
Non-blocking synchronization 
algorithms on multicore 
machines

Tianyuan Ding
Preeti Murthy



Fast and Scalable Queue-Based Resource Allocation Lock

● Multi-resource lock algorithm that guarantees the FIFO fairness
● Resources are encoded as a bit set
● Internally using a non-blocking queue where competing threads spin on 

previous conflicting resource requests made by other cores
● All-or-nothing atomic acquisition, wait until all my requested sources are made 

available
● Upon release, clear the corresponding bit, and remove the request until all bits 

are cleared so that thread waits for it can proceed



Example



Thoughts

● They use compare-and-swap for
○ spinning on adding requests to the queue
○ spinning until all my requested sources are available
○ spinning until all bits in a request are cleared so that the request can be removed

● Alternatively, rather than each sends messages to a centralized queue, sends 
requests to anyone who has previously requested any resource bit 

● When a thread finishes, forward the waiters to other threads have requested 
other resources. The waiter can finally run if there are no conflicts anymore



Revisiting the Combining Synchronization Technique

● Proposes combining synchronization technique CC-Synch and DSM-Synch
○ CC-Synch (cache coherent) addresses systems that support coherent caches
○ DSM-Synch (distributed shared memory) works better in cacheless NUMA machines.

● In CC-Synch threads put requests on a queue
● The lock holder who is the top of the queue is called the “combiner”, others spinning on a 

“wait” flag
○ Combiner not only processes its own critical section, but also serves all other pending 

requests (or a specified number)
○ DSM-Synch has a similar design, but the combiner will stop until it reaches the second to 

last element in the queue
● Both try to reduce remote memory reference (RMR)

○ DSM-Synch has bounded RMRs
○ CC-Synch has unbounded RMRs in the DSM model



Thoughts

● Once the combiner is determined, threads can send interrupts 
to it
○ Message contains relevant information such as critical 

section routine, etc.
● Upon the combiner releases the lock, it will process all 

messages and execute the routines
● Security issue from combining synchronization technique in 

general?



Remote Core Locking: Migrating Critical-Section Execution to Improve the 
Performance of Multithreaded Applications

● Reduce lock contention on legacy systems
● Does not require deep understanding of application code
● Applications may not use all cores; Dedicate a core to handle critical section
● Avoids cache contention
● Extract critical section into a function call executed remotely on a core
● Additional service threads to ensure progress of work on remote core
● Tool to identify the potential locks to transform to RCL 
● Tool to transform critical section into Remote Procedure Call
● Pitfalls: Deadlock, Priority Inversion, Serialization of all critical sections





RH Lock: A Scalable Hierarchical Spin Lock

● NUMA Aware Lock
● Test and Set Locking Primitives: Unfair but avoid node to node bouncing
● Queue based Locking Primitives: Eg: MCS: Fair but can result in node to node 

bouncing of locks
● RH Lock aims at avoiding node to node bouncing of locks
● Every lock must be local to atmost one node and remote to all other nodes
● Acquire favours local locks over remote locks
● Remote locks are acquired by exponential backoffs
● Remote locks once acquired become local to the node



An Efficient Asymmetric Distributed Lock for Embedded 
Multiprocessor Systems

● Hardware Locking Primitives are too complex to implement in embedded 
systems

● Use Software Locking Primitives which have little memory contention
● Implementation very similar to our locking primitive
● Difference lies in having a dedicated core to keep track of the owner of the 

lock
● This core replies to lock requests with ‘free’ or ‘ask owner’
● A dedicated core to receive ‘ask owner’ requests and to notify owner about 

waiter



References

1. http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
2. http://dl.acm.org/citation.cfm?id=2145849
3. https://it.uu.

se/research/group/uart/pub/radovic_2002_may/radovic_2002_may.pdf
4. http://dl.acm.org/citation.cfm?id=2442532
5. https://www.usenix.org/system/files/conference/atc12/atc12-final237.pdf

http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
http://link.springer.com/chapter/10.1007/978-3-319-03850-6_19
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532
http://dl.acm.org/citation.cfm?id=2442532

