15-745
Introduction

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based in part on slides by
Todd Mowry and Michael Voss

Introduction

* Why study compilers?

+ Administriva

- Structure of a Compiler
+ Optimization Example

Reference: Muchnick 1.3-1.5

Moore's Law

3 sl l.JdI’! U.!l lJ'ﬂ It li !
|.,'."i°'-

i

Moore's Law

Imagine: Computers that

Imagining it is hard enough,
achieving it requires a rethink of
the entire tool chain.

What is Behind Moore's Law?

- A lot of hard work!

Performance: Ops/Sec

1000.00 e
M . M intel 266 i +
* TWO mOST lmpor'.ran.r TOO|S' Intel 486 SpecthUDU Ly 3 _
Intel pentium &
- Parallelism LT "
nlelpentium
. 1+ Intalpantium 4 E *k
BIT level 100.00 1+ = intel Hanium 4
. H H = Alpha 21064
Plpellne Alphaz1164 —
* Function unit oz ~
parc
. =1 5
* Multi-core ot
. 12.00 H = nips
- Locality
FowerpC
AMDKE
AMD KT .
-]
1.00 +H
85 86 &7 85 80 90 91 92 93 04 95 06 O7 95 99 00 01 02 Horowitz
lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 5 lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 6
.
* Clks/ pecInt/Mh
Performance: Ops/Clk s/Sec SpecInt/Mhz
W intel 386
1000.00 100 T intel486
+"" intel pentium
W niel 2R6 Spec'ntzoou + Kintel pentium 2
Inlel 4BE r - .lmelpenuum3 4 ir
N ¢ +intel pentium 4 A x **0 - +
flnlelpenllum2 ‘. ®intelitanium + + +
inlalpentium 3 - -
-+ Inlalpantium 4 E *k Alpha 21084
100.00 = |ntel Hanium T Alpha21164 -
Alpha21264
= Alpha 21064 -
Alphaz1164 ha Sparc
Alpha 21264 010 1 SuperSpar
sparc e Sparc64 []
Supears parc Mips
Sparcéd HPPA
10.00 H = mips Power PC
aliLL AMD K6
FowerpC NI
AMDKE
AMD KT]
]
|
o o B5 86 57 83 89 90 91 92 93 94 95 96 97 98 99 00 01 02
B5 86 87 88 89 00 01 02 03 04 95 06 O7 98 99 00 01 02 . .. S 7 S 7 .
8

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

7

lecture 1, 15-745

©2002-8 Seth Copen Goldstein

Another View of Moore's Law The Computer System

1.E+03

Processor

1Ex02 M

~>=SRAM
iﬁ?ﬁ“fyc.e | Memory-I/0 bus I
| |
1.E+01 I/O I/O
controller controller
Display I Network I
1.E+00 T T T T
1980 1985 1990 1995 2000
. . .]
The Memory Hierarchy Compiler Writer's Job
cache virtual memory
* Improve locality
Memory |22 @ - Increase
parallelism
Register Cache Memory Disk Memory . Toler-a-‘-e IOTenCY
size: 200 B 32 KB/4MB 128 MB 20 GB
speed: 3ns 6 ns 60 ns 8 ms d Reduce power'
$/Mbyte: $100/MB $.30/MB $0.005/MB
block size: 8B 32B 8 KB

larger, slower, cheaper

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 1 lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 12

Why study compilers
* They are really amazing

Combines theory & practice

- CS is about abstraction
* Primary abstraction: programming language
* Compiler lowers PL to ISA (or furtherl)

- Compiler is a big system

Crucial for performance

- especially for modern processors

- practically part of the architecture

I bet: Everyone will write a compiler

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

Why study compilers
* They are really amazing

Combines theory & practice

- CS is about abstraction
* Primary abstraction: programming language
+ Compiler lowers PL to ISA (or furtherl)

- Compiler is a big system

Crucial for performance

- especially for modern processors

- practically part of the architecture

I bet: Everyone will write a compiler

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 14

What this course is about

Low-level
language

High-level
language

(Eg. O

Code
Generator

Optimizer :
i (Eg., x86)

Source code IR IR ASM
(E.g., SSA)

* Theory and practice of modern optimizing compilers
* No lexing or parsing
* Focus on IR, back-end, optimizations

* Internals of today's (and tomorrow's) compilers

* Working with a real compiler

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

Prerequisites

211 & 213 or the equivalent

Parts of 411 or the equivalent
- Basic compiler data structures

- Frames, calling conventions, def-use
chains, etc.

- Don't really care about front-end
* Proficient in C/C++ programming
* Basic understanding of architecture

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 16

My Expectations

* You have the prerequisites
- If not come see me asap

- 3 assignments + a project
* Class participation

Grading

Class participation ~20%
- Throughout the semester

- During paper presentations

- Project presentations

- THIS IS A MUST! * assignments ~20%

- Read text/papers before class * Project ~40%

- Attendance is essentially mandatory - Midterm ~20%
Assighments The Text

Intro to LLVM/Liveness
- Dependence analysis
Locality/Parallel transformations

All labs and the final project will be
done in a state-of-the-art research
compiler: LLVM

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

* No assigned text. There are some on

reserve. Its really up to you.
* Muchnick, Advanced Compiler Design & Impl., 1997

« Allen, et.al., Optimizing Compilers for Modern Archs, 2001

* Copper, et.al., Engineering a compiler, 2003
« Aho, et.al., Compilers: ..., 2006

Compilers

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

Before we get too bored

« More admin at the end, but first ...

* What exactly is an optimizing compiler?
- An optimizing compiler transforms a program
into an equivalent, but "better” form.
- What is equivalent?
- What is better?

cture 1,15-745 ©2002-8 Seth Copen Goldstein

Full Employment Theorem

* No such thing as "The optimizing compiler”
- Why not?

* There is always a better optimizing
compiler, but ...
- Compiler must preserve correctness

- On average improve X, where X is:
+ Performance
+ Power

Finish in your lifetime

cture 1,15-745 ©2002-8 Seth Copen Goldstein

How might performance be improved?

execution time = Z cycles per instruction
instructions

* Reduce the number of instructions
* Replace "expensive” instructs with “cheap” ones

* Reduce memory cost
- Improve locality
- Reduce # of memory operations

* Increase parallelism

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 23

Ingredients to a compiler opt

« Identify opportunity
- Avail in many programs
- Occurs in key areas (what are these?)
- Amenable to “efficient” algorithm

Formulate Problem
* Pick a Representation

- Develop an Analysis

- Detect when legal
- And desirable

Implement Code Transformation
* Evaluate (and repeat!)

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

Examples of Optimizations

* Machine Independent

- Algebraic simplification
Constant propagation
Constant folding
Common Sub-expression elimination
Dead Code elimination
Loop Invariant code motion

- Induction variable elimination
* Machine Dependent

- Jump optimization

- Reg allocation

- Scheduling

- Strength reduction

- Loop permutations

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 25

Really Powerful Opts we won't do
* How to optimize:
SumfromltoN(int max) {
sum = 0;
for (1=1; i<=max; I1++) sum+=i;
return sum;

}

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 26

Really Powerful Opts we won't do

* How to optimize:
SumfromltoN(int max) {
sum = 0;
for (i1=1; i<=max; I1++) sum+=i;
return sum;
+
* What we should, but won't do:
inline sumfromltoN(int max) {

return max > 0 ?
((max+max*max)>>1) : O;

}

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 27

Algebraic Simplifications
a*l; =>a
a/l; =a
a*0; =0
a+0; = a

a-0; = a

a=b+1

c=a-1 = c=b

Use algebraic identities to simplify computations

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 28

Jump Optimizations

cmp dO,d1 cmp dO,d1

beq L1

bra L2 bne L2
L1: : L1: :
L2: : L2:

Simplify jump and branch instructions.

cture 1,15-745 ©2002-8 Seth Copen Goldstein

Constant Propagation

a=>5; a=>5;

b = 3; b = 3;

n=a+b; = n=5+3; _
for (i = 0; 1I<n; ++i) for (I = 0; iI<n; ++|)
{

¥ }

If the compiler can determine that the values
of a and b are constants, then it can replace
the variable uses with constant values.

cture 1,15-745 ©2002-8 Seth Copen Goldstein 30

Constant Folding

n = 8 ;
for (1 =0 ; 1 <8 ; ++i) {

}

* The compiler evaluates an expression (at

compile time) and inserts the result in the code.

+ Can lead to further optimization opportunities;
esp. constant propagation.

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein

Common Subexpression Elimination

(CSE)
a = c*d; a = c*d;
; = ;
d=(c*d +) * u d=(a+1)*u

If the compiler can determine that:
- an expression was previously computed

- and that the values of its variables have not
changed since the previous computation,

Then, the compiler can use the previously
__computed value.

lecture 1, 15. ©2002-8 Seth Copen Goldstein 32

Strength Reduction

+ On some processors, the cost of an addition is less
than the cost of multiplication.

* The compiler can replace expensive multiplication
instructions by less expensive ones.

c=b=*2; c=b+ b; c = Ish(b);
move $2000, dO move $2000, do move $2000, dO
muls #2, dO add do, do Isl #1, dO
move dO, $3000 move dO, $3000 Mmove dO, $3000
c = -1*b; c = negative(b);

move $2000, dO move $2000, dO

muls #-1,dO neg do

move dO, $3000 move dO, $3000

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 33

Dead Code Elimination

debug = False;
if (debug) {

}
a = f(b);

If the compiler can determine that code will

hever

be executed or that the result of a

computation will never be used, then it can
eliminate the code or the computation.

lecture 1, 15-745

©2002-8 Seth Copen Goldstein 34

Loop Invariant Code Motion

for (i=0; i<100 ; ++i) { for (i=0; i<100 ; ++i) {
for (J=0; j<100 ; ++j) { for (J=0; j<100 ; ++j) {
for (k=0 ; k<100 ; ++k) tl = a[illil;
{ t2 = i*j;
a[i101Ik] = 1*j*k; for (k=0 ; k<100 ; ++k)
} {
} t1[k] = t2*k;
} }
}
}

+ Loop invariant: expression evaluates to the same
value each iteration of the loop.

+ Code motion: move loop invariant outside loop.

Very important because inner-most loop executes
most frequently.

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 35

Loop Invariant Code Motion

int *a: int *a;
int n; int n;
scanf(“%d”, &n); scanf(*%d”, &n);
for (i=0; i<n ; ++i) { f = a/p;
for (j=0; j<n : ++j) { for (i=0; i<n ; ++i) {
for (k=0 ; k<n ; ++k) for (j:OE jfn s 1) {
{ tl = a[ilLjl;
f = g/p; t2 = 1*j;
a[i]|'_i][k] - f*i*j*k; ;Ol‘ (kZO ; k<n ; ++k)
}} tl[Kk] = F*t2*k;
3} }
}
}

lecture 1, 15-745

©2002-8 Seth Copen Goldstein 36

Cache Optimizations

for (J=0; j<n ; ++j) {
for (i=0; i<n ; ++i) {

x += alillil;
}
}

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

lecture 1, 15-745

©2002-8 Seth Copen Goldstein 37

Cache Optimizations

for (3=0; j<n ; ++j) {
for (i=0; i<n ; ++i) { for (i=0; i<n ; ++i) {
x += a[i1[1]:; for (j=0; j<n ; ++j) {
s x += alilli]l;
3 }

}

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

lecture 1, 15-745

©2002-8 Seth Copen Goldstein

Example

A program that sorts 4-byte elements in an n-
element array of integers A[1..n] using
bubblesort.

A
for (i=n-1; 1 >=1 ; —--1) { 1 0
for g =1; jJ <=1 ; ++)) { 2 4
if (A1 > AD+1D) { 3 8
temp = ALil; :
ALl = AD+11; . P _1y)*
A[j+1] = temp; Jaddr(A) + Q-
3 :
1 n-nl

}

// i and j are not used later

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 39

A Generated IR

. i = n-1 t10 = j+1
fori{ g5 if i <1 goto Exit t1l = t10-1 }A[J*l]
_ j=1 t12 = 4*tl1
for if g4 ir j > i goto S2 t13 = [A+t12]
. tl = j-1 t14 = j-1 Jo
2 = 4*t1 t15 = 4*tl4
t3 = [A+t2] [A+t15] = t13 TALl=ALj+1]
o t4 = j+1 t16 = j+1 .
G+1] t5 = t4-1 t17 = t16-1 }AU*”
t6 = 4*t5 t18 = 4*t17
if T t7 = [A+t6] [A+t18] = temp3Alj+1]=temg
Alj]
U{ 8 = j-1 S3: j = j+1 }forj
temp= L t9 = 4*t8 goto S4
ALl temp = [A+t9] S2: i = i-1 Feor

goto S5
©2002-8 Seth Copen caxdt:

lecture 1, 15-745

40

Optimizations I - Algebraic Simplifications

Optimizations II - CSE

i = n-1 ti0 = j+1 i =n-1 t12 = 4%
S5: if i < 1 goto Exi £11 = t10-1 S5: if i < 1 goto Exit t13 = [A+t12]
i1 112 = 4t i=1
S4: if j > i goto S2 t13 = [A+t12] S4- if j > i goto S2 15 = 4*5t14
= i-1 [A+t15] = t13
t2 = 4*tl tl4 = j-1 t2 = 4*tl t18 = 4%j
13 = [A+t2] t15 = 4*t14 3 = [A+t2] [A+t18] = temp
4 = j+1 _\ [A+t15] = t13 t6 = 4*%j S3: § = j+1
t5 = t4-1 tl6 = j+1 t7 = [A+t6] goto S4
t6 = 4*t5 . tl7 = tl16-1 S2: i = i-1
t7 = [A+t6] 6 = 4%} t18 = 4*tl17 goto S5
[A+t18] = Exit:
8 = j-1 temp
t9 = 4*t8 S3: j = j+1
temp = [A+t9] goto S4
S2: i = i-1
goto S5
Exit:
lecture 1,15-745 © 2002-8 Seth Copen Goldstein 41 lecture 1, 15-745 © 2002-8 Seth Copen Goldstein 42
Optimizations IT - CSE Optimizations III - Copy Propagation
i =n-1 i =n-1 L1122 = t6
S5: if i < 1 goto Exit ti3 = [A+t12] S5: if i < 1 goto Exit t13 = [A+t12]
i=1 tl4 = tl ji=1 ti4 = tl
S4: if j > 1 goto S2 tl5 = 4*tl4 S4: if j > i goto 82 < |t15 = 4*t14
tl = j-1 A+tl15] = t13 tl = j-1 [A+t15] = t13
2 = 4*t1 ’m'—rtl%;l*'_‘ 2 = 4*t1 ti8 = t6
t3 = [A+t2 [A+t18] = temp t3 = [A+t2] a—— " |[[A+t18] = temp
S3: j = j+1 6 = 4%j |[A+t6] = temp |s3: J =3+
t7 = [A+t6] goto S4 t7 = [A+t6] goto S4
S2: i = i-1 S2: i = i-1
8 = tl goto S5 8 = t1 goto S5
t9 = 4*t8 Exit t9 = 4*t8 = 4| it
temp = [A+t9] temp = [A+t9]

lecture 1,15-745

©2002-8 Seth Copen Goldstein

43

lecture 1,15-745

©2002-8 Seth Copen Goldstein

44

i =n-1
S5: if 1 < 1 goto Exit

j=1 [A+t15] = t13
S4: if j > i goto S2 [A+t6] = temp

tl = j-1 S3: j = j+1

t2 = 4*tl goto S4

t3 = [A+t2] S2: i1 = i-1

t6 = 4 goto S5

= [Exit:

temp = [A+t9]

lecture 1,15-745 ©2002-8 Seth Copen Goldstein

45

Optimizations V - Copy Propagation (2)

i =n-1 t13 = t7
S5: if 1 < 1 goto EXit tl5 = t2

j=1 [A+t2] = t7|* [A+t15] = t13
S4: if j > i goto S2 [A+t6] = temp

t1 = j-1

t2 = 4*tl S3: j = j+1

t3 = [A+t2] goto S4

t6 = 4%j S2: i1 =1i-1

t7 = [A+t6] goto S5

Exit:
9 = 2

temp = [A+t9] | temp = [AtE2]

lecture 1,15-745 ©2002-8 Seth Copen Goldstein

Optimization VI - CSE (3)

i = n-1 [A+t2] = t7
S5: if i < 1 goto Exit [A+t6] = temp

i=1
S4: if j > i goto S2 S3: j = j+1

tl = j-1 goto S4

t2 = 4*tl S2: i = i-1

3 = [A+t2] goto S5

t6 = 4* temp = t3| Exit:

t7 = [

STV R
|temp = [A+t2] F—"’/////

lecture 1,15-745 ©2002-8 Seth Copen Goldstein

47

Optimization VIT - Copy Propagation (3)

i =n-1 [A+t2] = t7
S5: if i < 1 goto Exit [A+t6] = temp

=1
s4: if j > i goto s?[A+t6] - [t3]|53: j = j+1

tl = j-1 goto S4

2 = 4*tl S2: i = 1i-1

t3 = [A+t2] goto S5

t6 = 4%j Exit:

t7 = [A+t6]

temp = €3

lecture 1,15-745 ©2002-8 Seth Copen Goldstein

Optimizations VIIT - IVE & Strength

Optimizations VIIT - IVE & Strength

Reduction Reduction
i =n-1 i =n-1 i =n-1
S5: if 1 < 1 goto Exit S5: if 1 < 1 goto Exit S5: if i1 < 1 goto Exit
j=1 j=1 t2 = 0
S4: if j > i goto S2 S4: if j > i goto S2 t =14
tl = j-1 tl = j-1 S4: t19 = 4%i
/‘ if t6 > t19 goto S2
= TAFEZ] = [A*T2] Loop Invariant t3 = [A+t2]
Code Motion...
t7 = [A+1t6] t7 = [A+1t6] t7 = [A+t6]
[A+t2] = t7 [A+t2] = t7 [A+t2] =
[A+t6] = t3 [A+t6] = t3 [A+t6] =
S3: j = j+1 S3: j = j+1 S3: |2 = t2+4
goto S4 goto S4 t6 = t6+4
i = i-1 S2: i1 =1i1-1 goto &4
goto S5 goto S5 S2: 1 =1-1
Exit Exit: goto S5
Exit:
Done? Done?
i=nl __— ———tl9 = i*4 i =n-1
SS:/;;:EESEélgff? EXit t19 = 1i*4
= S5: if tl19 < 4 goto Exit
t6 = 4 tl9 <4 6 = 4
S4: Ho—4=1 — S4: if t6 > t19 goto S2
if t6 > t19 goto S2 t3 = [A+t6-4]
= [A+£2] t7 = [A+t6]
[A-4+16] t7 = [A+t6]
[A+t6-4] = t7
[A+%2] = t7 [A+t6] =
[A+t6] = t3 S3: 16 = t6+4
S3: 2= 272 goto S4 ..
6 = t6+4 s2: 119 = t19 - 4 Eliminate mult,
_ %Eii/\ €19 = t19-4 __goto S5 Use double load (if aligned?)
S2: Exit: Unroll?
goto S5 Eliminate jmp

Exit:

lecture 1,15-745 ©2002-8 Seth Copen Goldstein

51

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 52

Done For Now.

i =n-1
tl19 = iI<<?2
if t19 < 4 goto Exit
S5: t6 = 4 0 Inner lo:p: 7 instructions
if t6 > t19 goto S2) ?e"\:rs
S4: t3 = [A+t6-4]) :]:;n: es
t7 = [A+t6] addition
[A+t6-4] = t7 Or‘igina|6inner loop: 25 instructi
to = tora 3 branches
S3: t6 = t6+4
10 addition

if t6 <= t19 goto s4
S2: 119 = t19 - 4

if t19 >= 4 goto s5
Exit:

6 multiplication

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 53

Course Schedule

- www.cs.cmu.edu/afs/cs/academic/class/
15745-s09/www/

- The Web site is a vital resource

* (And, of course me t00.)

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 54

Course Staff

Seth Goldstein
seth@cmu.edu

- www..../~seth

Heather Carney
hcarney@cs.cmu.edu

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 55

First Assignment

Install llvm on your favorite machine

Get familiar with llvm tools, IR,
structure

Lots of docs at www.llvm.org

First part of assignment 1 will be
posted Friday.

lecture 1, 15-745 ©2002-8 Seth Copen Goldstein 56

