
Static Instruction Scheduling 
15740 

 
 

Prof. Onur Mutlu (Editted by Seth) 
Carnegie Mellon University 

 
 

Along with VLIW&  Systolic 



Key Questions 
Q1. How do we find independent instructions to fetch/execute? 
 
Q2. How do we enable more compiler optimizations? 
 e.g., common subexpression elimination, constant 
 propagation, dead code elimination, redundancy 
 elimination, … 
 
Q3. How do we increase the instruction fetch rate?  
 i.e., have the ability to fetch more instructions per cycle 
 
  

2 



Key Questions 
Q1. How do we find independent instructions to fetch/execute? 
 
Q2. How do we enable more compiler optimizations? 
 e.g., common subexpression elimination, constant 
 propagation, dead code elimination, redundancy 
 elimination, … 
 
Q3. How do we increase the instruction fetch rate?  
 i.e., have the ability to fetch more instructions per cycle 
 
A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above 
  3 



VLIW (Very Long Instruction Word 
 Simple hardware with multiple function units 

 Reduced hardware complexity 
 Little or no scheduling done in hardware, e.g., in-order 
 Hopefully, faster clock and less power 

 Compiler required to group and schedule instructions 
(compare to OoO superscalar) 
 Predicated instructions to help with scheduling (trace, etc.) 
 More registers (for software pipelining, etc.) 

 Example machines: 
 Multiflow, Cydra 5 (8-16 ops per VLIW) 
 IA-64 (3 ops per bundle) 
 TMS32xxxx (5+ ops per VLIW) 
 Crusoe (4 ops per VLIW) 

4 



Comparison between SS ↔ VLIW 

From Mark Smotherman, “Understanding EPIC Architectures and Implementations” 

http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf


Comparison: CISC, RISC, VLIW 







EPIC – Intel IA-64 Architecture 
 Gets rid of lock-step execution of instructions within a VLIW 

instruction 
 Idea: More ISA support for static scheduling and parallelization 

 Specify dependencies within and between VLIW instructions 
(explicitly parallel) 

 
+ No lock-step execution 
+ Static reordering of stores and loads + dynamic checking 
-- Hardware needs to perform dependency checking (albeit aided by 

software) 
-- Other disadvantages of VLIW still exist 
 
 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 

2000. 
9 



IA-64 Instructions 
 IA-64 “Bundle” (~EPIC Instruction) 

 Total of 128 bits 
 Contains three IA-64 instructions 
 Template bits in each bundle specify dependencies within a 

bundle 
  
\ 
 
 

 IA-64 Instruction 
 Fixed-length 41 bits long 
 Contains three 7-bit register specifiers 
 Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers 
 10 



IA-64 Instruction Bundles and Groups 
 Groups of instructions can be 

executed safely in parallel 
 Marked by “stop bits” 

 
 Bundles are for packaging 

 Groups can span multiple bundles 
 Alleviates recompilation need 

somewhat  

11 



VLIW: Finding Independent Operations 
 Within a basic block, there is limited instruction-level 

parallelism 
 To find multiple instructions to be executed in parallel, the 

compiler needs to consider multiple basic blocks 
 

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed 
 

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths 
 Trace scheduling 
 Superblock scheduling  
 Hyperblock scheduling 
 Software Pipelining 

13 

It’s all about the compiler 
and how to schedule the 
instructions to maximize 
parallelism 



List Scheduling: For 1 basic block 
 Assign priority to each instruction 
 Initialize ready list that holds all ready instructions 

  Ready = data ready and can be scheduled 
 Choose one ready instruction I   from ready list with the 

highest priority 
  Possibly using tie-breaking heuristics  

 Insert I  into schedule  
  Making sure resource constraints are satisfied 

 Add those instructions whose precedence constraints are 
now satisfied into the ready list  
 

14 



Data Precedence Graph 
 

15 

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2



Instruction Prioritization Heuristics 
 Number of descendants in precedence graph 
 Maximum latency from root node of precedence graph 
 Length of operation latency 
 Ranking of paths based on importance 
 Combination of above 

 

16 



VLIW List Scheduling 
 Assign Priorities 
 Compute Data Ready List - all operations whose predecessors have 

been scheduled. 
 Select from DRL in priority order while checking resource constraints 
 Add newly ready operations to DRL and repeat for next instruction 

 

17 

1
5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

4-wide VLIW Data Ready List 

1 {1} 

6 3 4 5 {2,3,4,5,6} 

9 2 7 8 {2,7,8,9} 

12 10 11 {10,11,12} 

13 {13} 



Extending the scheduling domain 
 Basic block is too small to get any real parallelism 
 How to extend the basic block? 

 Why do we have basic blocks in the first place? 
 Loops 

 Loop unrolling 
 Software pipelining 

 Non-loops 
 Will almost always involve some speculation 
 And, thus, profiling may be very important 
 

18 



Safety and Legality in Code Motion 
 Two characteristics of speculative code motion: 

 Safety: whether or not spurious exceptions may occur 
 Legality: whether or not result will be always correct 

 Four possible types of code motion: 
 

19 

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints 
 Downward 

 When moving an operation from a BB to one of its dest BB’s, 
 all the other dest basic blocks should still be able to use the result 

of the operation 
 the other source BB’s of the dest BB should not be disturbed 

 
 Upward 

 When moving an operation from a BB to its source BB’s 
 register values required by the other dest BB’s must not be 

destroyed 
 the movement must not cause new exceptions 

 
 
 

20 



Trace Scheduling  
 Trace: A frequently executed path in the control-flow graph 

(has multiple side entrances and multiple side exits) 
  
 Idea: Find independent operations within a trace to pack 

into VLIW instructions.  
 Traces determined via profiling 
 Compiler adds fix-up code for correctness (if a side entrance 

or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed) 

21 



Trace Scheduling Idea 
 

22 



Trace Scheduling (II) 
 There may be conditional branches from the middle of the 

trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances). 
 

 These control-flow transitions are ignored during trace 
scheduling. 
 

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code. 
 

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981.  

23 



Trace Scheduling (III) 
 

24 

Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

What bookeeping is required when Instr 1  
is moved below the side entrance in the trace? 



Trace Scheduling (IV) 
 

25 

Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

Instr 3 
Instr 4 



Trace Scheduling (V) 
 

26 

Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

What bookeeping is required when Instr 5  
moves above the side entrance in the trace? 



Trace Scheduling (VI) 
 

27 

Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

Instr 5 



Trace Scheduling Fixup Code Issues 
 Sometimes need to copy instructions more than once to 

ensure correctness on all paths (see C below) 

28 

A

B

C
D

E

X

Y

D

B

E
A

C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

C’’’



Trace Scheduling Overview 
 Trace Selection 

 select seed block (the highest frequency basic block) 
 extend trace (along the highest frequency edges) 

forward (successor of the last block of the trace) 
backward (predecessor of the first block of the trace) 

 don’t cross loop back edge 
 bound max_trace_length heuristically 

 

  Trace Scheduling 
 build data precedence graph for a whole trace 
 perform list scheduling and allocate registers 
 add compensation code to maintain semantic correctness 

 

 Speculative Code Motion (upward) 
 move an instruction above a branch if safe 
 29 



Trace Scheduling Example (I) 
 

30 

beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II) 
 

31 

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III) 
 

32 

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV) 

33 

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V) 
 

34 

fdiv  f1,  f2,  f3
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs  
 Advantages 

+ Enables the finding of more independent instructions  fewer 
NOPs in a VLIW instruction 

 
 Disadvantages 

-- Profile dependent  
 -- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions 
-- Code bloat and additional fix-up code executed 
 -- Due to side entrances and side exits 
    -- Infrequent paths interfere with the frequent path 
-- Effectiveness depends on the bias of branches 
 -- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions 
35 



Superblock Scheduling 
 Trace: multiple entry, multiple exit block 
 Superblock: single-entry, multiple exit block 

 A trace with side entrances are eliminated 
 Infrequent paths do not interfere with the frequent path 

+ More optimization/scheduling opportunity than traces 
+ Eliminates “difficult” bookkeeping due to side entrances 

36 Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991. 



Can You Do This with a Trace? 
 

37 

opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

1 

Original Code 

opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

Code After Superblock Formation 

opC’: mul r3,r2,3 

opA: mul r1,r2,3 

opC: mov r3,r1 

opB: add r2,r2,1 99 

1 

Code After Common  
Subexpression Elimination 

opC’: mul r3,r2,3 



Superblock Scheduling Shortcomings 
-- Still profile-dependent 
 
-- No single frequently executed path if there is an unbiased 

branch 
 -- Reduces the size of superblocks 
 
-- Code bloat and additional fix-up code executed 
 -- Due to side exits 
 

38 



Hyperblock Scheduling 
 Idea: Use predication support to eliminate unbiased branches 

and increase the size of superblocks 
 Hyperblock: A single-entry, multiple-exit block with internal 

control flow eliminated using predication (if-conversion) 
 

 Advantages 
 + Reduces the effect of unbiased branches on scheduled block size 

 
 Disadvantages 

-- Requires predicated execution support 
-- All disadvantages of predicated execution  

39 



Hyperblock Formation (I) 
 Hyperblock formation 
 1. Block selection 
 2. Tail duplication 
 3. If-conversion 

 
 Block selection 

 Select subset of BBs for inclusion in HB 
 Difficult problem 
 Weighted cost/benefit function 

 Height overhead 
 Resource overhead 
 Dependency overhead 
 Branch elimination benefit 
 Weighted by frequency 

 
 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 

Hyperblock,” MICRO 1992. 

 
 

40 

BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

90 

10 

80 20 

10 



Hyperblock Formation (II) 
 

41 

BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

90 

10 

80 20 

10 

BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

81 
9 

80 20 

10 

BB6’ 

9 
1 

Tail duplication same as with Superblock formation 



Hyperblock Formation (III) 
 

42 

BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

81 
9 

80 20 

10 

BB6’ 

9 
1 

BB1 
p1,p2 = CMPP 

BB2 if p1 

BB3 if p2 

BB4 

BB6 BB5 

10 

BB6’ 

81 9 

1 

10 

If-convert (predicate) intra-hyperblock branches 



Can We Do Better? 
 Hyperblock still 

 Profile dependent 
 Requires fix-up code 
 And, requires predication support 

 
 Single-entry, single-exit enlarged blocks 

 Block-structured ISA 
 Optimizes multiple paths (can use predication to enlarge blocks) 
 No need for fix-up code (duplication instead of fixup) 

 

43 



Non-Faulting Loads and Exception Propagation 

 
 
 
 
 
 
 
 
 
 ld.s fetches speculatively from memory 

 i.e. any exception due to ld.s is suppressed 
 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 

branch is taken (to execute some compensation code) 

 44 

inst 1 
inst 2 
…. 
 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1 
inst 2 
…. 
br 

chk.s r1 
use=r1 

…. ld r1=[a] 

br 



Non-Faulting Loads and Exception Propagation in IA-64 

 
 
 
 
 
 
 
 
 
 

 Load data can be speculatively consumed prior to check 
 “speculation” status is propagated with speculated data 
 Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions) 
 chk.s checks the entire dataflow sequence for exceptions 

 45 

inst 1 
inst 2 
…. 
br 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1  
inst 2 
use=r1 
…. 
br 

chk.s use …. ld r1=[a] 
use=r1 

br 



Aggressive ST-LD Reordering in IA-64 
 
 
 
 
 
 
 
 
 

 ld.a starts the monitoring of any store to the same address as the 
advanced load 

 If no aliasing has occurred since ld.a, ld.c is a NOP 
 If aliasing has occurred, ld.c re-loads from memory 

 46 

inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
…. 
st [?] 
…. 
ld.c r1=[x] 
use=r1 

st[?] 



Aggressive ST-LD Reordering in IA-64 
 

47 

inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
use=r1  
…. 
st [?] 
…. 
chk.a X 
…. 

st[?] 

ld r1=[a] 
use=r1 



Summary and Questions 
 Trace, superblock, hyperblock, block-structured ISA 

 
 How many entries, how many exits does each of them have? 

 What are the corresponding benefits and downsides? 
 

 What are the common benefits? 
 Enable and enlarge the scope of code optimizations 
 Reduce fetch breaks; increase fetch rate 

 
 What are the common downsides? 

 Code bloat (code size increase) 
 Wasted work if control flow deviates from enlarged block’s path 
 
 
 

53 



What about loops? 
 Unrolling 
 Software pipelining 

54 



Loop Unrolling 
 
 
 
 
 
 
 

 Idea: Replicate loop body multiple times within an iteration 
+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 
 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 

 
55 



15-745 © Seth Copen Goldstein 2000-5 
56 

Software Pipelining 
 Software pipelining is an instruction scheduling technique 

that reorders the instructions in a loop. 
 Possibly moving instructions from one iteration to the 

previous or the next iteration. 
 Very large improvements in running time are possible. 

 The first serious approach to software pipelining was 
presented by Aiken & Nicolau. 
 Aiken’s 1988 Ph.D. thesis. 
 Impractical as it ignores resource hazards (focusing only 

on data-dependence constraints). 
 But sparked a large amount of follow-on research. 



15-745 © Seth Copen Goldstein 2000-5 
57 

Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A: a ← ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 

Assume all have latency of 2 

A B C D 



15-745 © Seth Copen Goldstein 2000-5 
58 

Can we decrease the latency? 

 Lets unroll 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 
A1: a ←  ld [d] 
B1: b ←  a * a 
C1:  st [d], b 
D1: d ←  d + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
59 

Rename variables 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
60 

Schedule 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A B C D1 
D A1 B1 C1 



15-745 © Seth Copen Goldstein 2000-5 
61 

Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D2 

A B C D2 
D A1 B1 C1 

D1 A2 B2 C2 



15-745 © Seth Copen Goldstein 2000-5 
62 

Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

D1 A2 B2 C2   
  D2   A3 B3 C3 

D2 

A3 

B3 

C3 



15-745 © Seth Copen Goldstein 2000-5 
63 

One More Time 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 



15-745 © Seth Copen Goldstein 2000-5 
64 

Can Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 



15-745 © Seth Copen Goldstein 2000-5 
65 

Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 



15-745 © Seth Copen Goldstein 2000-5 
66 

Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D  

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 



15-745 © Seth Copen Goldstein 2000-5 
67 

SP Loop 
A: a ←  ld [d] 
B: b ←  a * a 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
D1: d2 ←  d1 + 4 
 
C:  st [d], b 
B1: b1 ←  a1 * a1 
A2: a2 ←  ld [d2] 
D2: d ←  d2 + 4 
 
B2: b2 ←  a2 * a2 
C1:  st [d1], b1 
D3: d2 ←  d1 + 4 
C2:  st [d2], b2 

A B C C C D3 
D A1 B1 B1 B1 C1 

  D1   A2 A2 A2 B2 C2 
      D2 D2 D2 

Prolog 

Body 

Epilog 



15-745 © Seth Copen Goldstein 2000-5 
68 

Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A 

B 

C 

dependencies 
in initial loop 

A 

B 

C 

iteration i i+1 i+2 

after SP 



15-745 © Seth Copen Goldstein 2000-5 
69 

Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

 But also, to uncover ILP across iteration boundaries! 



15-745 © Seth Copen Goldstein 2000-5 
70 

Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

A2 B1 C0 

A3 B2 C1 

B3 C2 

C3 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 



15-745 © Seth Copen Goldstein 2000-5 
71 

Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 

Prolog 

epilog 

loop body 



15-745 © Seth Copen Goldstein 2000-5 
72 

for (i=0; i<N; 
i++)  
{ 
 Ai 
 Bi 
 Ci 
} 
 

Dealing with exit conditions 

 i=0 
 if (i >= N) goto done 
 A0 

 B0 

 if (i+1 == N) goto last 
 i=1 
 A1 

 if (i+2 == N) goto epilog 
 i=2 

loop: 
 Ai 

 Bi-1 

 Ci-2 

 i++ 
 if (i < N) goto loop 
epilog: 
 Bi 

 Ci-1 

last: 
 ci 

done:  



15-745 © Seth Copen Goldstein 2000-5 
73 

Loop Unrolling V. SP 

For SuperScalar or VLIW 
 Loop Unrolling reduces loop overhead 
 Software Pipelining reduces fill/drain 
 Best is if you combine them  

Software Pipelining 

Loop Unrolling 

# of 
overlapped 
iterations 

Time 



VLIW 
 Depends on the compiler 

 As often is the case: compiler algs developed for VLIW are 
relevant to superscalar, e.g., software pipelining. 

 Why wouldn’t SS dynamically “software pipeline?” 
 

 As always: Is there enough statically knowable parallelism? 
 

 What about wasted Fus?  Code bloat? 
 

 Many DSPs are VLIW.  Why? 
 

74 



Small Aside 
 Scalar Replacement & Dependencies 

75 



Scalar Replacement: Example 
DO I = 1, N 
 DO J = 1, M 
  A(I) = A(I) + B(J) 
 ENDDO 
ENDDO 
 

 
 
 

 A(I) can be left in a register 
throughout the inner loop 

 Superscalar + cache will get most of 
this, but not allocate A(I) to register 

DO I = 1, N 
 T = A(I) 
 DO J = 1, M 
  T = T + B(J) 
 ENDDO 
 A(I) = T 
ENDDO 
 

 

 All loads and stores to A in the inner 
loop have been saved 

 High chance of T being allocated a 
register by compiler 



Scalar Replacement 

 Convert array reference to scalar reference 
 Approach is to use dependences to achieve these memory 

hierarchy transformations 



Dependence and  Memory Hierarchy 

 True or Flow - save loads and cache miss 
 Anti - save cache miss? 
 Output - save stores 
 Input - save loads 

 
    A(I) = ... + B(I) 
    ...  = A(I) + k 
    A(I) = ... 
    ...  = B(I) 



Dependence and Memory Hierarchy 
 Loop Carried dependences - Consistent dependences most 

useful for memory management purposes 
 Consistent dependences - dependences with constant 

dependence distance 
 



 In the reduction example 
 

DO I = 1, N 
 DO J = 1, M 
 
  A(I) = A(I) + B(J) 
 
 ENDDO 
ENDDO 

Using Dependences 
DO I = 1, N 
 T = A(I) 
 DO J = 1, M 
  T = T + B(J) 
 ENDDO 
 A(I) = T 
ENDDO 
 

 True dependence - replace the 
references to A in the inner loop by 
scalar T 

 Output dependence - store can be 
moved outside the inner loop 

 Antidependence - load can be 
moved before the inner loop 



Scalar Replacement 

 Example: Scalar 
Replacement in case of 
loop independent 
dependence 

 
 DO I = 1, N 
  A(I) = B(I) + C 
  X(I) = A(I)*Q 
 ENDDO 

 DO I = 1, N 
  t = B(I) + C 
  A(I) = t 
  X(I) = t*Q 
 ENDDO 
 
 One less load for each 

iteration for reference to A 



Scalar Replacement 
 Example: Scalar 

Replacement in case of 
loop carried dependence 
spanning single iteration 

  

 DO I = 1, N 
  A(I) = B(I-1) 
  B(I) = A(I) + 
C(I) 

 ENDDO 

 tB = B(0) 
 DO I = 1, N 
  tA = tB 
  A(I) = tA 
  tB = tA + C(I) 
  B(I) = tB 
 ENDDO 
 

 One less load for each iter for 
ref to B which had a loop carried 
true dependence of 1 iter  

 Also one less load per iter for 
reference to A 



Scalar Replacement 
 Example: Scalar 

Replacement in case of 
loop carried dependence 
spanning multiple 
iterations 

  

 DO I = 1, N 
  A(I) = B(I-1) + 
B(I+1) 

 ENDDO 

 t1 = B(0) 
 t2 = B(1) 
 DO I = 1, N 
  t3 = B(I+1) 
  A(I) = t1 + t3 
  t1 = t2 
  t2 = t3 
 ENDDO 
 One less load for each iter 

for ref to B which had a loop 
carried input dependence of 
2 iters 

 Invariants maintained were 
t1=B(I-1); t2=B(I); 
t3=B(I+1) 



15-745 © Seth Copen Goldstein 2000-5 84 

Aiken/Nicolau Scheduling 
Step 1 

Perform scalar replacement to eliminate memory 
references where possible. 

for i:=1 to N do 
    a := j ⊕ V[i-1] 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 



15-745 © Seth Copen Goldstein 2000-5 85 

Aiken/Nicolau Scheduling 
Step 2 

Unroll the loop and compute the data-dependence 
graph (DDG). 
 
DDG for rolled loop: 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a 

b 

c 

d 

e 

f g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 86 

Aiken/Nicolau Scheduling 
Step 2, cont’d 

DDG for unrolled loop: 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 



15-745 © Seth Copen Goldstein 2000-5 87 

Aiken/Nicolau Scheduling 
Step 3 

Build a tableau of iteration number vs cycle time. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 



15-745 © Seth Copen Goldstein 2000-5 88 

Aiken/Nicolau Scheduling 
Step 3 

Build a tableau of iteration number vs cycle time. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 

basically, you’re emulating 
a superscalar with infinite 
resources, infinite register 
renaming, always predicting 
the loop-back branch: 
thus, just pure 
data dependency 



15-745 © Seth Copen Goldstein 2000-5 89 

Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 



15-745 © Seth Copen Goldstein 2000-5 90 

Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 



15-745 © Seth Copen Goldstein 2000-5 91 

Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e Go back and  

relate slopes 
to DDG 



15-745 © Seth Copen Goldstein 2000-5 92 

Aiken/Nicolau Scheduling 
Step 5 

“Coalesce” the slopes. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 



15-745 © Seth Copen Goldstein 2000-5 93 

Aiken/Nicolau Scheduling 
Step 6 

Find the loop body and “reroll” the loop. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 



15-745 © Seth Copen Goldstein 2000-5 94 

Aiken/Nicolau Scheduling 
Step 6 

Find the loop body and “reroll” the loop. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

Prologue/entry code 

Loop body 

Epilogue/exit code 



15-745 © Seth Copen Goldstein 2000-5 95 

Aiken/Nicolau Scheduling 
Step 7 

Generate code. 
(Assume VLIW-like machine for this example.  The instructions on 
each line should be issued in parallel.) 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f2 := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f3 := U[3]     j3 := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f2  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j3 ⊕ b3   i := 3 
L: 
   di := fi-1 ⊕ ci    bi+1 := ai ⊕ fi 
   ei := bi ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ ji    ai+2 := ji+1 ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 



15-745 © Seth Copen Goldstein 2000-5 96 

Aiken/Nicolau Scheduling 
Step 8 
 Since several versions of a variable (e.g., ji and ji+1) might 

be live simultaneously, we need to add new temps and 
moves 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f2 := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f3 := U[3]     j3 := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f2  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j3 ⊕ b3   i := 3 
L: 
   di := fi-1 ⊕ ci    bi+1 := ai ⊕ fi 
   ei := bi ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ ji    ai+2 := ji+1 ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 



15-745 © Seth Copen Goldstein 2000-5 97 

Aiken/Nicolau Scheduling 
Step 8 
 Since several versions of a variable (e.g., ji and ji+1) might 

be live simultaneously, we need to add new temps and 
moves 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f’’ := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f’ := U[3]     j’ := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f’’  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j’ ⊕ b3   i := 3 
L: 
   di := f’’ ⊕ ci    bi+1 := a’ ⊕ f’    b’ := b; a’=a; f’’=f’; f’=f; j’’=j’; j’=j 
   ei := b’ ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ j’    ai+2 := j’’ ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 



15-745 © Seth Copen Goldstein 2000-5 98 

Next Step in SP 

 AN88 did not deal with resource constraints. 
 Modulo Scheduling is a SP algorithm that does. 
 It schedules the loop based on 

 resource constraints 
 precedence constraints 

 
 Basically, it’s list scheduling that takes into account 

resource conflicts from overlapping iterations 
 

 Look at original motivation: Systolic Arrays 



Why Systolic Architectures? 
 Idea: Data flows from the computer memory in a rhythmic 

fashion, passing through many processing elements before it 
returns to memory 
 

 Similar to an assembly line 
 Different people work on the same car 
 Many cars are assembled simultaneously 
 Can be two-dimensional 

 

 Special purpose accelerators/architectures need 
 Simple, regular designs (keep # unique parts small and 

regular) 
 High concurrency  high performance 
 Balanced computation and I/O (memory access) 

99 



Systolic Architectures 
 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 

 
 

100 

Memory: heart 
PEs: cells 
 
 
Memory pulses  
data through  
cells 
 



Systolic Architectures 
 Basic principle: Replace a single PE with a regular array of 

PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 
bandwidth requirements 
 
 
 

 Differences from pipelining: 
 Array structure can be non-linear  

and multi-dimensional  
 PE connections can be multidirectional (and different 

speed) 
 PEs can have local memory and execute kernels (rather 

than a piece of the instruction) 
 
 

101 



Systolic Computation Example 
 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
 

 
 
 

 
 

102 



Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 
 

 y2 = w1x2 + 
w2x3 + w3x4 
 

 y3 = w1x3 + 
w2x4 + w3x5 

103 



Systolic Computation Example: Convolution 

 
 
 
 
 
 
 
 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 

104 



 Each PE in a systolic array 
 Can store multiple “weights” 
 Weights can be selected on the fly 
 Eases implementation of, e.g., adaptive filtering 

 Taken further 
 Each PE can have its own data and instruction memory 
 Data memory  to store partial/temporary results, 

constants 
 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 

105 

More Programmability 



Pipeline Parallelism 
 

106 



File Compression Example 
 

107 



Systolic Array 
 Advantages 

 Makes multiple uses of each data item  reduced need for 
fetching/refetching 

 High concurrency 
 Regular design (both data and control flow) 

 
 Disadvantages 

 Not good at exploiting irregular parallelism 
 Relatively special purpose  need software, programmer 

support to be a general purpose model 

108 



The WARP Computer 
 HT Kung, CMU, 1984-1988 

 
 Linear array of 10 cells, each cell a 10 Mflop programmable 

processor 
 Attached to a general purpose host machine 
 HLL and optimizing compiler to program the systolic array 
 Used extensively to accelerate vision and robotics tasks 

 
 Annaratone et al., “Warp Architecture and 

Implementation,” ISCA 1986.  
 Annaratone et al., “The Warp Computer: Architecture, 

Implementation, and Performance,” IEEE TC 1987.  

109 



The WARP Computer  
 

110 



15-745 © Seth Copen Goldstein 2000-5 113 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 
s 

s 



15-745 © Seth Copen Goldstein 2000-5 114 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 
s 

s 

resources must  
be within 
constraints 



15-745 © Seth Copen Goldstein 2000-5 115 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
be within 
constraints 

s 
s 



15-745 © Seth Copen Goldstein 2000-5 116 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
be within 
constraints 

s 
s 



15-745 © Seth Copen Goldstein 2000-5 117 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
be within 
constraints 

s 
s 



15-745 © Seth Copen Goldstein 2000-5 118 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

resources must  
be within 
constraints 

U 



15-745 © Seth Copen Goldstein 2000-5 119 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

resources must  
be within 
constraints 

s 

modulo resource table 



15-745 © Seth Copen Goldstein 2000-5 120 

Precedence Constraints 
 Review: for acyclic scheduling, constraint is just the 

required delay between two ops u, v: 
<d(u,v)> 
 

 For an edge, u→v, we must have 
σ(v)-σ(u) ≥ d(u,v) 



15-745 © Seth Copen Goldstein 2000-5 121 

Precedence Constraints 
 Cyclic: constraint becomes a tuple: <p,d> 

 p is the minimum iteration delay 
(or the loop carried dependence distance) 

 d is the delay 
 For an edge, u→v, we must have 

σ(v)-σ(u) ≥ d(u,v)-s*p(u,v) 
 p ≥ 0 
 If data dependence is   

 within an iteration, p=0 
 loop-carried across p iter boundaries,  p>0 



15-745 © Seth Copen Goldstein 2000-5 122 

Iterative Approach 

 Finding minimum S that satisfies the constraints is NP-
Complete. 

 Heuristic: 
 Find lower and upper bounds for S 
 foreach s from lower to upper bound? 

 Schedule graph. 
 If succeed, done 
 Otherwise try again (with next higher s) 

 

 Thus: “Iterative Modulo Scheduling” Rau, et.al. 



15-745 © Seth Copen Goldstein 2000-5 123 

Iterative Approach 

 Heuristic: 
 Find lower and upper bounds for S 
 foreach s from lower to upper bound 

 Schedule graph. 
 If succeed, done 
 Otherwise try again (with next higher s) 

 

 So the  key difference: 
 AN88 does not assume S when scheduling 
 IMS must assume an S for each scheduling attempt to 

understand resource conflicts 



15-745 © Seth Copen Goldstein 2000-5 124 

Lower Bounds 
 Resource Constraints: SR  (also called IIres) 
 maximum over all resources of # of uses divided by # 

available… 
 
 Precedence Constraints: SE  (also called IIrec) 
 max over all cycles: d(c)/p(c) 
 
In practice, one is easy, other is hard. 
Tim’s secret approach: just use SR as lower bound, then do 

binary search for best S 



15-745 © Seth Copen Goldstein 2000-5 126 

Lower Bound on s 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a 

b 

c 

d 

e 

f 

g 
h 

j 

• Assume 1 ALU and 1 MU 
• Assume latency Op or load is 1 cycle 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 

Resources => 5 cycles 
Dependencies => 3 cycles 



15-745 © Seth Copen Goldstein 2000-5 127 

Scheduling data structures 
To schedule for initiation interval s: 
 Create a resource table with s rows and R columns 
 Create a vector, σ,  of length N for n instructions in the 

loop 
 σ[n] = the time at which n is scheduled, 

          or NONE 
 Prioritize instructions by some heuristic 

 critical path (or cycle) 
 resource critical 



15-745 © Seth Copen Goldstein 2000-5 128 

Scheduling algorithm 
 Pick an instruction, n 
 Calculate earliest time due to dependence constraints 

For all x=pred(n),  
 earliest = max(earliest, σ(x)+d(x,n)-s.p(x,n)) 

 try and schedule n from earliest to (earliest+s-1)  
s.t. resource constraints are obeyed. 
 possible twist: deschedule a conflicting node to make 

way for n, maybe randomly, like sim anneal 
 If we fail, then this schedule is faulty 

(i.e. give up on this s) 



15-745 © Seth Copen Goldstein 2000-5 129 

Scheduling algorithm – cont. 

 We now schedule n at earliest, I.e., σ(n) = earliest 
 Fix up schedule 

 Successors, x, of n must be scheduled s.t. 
 σ(x) >= σ(n)+d(n,x)-s.p(n,x), otherwise they are removed 
(descheduled) and put back on worklist. 

 repeat this some number of times until either 
 succeed, then register allocate 
 fail, then increase s 



15-745 © Seth Copen Goldstein 2000-5 130 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

<1,1> 
<1,1> 

<0,1> <0,1> 
c 

What is IIres? 
What is IIrec? 

1 1 Resources: 



15-745 © Seth Copen Goldstein 2000-5 131 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b c 

Try II = 2 

1 

Modulo Resource Table: 

0 
1 

0 

1 



15-745 © Seth Copen Goldstein 2000-5 132 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b c 

Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 



15-745 © Seth Copen Goldstein 2000-5 133 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

c Try II = 2 

1 1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 



15-745 © Seth Copen Goldstein 2000-5 134 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

earliest a: sigma(c) + delay(c) - 2 
                = 2+1-2 = 1 



15-745 © Seth Copen Goldstein 2000-5 135 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} a b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

earliest b? 
scheduled b? 
what next? 



15-745 © Seth Copen Goldstein 2000-5 136 

Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} a 

b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

3 

Lesson: lower bound  
may not be achievable 



15-745 © Seth Copen Goldstein 2000-5 137 

Example 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: ? 

a 

b 

c 

d 

e 

f 

g 
h 

j 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 



15-745 © Seth Copen Goldstein 2000-5 138 

Example 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: c,d,e,a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 
h 

j 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 



15-745 © Seth Copen Goldstein 2000-5 139 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: c,d,e,a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 

instr  σ 
a 

b 

c 

d 

e 

f 

g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 140 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

instr  σ 
a 

b 

c 0 

d 1 

e 2 

f 

g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 141 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

instr  σ 
a 3 

b 

c 0 

d 1 

e 2 

f 

g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 142 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 2 

f 

g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 143 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: e,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 

f 

g 

h 

j 

b causes b->e edge violation 



15-745 © Seth Copen Goldstein 2000-5 144 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: e,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 7 

f 

g 

h 

j 

e causes e->c edge violation 



15-745 © Seth Copen Goldstein 2000-5 145 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 

h 

j 



15-745 © Seth Copen Goldstein 2000-5 146 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities:j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d j 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 

h 

j 1 



15-745 © Seth Copen Goldstein 2000-5 147 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities:g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d j 

e g 

a h 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 7 

h 8 

j 1 



15-745 © Seth Copen Goldstein 2000-5 148 

Creating the Loop 
 Create the body from the schedule. 
 Determine which iteration an instruction 

falls into 
 Mark its sources and dest as belonging 

to that iteration. 
 Add Moves to update registers 

 Prolog fills in gaps at  beginning 
 For each move we will have an 

instruction in prolog, and we fill in 
dependent instructions 

 Epilog fills in gaps at end 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 7 

h 8 

j 1 



15-745 © Seth Copen Goldstein 2000-5 149 

f0 = U[0]; 
j0 = X[0]; 
 
FOR i = 0 to N 
    f1 := U[i+1] 
    j1 := X[i+1] 
    nop 
    a := j0 ? b 
    b := a ? f0 
    c := e ? j0 
    d := f0 ? c 
    e := b ? d   g: V[i] := b 
 h: W[i] := d 
    f0 = f1 
    j0 = j1 
 



15-745 © Seth Copen Goldstein 2000-5 150 

Conditionals 
 What about internal control structure, I.e., conditionals 
 Three approaches 

 Schedule both sides and use conditional moves 
 Schedule each side, then make the body of the conditional a 

macro op with appropriate resource vector 
 Trace schedule the loop 



15-745 © Seth Copen Goldstein 2000-5 151 

What to take away 
 Architecture includes compiler! 
 Dependence analysis is very important 

(including alias analysis) 
 Software pipelining crucial for statically scheduled, but also 

very useful for dynamically scheduled 


	Static Instruction Scheduling�15740
	Key Questions
	Key Questions
	VLIW (Very Long Instruction Word
	Comparison between SS  VLIW
	Comparison: CISC, RISC, VLIW
	Slide Number 7
	Slide Number 8
	EPIC – Intel IA-64 Architecture
	IA-64 Instructions
	IA-64 Instruction Bundles and Groups
	VLIW: Finding Independent Operations
	List Scheduling: For 1 basic block
	Data Precedence Graph
	Instruction Prioritization Heuristics
	VLIW List Scheduling
	Extending the scheduling domain
	Safety and Legality in Code Motion
	Code Movement Constraints
	Trace Scheduling	
	Trace Scheduling Idea
	Trace Scheduling (II)
	Trace Scheduling (III)
	Trace Scheduling (IV)
	Trace Scheduling (V)
	Trace Scheduling (VI)
	Trace Scheduling Fixup Code Issues
	Trace Scheduling Overview
	Trace Scheduling Example (I)
	Trace Scheduling Example (II)
	Trace Scheduling Example (III)
	Trace Scheduling Example (IV)
	Trace Scheduling Example (V)
	Trace Scheduling Tradeoffs	
	Superblock Scheduling
	Can You Do This with a Trace?
	Superblock Scheduling Shortcomings
	Hyperblock Scheduling
	Hyperblock Formation (I)
	Hyperblock Formation (II)
	Hyperblock Formation (III)
	Can We Do Better?
	Non-Faulting Loads and Exception Propagation
	Non-Faulting Loads and Exception Propagation in IA-64
	Aggressive ST-LD Reordering in IA-64
	Aggressive ST-LD Reordering in IA-64
	Summary and Questions
	What about loops?
	Loop Unrolling
	Software Pipelining
	Goal of SP
	Can we decrease the latency?
	Rename variables
	Schedule
	Unroll Some More
	Unroll Some More
	One More Time
	Can Rearrange
	Rearrange
	Rearrange
	SP Loop
	Goal of SP
	Goal of SP
	Example
	Example
	Dealing with exit conditions
	Loop Unrolling V. SP
	VLIW
	Small Aside
	Scalar Replacement: Example
	Scalar Replacement
	Dependence and  Memory Hierarchy
	Dependence and Memory Hierarchy
	Using Dependences
	Scalar Replacement
	Scalar Replacement
	Scalar Replacement
	Aiken/Nicolau Scheduling�Step 1
	Aiken/Nicolau Scheduling�Step 2
	Aiken/Nicolau Scheduling�Step 2, cont’d
	Aiken/Nicolau Scheduling�Step 3
	Aiken/Nicolau Scheduling�Step 3
	Aiken/Nicolau Scheduling�Step 4
	Aiken/Nicolau Scheduling�Step 4
	Aiken/Nicolau Scheduling�Step 4
	Aiken/Nicolau Scheduling�Step 5
	Aiken/Nicolau Scheduling�Step 6
	Aiken/Nicolau Scheduling�Step 6
	Aiken/Nicolau Scheduling�Step 7
	Aiken/Nicolau Scheduling�Step 8
	Aiken/Nicolau Scheduling�Step 8
	Next Step in SP
	Why Systolic Architectures?
	Systolic Architectures
	Systolic Architectures
	Systolic Computation Example
	Systolic Computation Example: Convolution
	Systolic Computation Example: Convolution
	More Programmability
	Pipeline Parallelism
	File Compression Example
	Systolic Array
	The WARP Computer
	The WARP Computer 
	Software Pipelining Goal
	Software Pipelining Goal
	Software Pipelining Goal
	Software Pipelining Goal
	Software Pipelining Goal
	Software Pipelining Goal
	Software Pipelining Goal
	Precedence Constraints
	Precedence Constraints
	Iterative Approach
	Iterative Approach
	Lower Bounds
	Lower Bound on s
	Scheduling data structures
	Scheduling algorithm
	Scheduling algorithm – cont.
	Simplest Example
	Simplest Example
	Simplest Example
	Simplest Example
	Simplest Example
	Simplest Example
	Simplest Example
	Example
	Example
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Creating the Loop
	Slide Number 149
	Conditionals
	What to take away

