)( )

( )

ISOLout(i) = ISOLin( j)
j ∈succ( i)
∩ Block ISOLin ISOLout

entry {} {}

  ISOLout(exit) = {} B1 {a+1} {}
B2 {x*y} {}
B2a {} {}
B3 {} {}
B3a {x*y} {}
B4 {} {}{} {}
B5 {} {}
B6 {} {}
B7 {} {}
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B7 {} {}
exit {} {}



Optimal Placementp

The set of expression for which a given The set of expression for which a given 
block is the optimal computation point 
is the set of expressions that are latestis the set of expressions that are latest
and not isolated

OPT(i) = LATEin(i)∩ ISOLout(i)

33

Redundant Computationsp

The set of redundant expressions in a The set of redundant expressions in a 
block consist of those used in the block 
that are neither isolated nor latestthat are neither isolated nor latest

REDN(i) = ANTloc(i)∩ LATEin(i) ∪ ISOLout(i)
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OPT and REDN

Block OPT REDN
entry {} {}
B1 {a+1} {}
B2 {x*y} {}B2 {x y} {}
B2a {} {}
B3 {} {}
B3 { * } {}

insert these 
(if necessary)

B3a {x*y} {}
B4 {} {x*y}
B5 {} {}
B6 {} {}
B7 {} {x*y}
exit {} {}

remove these
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e t {} {}

PRE Examplep
entry Block OPT REDN

B1 {a+1} {}
B1
z = a +1
x > 3

B1 {a+1} {}
B2 {x*y} {}
B3a {x*y} {}
B4 {} {x*y}

B2
a = x * y

< 5

B3
z < 7

B4 {} {x*y}
B7 {} {x*y}

y < 5

B4 B5

B2a B3a

B4
b = x * y

B5 B6

B7
c x * y
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c = x * y

exit



PRE Examplep
entry

B1
4 data flow analyses later…

B1
z = a +1
x > 3

B2
t1 = x * y
a = t1

B3
z < 7

y < 5

B4

B2a
B3a
t1 = x * y

B4
b = t1

B5 B6

B7
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c = t1

exit


