Non-blocking synchronization
algorithms on multicore
machines

Tianyuan Ding
Preeti Murthy

Fast and Scalable Queue-Based Resource Allocation Lock

® Multi-resource lock algorithm that guarantees the FIFO fairness
® Resources are encoded as a bit set
® Internally using a non-blocking queue where competing threads spin on

previous conflicting resource requests made by other cores

® All-or-nothing atomic acquisition, wait until all my requested sources are made
available

® Upon release, clear the corresponding bit, and remove the request until all bits
are cleared so that thread waits for it can proceed

Example

01000010

<H EAD

00011010

11101000

00111000

00000101

a U A W N -

10100000

<TAIL

(a) Cell 6 spins on cell 3

01000010

<H EAD

00011010

00000000

00111000

00000101

a U A W N

10100000

TAIL

(b) Release of cell 3. Cell 6 spins on cell 4

Thoughts

® They use compare-and-swap for

o spinning on adding requests to the queue
o spinning until all my requested sources are available
o spinning until all bits in a request are cleared so that the request can be removed

® Alternatively, rather than each sends messages to a centralized queue, sends
requests to anyone who has previously requested any resource bit

® \When a thread finishes, forward the waiters to other threads have requested
other resources. The waiter can finally run if there are no conflicts anymore

Revisiting the Combining Synchronization Technique

® Proposes combining synchronization technique CC-Synch and DSM-Synch
o CC-Synch (cache coherent) addresses systems that support coherent caches
o DSM-Synch (distributed shared memory) works better in cacheless NUMA machines.
In CC-Synch threads put requests on a queue
The lock holder who is the top of the queue is called the “combiner”, others spinning on a
“wait” flag
o Combiner not only processes its own critical section, but also serves all other pending
requests (or a specified number)
o DSM-Synch has a similar design, but the combiner will stop until it reaches the second to
last element in the queue
® Both try to reduce remote memory reference (RMR)
o DSM-Synch has bounded RMRs
o CC-Synch has unbounded RMRs in the DSM model

Thoughts

® Once the combiner is determined, threads can send interrupts
to it
o Message contains relevant information such as critical

section routine, etc.

® Upon the combiner releases the lock, it will process all
messages and execute the routines

® Security issue from combining synchronization technique in
general?

Remote Core Locking: Migrating Critical-Section Execution to Improve the
Performance of Multithreaded Applications

Reduce lock contention on legacy systems

Does not require deep understanding of application code

Applications may not use all cores; Dedicate a core to handle critical section
Avoids cache contention

Extract critical section into a function call executed remotely on a core
Additional service threads to ensure progress of work on remote core

Tool to identify the potential locks to transform to RCL

Tool to transform critical section into Remote Procedure Call

Pitfalls: Deadlock, Priority Inversion, Serialization of all critical sections

D i e i

i
S T S
!

e

Core1 Core2 - Coren Server core Core 1 Core2 - Coren

(a) POSIX locks (b) RCL
Fig. 1: Critical sections with POSIX locks vs. RCL.

lock context function
slock? |Oxcbds4soo| mons

&lockl Ox£47%all HULL

flockl 0x235Bdach Efoo

slock2 0x812ab5ch HULL

Hardware cache line size (L)

Server |loop
AV ATATA

for the third word of reg; to be reset to NULL, indicating
that the server has executed the critical section. In order
to improve energy efficiency, if there are less clients than
the number of cores available, the SSE3 monitor/mwait
instructions can be used to avoid spinning: the client will
sleep and be woken up automatically when the server
writes into the third word of regq;.

Server side A servicing thread iterates over the re-
quests, waiting for one of the requests to contain a non-
NULL value in its third word. When such a value is found,
the servicing thread checks if the requested lock is free
and, if so, acquires the lock and executes the critical sec-
tion using the function pointer and the context. When the
servicing thread is done executing the critical section, it
resets the third word to NULL, and resumes the iteration.

RH Lock: A Scalable Hierarchical Spin Lock

NUMA Aware Lock

Test and Set Locking Primitives: Unfair but avoid node to node bouncing
Queue based Locking Primitives: Eg: MCS: Fair but can result in node to node
bouncing of locks

RH Lock aims at avoiding node to node bouncing of locks

Every lock must be local to atmost one node and remote to all other nodes
Acquire favours local locks over remote locks

Remote locks are acquired by exponential backoffs

Remote locks once acquired become local to the node

An Efficient Asymmetric Distributed Lock for Embedded
Multiprocessor Systems

® Hardware Locking Primitives are too complex to implement in embedded
systems

® Use Software Locking Primitives which have little memory contention

® Implementation very similar to our locking primitive

® Difference lies in having a dedicated core to keep track of the owner of the
lock

® This core replies to lock requests with ‘free’ or ‘ask owner’

® A dedicated core to receive ‘ask owner’ requests and to notify owner about

waiter

References

1. http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
2. http://dl.acm.org/citation.cfm?id=2145849
3. https://it.uu.
se/research/group/uart/pub/radovic_2002_may/radovic_2002_may.pdf
4. http://dl.acm.org/citation.cfm?id=2442532
5. https://www.usenix.org/system/files/conference/atc12/atc12-final237.pdf

http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532

