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Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, ...

Q3. How do we increase the instruction fetch rate?
l.e., have the ability to fetch more instructions per cycle



Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, ...

Q3. How do we increase the instruction fetch rate?
l.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
Instructions that will be executed straight line (without branches
getting in the way) eases all of the above



VLIW (Very Long Instruction Word

Simple hardware with multiple function units

o Reduced hardware complexity

o Little or no scheduling done in hardware, e.g., in-order

o Hopefully, faster clock and less power

Compiler required to group and schedule instructions
(compare to OoO superscalar)

o Predicated instructions to help with scheduling (trace, etc.)
o More registers (for software pipelining, etc.)

Example machines:

o Multiflow, Cydra 5 (8-16 ops per VLIW)
o 1A-64 (3 ops per bundle)

o TMS32xxxx (5+ ops per VLIW)

o Crusoe (4 ops per VLIW)



Comparison between SS <> VLIW
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Ficure 1. Graphical Depiction of the Three Major Tasks.

From Mark Smotherman, “Understanding EPIC Architectures and Implementations”



http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf

Comparison: CISC, RISC; VLLIW
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Field placement varies

Varies from simple to
complex; possibly many
dependent operations
per instruction
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instructions

Exploit microcoded
implementations
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Explcit implementations with
multiple pipelines, no microcode &
no complex dispatch logic
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Figure 4.14 The architecture of a very long instruction word (VLIW) processor
and its pipeline cperations. (Courtesy of Multilow Computer, Inc., 1987}



' TMS320C6000 CPUs
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Instruction Dispatch
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Instructions/cycle

m 2 16 x 16 Integer Multipliers

« 2 Multiply ACcumulates/cycle
A (MAC)

m 32/40-bit arithmetic
m Byte-Addressable
4 ‘C6200 Integer CPU
m 4 nscycle time
m 2000 MIPS (@ 250 MHz

m 500 MMACS (Mega MACs per
Second)




EPIC — Intel IA-64 Architecture

Gets rid of lock-step execution of instructions within a VLIW
Instruction

Idea: More ISA support for static scheduling and parallelization

o Specify dependencies within and between VLIW instructions
(explicitly parallel)

+ No lock-step execution
+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by
software)

-- Other disadvantages of VLIW still exist

Huck et al., “Introducing the 1A-64 Architecture,” IEEE Micro, Sep/Oct
2000.



1A-64 Instructions

IA-64 “Bundle” (—EPIC Instruction)
o Total of 128 bits
o Contains three 1A-64 instructions

o Template bits in each bundle specify dependencies within a
bundle

Instruction 2 Instruction 1 Instruction 0 | Template op Register 1 | Register 2 | Register3 | Predicate

- -l = - =
) — - —_ e ——
41 bits 41 bits 41 bits 3 bits 14 bits 7 hits 7 hits 7 bits § bits

|A-64 Instruction
o Fixed-length 41 bits long
o Contains three 7-bit register specifiers

o Contains a 6-bit field for specifying one of the 64 one-bit
predicate registers



[A-64 Instruction Bundles and Groups

{ .mii
add rl = r2, r3

gsub rd = rd, 5 ;;
gshr r7 = rd, rli ;;

}
{ .mmi
148 r2 = [rl] ;:
gtg [rl] = ri3
thit pl,p2=r4,5
}
{ .mbb
148 rd45 = [r55]
(p2lbr.call bl=funcl
(pd)br.cond Labell
}
{ .mfil
gtd [rd45]=ré
fmac f£l1=f2,£3
add ri=ri,g ;;

O]

| [

Groups of instructions can be
executed safely in parallel

o Marked by “stop bits”

Bundles are for packaging

o Groups can span multiple bundles

Alleviates recompilation need
somewhat

11



VLIW: Finding Independent Operations

Within a basic block, there is limited instruction-level
parallelism

To find multiple instructions to be executed in parallel, the
compiler needs to consider multiple basic blocks

Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

Idea: Enlarge blocks at compile time by finding the
frequently-executed paths

a0 Trace scheduling It's all about the compiler
o Superblock scheduling and how to schedule the
o Hyperblock scheduling Instructions to maximize
o Software Pipelining parallelism

13



List Scheduling: For 1 basic block

Assign priority to each instruction

Initialize ready list that holds all ready instructions

o Ready = data ready and can be scheduled

Choose one ready instruction / from ready list with the
highest priority

o Possibly using tie-breaking heuristics

Insert / into schedule

o Making sure resource constraints are satisfied

Add those instructions whose precedence constraints are
now satisfied into the ready list

14



Data Precedence Graph

15



Instruction Prioritization Heuristics

Number of descendants in precedence graph
Maximum latency from root node of precedence graph
Length of operation latency

Ranking of paths based on importance

Combination of above

16



VLIW List Scheduling

Assign Priorities

Compute Data Ready List - all operations whose predecessors have

been scheduled.

Select from DRL in priority order while checking resource constraints
Add newly ready operations to DRL and repeat for next instruction

4-wide VLIW Data Ready List
1 {1}
6 3 |4 {2,3,4,5,6}
9 2 7 {2,7,8,9}
12 110 |11 {10,11,12}
13 {13}

17



Extending the scheduling domain

Basic block is too small to get any real parallelism

How to extend the basic block?
2 Why do we have basic blocks in the first place?
o Loops
Loop unrolling
Software pipelining
2 Non-loops
Will almost always involve some speculation
And, thus, profiling may be very important

18



Safety and Legality in Code Motion

Two characteristics of speculative code motion:
o Safety: whether or not spurious exceptions may occur
o Legality: whether or not result will be always correct

Four possible types of code motion:

‘rlz... I‘rlz'rz&r:% ﬂ ‘r4:r1... I|r1:f2&r3 !

(b) illegal

Y
1 , Y I\.‘J
| r1=.. I| rl1 =load A I |r4:r1... I|r1:IoadA I

(c) unsafe (d) unsafe and illegal

19



Code Movement Constraints

Downward

o When moving an operation from a BB to one of its dest BB’ s,

all the other dest basic blocks should still be able to use the result
of the operation

the other source BB’ s of the dest BB should not be disturbed

Upward

o2 When moving an operation from a BB to its source BB’ s

register values required by the other dest BB’ s must not be
destroyed

the movement must not cause new exceptions

20



Trace Scheduling

Trace: A frequently executed path in the control-flow graph
(has multiple side entrances and multiple side exits)

Idea: Find independent operations within a trace to pack
Into VLIW instructions.

o Traces determined via profiling

o Compiler adds fix-up code for correctness (if a side entrance
or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

21



Trace Scheduling Idea

(b)

(a)

TRACE SCHEDULING LooP-FREE CODE

22



Trace Scheduling (I11)

There may be conditional branches from the middle of the
trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

These control-flow transitions are ignored during trace
scheduling.

After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off-trace code.

Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE TC 1981.
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Trace Scheduling (I11)

[ ) [ )

[ ) [ )

[ ) [ )
Instr 1 Instr 2
Instr 2 Instr 3
Instr 3 Instr 4
Instr 4 Instr 1
Instr 5 Instr 5

[ J [ J

[ J [ J

[ J [ J

What bookeeping is required when Instr 1
IS moved below the side entrance in the trace?



Trace Scheduling (IV)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

=)

/

Instr 2

Instr 3

Instr 3

Instr 4

Instr 4

Instr 1

Instr 5
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Trace Scheduling (V)

[ ) [ )

[ ) [ )

[ ) [ )
Instr 1 Instr 1
Instr 2 Instr 5
Instr 3 Instr 2
Instr 4 Instr 3
Instr 5 Instr 4

[ J [ J

[ J [ J

[ J [ J

What bookeeping is required when Instr 5
moves above the side entrance in the trace?



Trace Scheduling (V1)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

=)

Instr 1

Instr 5

Instr 2

/

Instr 5

e

Instr 3

Instr 4
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Trace Scheduling Fixup Code Issues

Sometimes need to copy instructions more than once to
ensure correctness on all paths (see C below)

Original
trace

:rA_:' :D%» A, B.,C.,Y
I*I Iél

|BW‘_X |12

By Scheduledlé|

C trace = C

h Ly A A

3 L Er D

Correctness é

by
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Trace Scheduling Overview

Trace Selection
o select seed block (the highest frequency basic block)

o extend trace (along the highest frequency edges)
forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

o don’t cross loop back edge
o bound max_trace length heuristically

Trace Scheduling

o build data precedence graph for a whole trace

o perform list scheduling and allocate registers

o add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
2 move an instruction above a branch if safe

29



Trace Scheduling Example (I)

-
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PR e e e e e e my

fdiv f1, f2, f3
fadd f4, f1, f5

beq r1, $0

:Bl

AR

Id r2, 0(r3) E

L--
_19@\. ’//1-01

—l\
I
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Trace Scheduling Example (1I)

|

|

fdiv f1, f2, 3 fdiv f1, f2, f3 1
beq rl, $0 beq r1, $0 |
:

Id r2, 0(r3 Id r2, 0(r3 :
fsub f2, f2, 6 fsub f2, f2, f6
add r2,r2, 4 add r2,r2, 4 I
beq r2, $0 |

1

|

st.d 2, 0(r8) st.d 2, 0(r8)

add r3,r3,4
add r8,r8, 4

add r3,r3,4

|
|
|
|
|
|
|
|
|
|
|
beq r2, $0 :
1
|
|
|
|
|
|
|
: add r8,r8, 4

fadd f4, f1, f5

Split
comp. code

B3
B6
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Trace Scheduling Example (I11)

fadd f4, f1, f5 "
L

|
|
fdiv f1, f2, f3
beq ri, $0 :
|
|
Id r2, 0(r3 , fadd f4, f1, 15
fsub f2, f2, f6 , )
add r2, r2, 4 Split
beq r2, $0 comp. code

fadd f4, f1, 5

add r3,r3,4

|
|
|
|
|
1
|
st.d f2, 0(r8) !
i
|
|
]
add r8,r8,4

32



Trace Scheduling Example (IV)

fadd f4, f1, f5 instructions

| |
| |
1 fdiv 1, f2, f3 1
| beq r1, $0 |
| ] B3
l "™ fadd f4, f1, f5
. 1d r2,0(r3 :
. fsub 2, 12, f6 | split
add r2,r2,4
: beq r2, $0 : comp. code add r2,r2, 4
| ' ! beqg r2, $0
i & fadd f4, f1, 5 fsub f2, f2, f6
' std f2,0(r8) std f2, 0(r8)
! | add r3,r3,4
| : add r8, r8, 4
' add r3,r3,4 : :
: "o ! Copied
: add r8, r8, 4 : B6 split
I I
| 1
| |

33



Trace Scheduling Example (V)

!
|
|
|
I
I
J

L R e |

——

\.

fdiv f1, 2, 3
beq rl $O

Id r2,0 r3
fsub f2 2, f6

add r2,r2,4
beq r2, $0

fadd f4 f1, f5

Id r2, 4(r3)
add r2,r2, 4
beq r2, $0

|
|
: add r3
; | add r8,
: fadd f4,

st.d f2, ?ﬁgSZ

fadd f4, f1, f5

]
|
|
8,4 |,
f1, f5 :

fsub f2, 13,17 | B6

add r3,r3, 4
add r8,r8, 4

.

o~

B3

fsub f2, f2, f6
st.d 2, 0(r8)

add r3,r3, 4
add r8, r8, 4
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Trace Scheduling Tradeoffs

Advantages

+ Enables the finding of more independent instructions - fewer
NOPs in a VLIW instruction

Disadvantages
-- Profile dependent

-- What if dynamic path deviates from trace - lots of NOPs in the
VLIW instructions

-- Code bloat and additional fix-up code executed
-- Due to side entrances and side exits
-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches - smaller traces - less opportunity for
finding independent instructions

35



Superblock Scheduling

Trace: multiple entry, multiple exit block

Superblock: single-entry, multiple exit block

a A trace with side entrances are eliminated

o Infrequent paths do not interfere with the frequent path
+ More optimization/scheduling opportunity than traces
+ Eliminates “difficult” bookkeeping due to side entrances

______________________________

Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.36



Can You Do This with a Trace?

opA: mul r1,r2,3

99

V,

A

opB: add r2,r2,1
1

opC: mu] r3,r2,3

Original Code

opA: mul r1,r2,3

99

h 4

opC: mov r3,rl

opA: mul r1,r2,3

99

A 4

opC: mul r3,r2,3| :

:| opB: add r2,r2,1

opC’: mul r3,r2,3

Code After Common
Subexpression Elimination

:| opB: add r2,r2,1

opC’: mul r3,r2,3

37



Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed
-- Due to side exits

38



Hyperblock Scheduling

Idea: Use predication support to eliminate unbiased branches
and increase the size of superblocks

Hyperblock: A single-entry, multiple-exit block with internal
control flow eliminated using predication (if-conversion)

Advantages
+ Reduces the effect of unbiased branches on scheduled block size

Disadvantages
-- Requires predicated execution support
-- All disadvantages of predicated execution

39



Hyperblock Formation (I)

Hyperblock formation } 10
1. Block selection ‘
2. Talil duplicati BB1
. Tail duplication 90 30 20
3. If-conversion
BB2 BB3
Block selection 8& /20
o Select subset of BBs for inclusion in HB BB4
o Difficult problem 19/
Weighted cost/benefit function
- 9 _ BB5 90
Height overhead
Resource overhead 1&.,
Dependency overhead BB6
Branch elimination benefit
Weighted by frequency
10

Mahlke et al., “Effective Compiler Support for Predicated Execution Using the
Hyperblock,” MICRO 1992.
40



Hyperblock Formation (II)

Tail duplication same as with Superblock formation

\ 10
| 1o
BB1 éBl
89/\20 8(?/\20
BB2 BB3
BB2 BB3
éﬁ\\‘///éo éﬁ\\‘///éo
BB4 i
19/ \10
BB5 90
90 BB5
10| | -
BB6 BB6 e
90 | 81 |
10 S/ 9




Hyperblock Formation (11I)

1o

BB1

89/\20

BB2

81

BB3

80N _~ 20

BB4

90

BB6

— 10

BB5

| 10

BB6’

If-convert (predicate) intra-hyperblock branches

|1o

pl,p2 = CMPP

BB1

BB2 if p1

BB3 if p2

BB4

BB6 BB5

L]
81

|10
BB6’

L |
1
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Can We Do Better?

Hyperblock still

o Profile dependent

o Requires fix-up code

o And, requires predication support

Single-entry, single-exit enlarged blocks

o Block-structured ISA
Optimizes multiple paths (can use predication to enlarge blocks)
No need for fix-up code (duplication instead of fixup)

43



Non-Faulting Loads and |

“xception Propagation

Inst 2 unsafe
code

SZaN

ld.s r1=[a]
Inst 1
Inst 2

Id r1=[a]
use=rl

chk.srl Id r1=[a]
use=r

= /d.s fetches speculatively from memory
l.e. any exception due to /d.sis suppressed

= If /d.s r1did not cause an exception then c/k.s r1is a NOP, else a
branch is taken (to execute some compensation code)

44



Non-Faulting Loads and Exception Propagation in IA-64

INst 2 unsafe
code

|d r1=[a]
use=rl

=)

|d.s r1l=[a]
Inst 1
Inst 2
use=rl

br

RN

chk.suse{ I|d rl=[a]
use=rl

= Load data can be speculatively consumed prior to check
= “speculation” status is propagated with speculated data
= Any instruction that uses a speculative result also becomes speculative

itself (i.e. suppressed exceptions)

= chk.s checks the entire dataflow sequence for exceptions

45



Aggressive ST-LLD Reordering in IA-64

11| poemia da
.

Hasing Inst 2
SN [

% st [?]

Id r1=[X]

use=rl Id.c r1=[x]

use=rl

= /d.a starts the monitoring of any store to the same address as the
advanced load

= If no aliasing has occurred since /d.a, /d.cis a NOP
= If aliasing has occurred, /d.c re-loads from memory

46



Aggressive ST-LLD Reordering in IA-64

Inst 1
INst 2

Id r1=[x]
use=rl

potential
aliasing

=)

Id.a r1=[X]
Inst 1

NSt 2
use=rl

st [7]

chkax

Id r1=[a]
use=rl

47



Summary and Questions

Trace, superblock, hyperblock, block-structured I1SA

How many entries, how many exits does each of them have?
o What are the corresponding benefits and downsides?

What are the common benefits?
o Enable and enlarge the scope of code optimizations
o Reduce fetch breaks; increase fetch rate

What are the common downsides?
o Code bloat (code size increase)
o Wasted work if control flow deviates from enlarged block’s path

53



What about loops?

= Unrolling
= Software pipelining

54



Loop Unrolling

| =1;
while (i< 100) While (i< 100) ¢
ali] = bi+1] + (i+1)/m _ + (+1)m
bli] = ﬁ["” - 1/m b[i] = a[i-1] - i/m
|=1+
) afi+1] = b[i+2] + (i+2)/m
= - (I+1)/m
=i+2
}

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead
o Induction variable increment or loop condition test
+ Enlarges basic block (and analysis scope)
o Enables code optimization and scheduling opportunities
-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
55



Software Pipelining

Software pipelining is an instruction scheduling technique
that reorders the instructions in a loop.

o Possibly moving instructions from one iteration to the
previous or the next iteration.

o Very large improvements in running time are possible.

The first serious approach to software pipelining was
presented by Aiken & Nicolau.

o Aiken’s 1988 Ph.D. thesis.

o Impractical as it ignores resource hazards (focusing only
on data-dependence constraints).
But sparked a large amount of follow-on research.

15-745 © Seth Copen Goldstein 2000-5 56



Goal of SP

Increase distance between dependent operations by
moving destination operation to a later iteration

A | | 2
/A:a\e 1d [d] ssume all have latency of

B:b« a*a
C: st [d], b

15-745 © Seth Copen Goldstein 2000-5 57



Can we decrease the latency?

Lets unroll

A: a<« |d[d]
B: b«—a*a
C: st [d], b
D: d«d+4
Al: a « Id [d]
Bl: b«—a*a
Cl: st [d], b
Dl:d« d+4

A B C D

Al

B1

C1

D1

15-745 © Seth Copen Goldstein 2000-5
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Rename variables

a<« Id[d]
b« a*a

st [d], b
dl« d+4
Al al « |d [d1]
Bl: bl « al *al
Cl: st [d1], bl
Dl:d« dl1+4

UQ?P??

A B C D Al

B1

C1

D1

15-745 © Seth Copen Goldstein 2000-5
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Schedule

a<« Id[d]
b« a*a

st [d], b
dl« d+4
Al al « |d [d1]
Bl: bl « al *al
Cl. st [d1], bl
Dl: d« dl1+4

UQ?P??

A B

D1

D Al

B1

C1

15-745 © Seth Copen Goldstein 2000-5
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A:
B:
C.
D:
Al:
BI:
Cl.
D1:
Al:
B2:
C2:
D2:

Unroll Some More

a< Id[d]
b« a*a

st [d], b
dl« d+4
al « Id [d1]
bl « al *al

st [d1], bl
d2 « dl+4
a2 « |ld [d2]
b2 « a2 * a2

st [d2], b2
d« d2+4

A B

D

Al

B1

D1

A2

B2

Cc2

1D-745 © Seth Copen Goldstein 2000-5
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A
B:
C:
D:

Al:
B1:

Cl:

D1:

A2.
B2:
C2.
D2:

Unroﬂ

Q<
b «

dl «
al «
bl «

d2 «
al «
b2 «

d «

Some More

Id-[d]
a*a

st [d], b
d+4

Id [d1]

al * al

st [d1], bl
dl+4

Id [d2]

a2 * a2
st [d2], b2
d2 +4

>

D3

o

Al B1

C1

D1

A2

B2

C2

D2 A3

B3

C3

(-

15-745 © Seth Copen Goldstein 2000-5

62



One More Time

B2

A4

1

B

A3

A2

D3

1

A

D2

D1




Can Rearrange

D4

C1

B3

B2

A4

1

B

D3

1

A

D2+> | A3

D1+ | A2




A
B:
C:
D:

Al:
B1:

Cl:

D1:
A2.
B2:
C2.
D2:

Rearranoe

Q<
b «

dl «
al «
bl «

d2 «
al «
b2 «

d «

Id-[d]
a*a

st [d], b
d+4

Id [d1]

al * al

st [d1], bl
dl+4

Id [d2]

a2 * a2
st [d2], b2
d2 +4

A

T )

D3

D

Al B1

C1

D1 A2

B2

C2

D2

A3

B3




Rearranoe

Al a<« Id [d]

B: b« a*a

C: st [d], b

D: dl« d+4

Al: al « |d[dl]

Bl: bl« al*al

Cl. st [d1], bl

Dl: d2« dl+4

A2: a2 « Id[d2]

B2: b2« a2*a?

Cc2. st [d2], b2

D2: d« d2 + 4

T

D Al B1
D1 A2

D2

15-745 © Seth Copen Goldstein 2000-5
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SP L.

OOp
a<

O w3

Al:

B1:
A2:
D2:

B2:
Cl.

D3:
C2.

b «
dl «
al «
d2 «

bl «
al «
d «

b2 «

d2 «

fd Td]
a*a
d+4
Id [d1]
dl+4

st [d], b
al * al
Id [d2]
d2 +4

a2 * a2

st [d1], bl
dl+4

st [d2], b2

Prolog

Body

Epilog

>

Al

D1

D3

C1

B2

c2

-745 © Seth Copen Goldstein 2000-5
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Goal of SP

Increase distance between dependent operations by
moving destination operation to a later iteration

O O

I

e after SP >

iteration i i+1 1+2

00 @
&0 C

dependencies
in initial loop

15-745 © Seth Copen Goldstein 2000-5 68



Goal of SP

Increase distance between dependent operations by
moving destination operation to a later iteration

But also, to uncover ILP across iteration boundaries!
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Example

Assume operating on a infinite wide machine
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Example

Assume operating on a infinite wide machine

> Prolog

loop body

9l90
Q00

>~ epilog

15-745 © Seth Copen Goldstein 2000-5
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ith exit conditions

=0 loop:
if (i >= N) goto done A
Ao By
B, Ciz
if (i+1 == N) goto last I++
i=1 if (i < N) goto loop
A, epilog:
if (i+2 == N) goto epilog B,
=2 Ci,
last:
Ci
done:

15-745 @ Seth Copen Goldstein 2000-5
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Loop Unrolling V. SP

For SuperScalar or VLIW

= Loop Unrolling reduces loop overhead
= Software Pipelining reduces fill/drain
= Best is if you combine them

# of
overlapped
iterations

T| me 15-745 © Seth Copen Goldstein 20005 __



VLIW

Depends on the compiler

o As often is the case: compiler algs developed for VLIW are
relevant to superscalar, e.g., software pipelining.

2 Why wouldn’t SS dynamically “software pipeline?”
As always: Is there enough statically knowable parallelism?
What about wasted Fus? Code bloat?

Many DSPs are VLIW. Why?
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Small Aside

= Scalar Replacement & Dependencies
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Scalar Replacement: Example

DO I =1, N
DO J =1, M
ACD) = A(D) + B(@J)
ENDDO
ENDDO

A(l) can be left in a register
throughout the inner loop

Superscalar + cache will get most of
this, but not allocate A(l) to register

DO I =1, N
T = A(D)
DO J =1, M
T=T+ BQI)
ENDDO
A(D) =T
ENDDO

All loads and stores to A in the inner
loop have been saved

High chance of T being allocated a
register by compiler



Scalar Replacement

Convert array reference to scalar reference

Approach is to use dependences to achieve these memory
hierarchy transformations



Dependence and Memory Hierarchy

= True or Flow - save loads and cache miss
= Anti - save cache miss?

= Output - save stores

= Input - save loads

A(D) = ... + B(D)

.. A(I) + k

A(I)
= B(I)




Dependence and Memory Hierarchy

Loop Carried dependences - Consistent dependences most
useful for memory management purposes

Consistent dependences - dependences with constant
dependence distance



Using Dependences

In the reduction example PO I =1, N

T = A(l)
bo 1 =1,N DOJ =1, M
DO J =1, M T = T + B(J)
o ENDDO
Ry = A +BA) ) Ay = T
ENDDO
ENDDO
ENDDO True dependence - replace the
references to A in the inner loop by
scalar T

Output dependence - store can be
moved outside the inner loop

Antidependence - load can be
moved before the inner loop



Scalar Replacement

Example: Scalar DO I =1, N
Replacement in case of t = B(I) + C
loop independent A(D) =
adependence X(1) = t*Q
ENDDO
DO I = 1, N
ACI = B() + C One less load for each
XCH = AC(D™*Q iteration for reference to A

ENDDO



Scalar Replacement

Example: Scalar tB = B(0)
Replacement in case of DO 1 =1, N
loop cgrr/'ec_y’ depgnde/?ce tA = tB
spanning single iteration ACD) = tA
DO I =1, N tB = tA + C(I1)
A1) = B(1-1) B(1) = 1B
B(1) = A(l) + ENDDO
c(p)
ENDDO One less load for each iter for

ref to B which had a loop carried
true dependence of 1 iter

Also one less load per iter for
reference to A



Scalar Replacement

Example: Scalar tl = B(0)

Replacement in case of 2 = B(1)

loop carried dependence DO 1 =1, N

spanning multiple t3 = B(1+1)

/iterations A(l) = t1 + t3
_ tl = t2

> L(;)l’ g(l 1) + tz =13

B(1+1) ENDDO

One less load for each iter
for ref to B which had a loop
carried input dependence of
2 iters

Invariants maintained were
t1=B(1-1); t2=B(1);
t3=B(1+1l)

ENDDO



Aiken/Nicolau Scheduling
Step 1

Perform scalar replacement to eliminate memory
references where possible.

for 1:=1 to N do for 1:=1 to N do
a =3 & V[i-1] a:=]J &b
b:=a®&f b :=a®&f
C :=e @ j C :=e @ j
d :=F & c d :=F & c
e :=b &d e :=b &d
T = U[I1] T = U[I1]

g: V[i] = Db g: V[i] = b

h: W[i] :=d h: W[i] :=d
J = X[i] J = X[i]

15-745 %Eeth Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 2

Unroll the loop and compute the data-dependence
graph (DDG).

DDG for rolled loop:

for 1:=1 to N do
a:=3]@&nb
b :=a®&f
C :=e @ j
d :=F & c ,/’d
e :=b & d 4
T = U[I] /
g: V[i] := b h
h: W[i] :=d v
i = XLl e

15-745 @éée‘rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 2, cont’d

DDG for unrolled loop:

for 1:=1 to N do

a:=3]1@&hb
b :=ao&f
C = e & ]}
d :=FfF & c
e :=b &d
T = U[1]
g: V[i1] = Db
h: W[i] :=d
J = X[1]

15-745 @éése'rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 3

Build a tableau of iteration number vs cycle time.

iteration
1 2 3 4 5 6
1 jacty T T T T 1)
2 |bd
3 legh a
4 cb
5 dg a
Q0 6 eh b
97 cg a
©'8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 cC g
14 d
15 eh

15-745 @é.;e‘rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling

Step 3
n number vs cycle time.
iteration
1 2 3 4 5 6
1 jacty T T T T 1)
2 |bd
3 legh a
4 cb
5 dg a
) 6 eh b
F cg a
© 8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 cC g
14 d
15 eh

15-745 @ég'iefh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 [acty T T3 ) 1) T)
2 |bd
3 legh a
4 cb
5 dg a
v 6 eh b
97 cg a
© 8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 cC g
14 d
15 eh

15-745 @ég‘ie‘rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 [acF)--T5-T-Ff-F-F}
2 [bd
3 legh a
4 ch,
5 dy &
v 6 eh\b*
97 €9 |
o 8 dy b
9 eh\g ']
10 € b‘\\
11 dy, g a
12 ehy, b
13 € g
14 d
15 eh

15-745 %O‘Se‘rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 [acF)--T5-T-Ff-F-F}
2 |bd
3 legh a
4 ch,
5 dg ‘a
% 3 ehg Go back and
g o N relate slopes
9 eh\g "a to DDG
10 € b\
11 d\ g a
12 ehy, b
13 € g
14 d
15 eh

15-745 %ISeTh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 5

"Coalesce” the slopes.

iteration iteration
1 2 3 4 5 6 1 2 3 4 5 6
1 [acty--f§-5-f-F1-Fp 1 [acT]
2 |bd 2 |Ibd fj
3 legh a 3 [egh a
4 ch, 4 cb Tj
5 dy ‘a 5 dg a
v 6 eh\b* o 6 eh b Tj
97 €g 'q S 7 cg a
© 8 dy b © 8 d b
9 eh'g ‘a 9 eh g fj
10 € b 10 cC a
11 dy, g a 11 d b
12 eh, b 12 eh g
13 ¢ g 13 c
14 d 14 d
15 eh 15 eh

15-745 %Z‘Se'rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 6
Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6
1 [acT]
2 bd Tj
3 legh a
4 cb Tj
5 dg a
9 7 cg a
©'8 d b
9 eh g fj
10 cC a
11 d b
12 eh g
13 C
14 d
15 eh

15-745 %?e‘rh Copen Goldstein 2000-5



Aiken/Nicolau Scheduling

Step 6

Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6
1 [acT]
2 lbd  fj
i egh ib £} « Prologue/entry code
5 dg a
I 6 eh b T}
9 7 cg a
o g d b
9 eh g Fjl* Loop body
10 cC a
11 d b
12 eh g
13 C < Epilogue/exit code
14 d
15 eh

15-745 %Eeth Copen Goldstein 2000-5



Aiken/Nicolau Scheduling
Step 7

Generate code.

(Assume VLIW-like machine for this example. The instructions on

each line should be issued in parallel.)

al := jO & b0 cl := e0 & jO 1 = U[1] j1 :=

bl := al & 0 dli := fO0 & c1 2 = U[2] j2 :=

el := bl & d1 VI[1i] = bl W[1l] = d1 a2 :=

c2 :=el & j1 b2 := a2 & f1 3 = U[3] J3 =

d2 = f1 & c2 V[2] := b2 a3 := j2 & b2

e2 = b2 & d2 W[2] := d2 b3 := a3 & f2 f4 :=

c3 = e2 & }2 V[3] := b3 ad = j3 & b3 1 =
L:

d; == fi; & ¢ bj.; 1= 8; & T

e; = b; & d; WLl := d; VEi+1] = by, T -

Cia1 == € ® ji Qjip == ji+1 ® bi+l 1= 1+l

Oy 1= By, ® g by 1= ay & F,

ey.1 1= by & dy; WIN-1] = dy; VI[N] := by

Cy == ey @ Iy

dy 1= fy1 + ¢y

ey := by @ d, W[N] := d,

X[1]
X[2]
Jj1l1 & bl
X[3]

U[4]
3

j4 = X[4]

ULI+2] 34 == X[1+2]

1T 1<N-2 goto L
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Aiken/Nicolau Scheduling
Step 3

Sihce several versions of a variable (e.g., J; and J.,,) might
be live simultaneously, we need to add new temps and

Moves
al := jJO & b0
bl := al & 0
el := bl & di
c2 :=el & j1
d2 = f1 & c2
e2 = b2 & d2
c3 :=e2 & j2
L:
d; := T,_, & c;
e; = b; & d;
Civ1 = € ® J;
dy; 1= Fy2 & cyy
ey.1 1= byg 63_ dy_1
Cy = eyq1 © Iy
dy 1= fy1 + ¢y
ey = by & dy

N

cl :=e0 & jO 1 = U[1]
dl := fO0 & c1 2 = U[2]
V[1] := bl W[1i] := d1
b2 := a2 & f1 3 = U[3]
V2] = b2 a3 := j2 & b2
wW[2] := d2 b3 := a3 & 12
VI[3] = b3 ad = J3 & b3
bj.y 1= a; & T;
WLi] := d; VEi+1] := b;,
Qjo 2= i1 © by 1 1= 0+l

= ay & Ty
WEN-1] := dy.; VIN] := by

W[N] :== d,

31 = X[1]
12 = X[2]
a2 := j1 ® b1
j3 = X[3]
f4 = U[4]  j4 := X[4]
1 =3
fi+2 -= U[|+2] ji+2 -= X[i+2]

1T 1<N-2 goto L
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Aiken/Nicolau Scheduling
Step 3

Sihce several versions of a variable (e.g., J; and J.,,) might
be live simultaneously, we need to add new temps and

MOoves
al := jJO & b0
bl = al & 10
el := bl & dl
c2 :=el & j1
d2 = f1 & c2
e2 = b2 & d2
c3 :=e2 & j2

L:
d; := 77 & c;
e; = b’ & d;
Civp == €; & 7
Ay 1= Ty ® cy
ey1 1T by S dy-1
Cy == eyv1 @ Jyy
dy = Ty1 + ¢y
ey = by @ dy

cl :=e0 & jO 1l = U[1]

dli := fO & cl1 77 = U[2]
V[1] = b1 W[1] = d1

b2 := a2 & f1 7 = U[3]
V2] = b2 a3 := j2 & b2
W[2] := d2 b3 := a3 & 7~
V[3] := b3 a4 = j° & b3
b;,, = a”> &t~ Db> = b; a’=a;
WLi] = d; VEi1+1] := b;,,
Qjip == j,, ® bi+1 1= 1+l

by := ay & T,

WEN-1] := dy.; VIN] := by

w[N] := d

J1 = X[1]

J2 = X[2]
a2 := j1 & bl
37 = X[3]

f4 == U[4]  j4 := X[4]

1 = 3

f11:f1; f’:f; j11:j1_ j,:j
fi+2 -= U[I+2] ji+2 -= X[i+2]

1T 1<N-2 goto L
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Next Step in SP

AN8S8 did not deal with resource constraints.
Modulo Scheduling is a SP algorithm that does.

It schedules the loop based on
0 resource constraints
o precedence constraints

Basically, it's list scheduling that takes into account
resource conflicts from overlapping iterations

Look at original motivation: Systolic Arrays

15-745 %ée‘rh Copen Goldstein 2000-5



Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

Similar to an assembly line

o Different people work on the same car

o Many cars are assembled simultaneously
o Can be two-dimensional

Special purpose accelerators/architectures need

o Simple, regular designs (keep # unique parts small and
regular)

o High concurrency - high performance

o Balanced computation and I/0 (memory access)
99



Systolic Architectures

H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

INSTEAD OF:
I MEMORY I‘-
100 ns
WE HAVE: [
| MEMORY |———
100 ns
-’[PE PE | PE IPEIPEIPEI—
THE SYSTOLIC ARRAY -

5 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
PEs: cells

Memory pulses
data through
cells
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Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
—> achieve high throughput w/o increasing memory

bandwidth requirements

INSTEAD OF:

MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST

PE

WE HAVE:

MEMORY |-

30 MOPS
POSSIBLE

100 ns

Differences from pipelining: o [oe [ [ e [

o Array structure can be non-linear
and multi-dimensional

o PE connections can be multidirectional (and different
speed)

o PEs can have local memory and execute kernels (rather
than-a piece of the instruction) 01

Figure 1. Basic principle of a systolic system.



Systolic Computation Example

= Convolution

o Used In filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

Given the sequence of weights [wy, wy, . . ., Wi
and the input sequence Xy, X3, . . . , X,

compute the result sequence Vi, ¥, - - - s Vnsl -k
defined by

yizwlxj-+w}re-_,1 + ... T WX+ k=1
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Systolic Computation Example: Convolution

yl = wlxl +
W2X2 + w3x3
: dx?— r.J rW2'1 -?- rw11 PLaR

y2 = wlx2 + -=p —=b —p|L JPIL JPL ]
W2X3 + w3x4 @

< e o |
y3 = W1x3 + _XI_? LY — iz:.: _ i:z + WX
w2x4 + w3xb (b)

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.
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Systolic Computation |

Example: Convolution

K3 == == =Py

RESULTS 4—(?7 4—?4-

W3

&

"2

e

4—(%)1— —

»

@ = MULTIPLIER

X

—-l—> [IGNORED)

® = ADDER

= LATCH

Figure 10. Overlapping the executions of multiply and add in design W1.
LU AllOw ovelidpplIlly Ul dUuuszinul executiulis
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More Programmability

Each PE in a systolic array

o Can store multiple “weights”

a2 Weights can be selected on the fly

o Eases implementation of, e.g., adaptive filtering

Taken further

o Each PE can have its own data and instruction memory

o Data memory - to store partial/temporary results,
constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution
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Pipeline Parallelism

fori=1ta N
[ ﬁmd“namg-h] PO EI}B‘I c1 52 c2 (a3 B:E]
[ .. #f code in stage B | _
[ /i code in stage c] t, :', |', t':, t'. tl,, tﬁ t, t, lls tlm tl1| tlu o
{a) (el J
] A
% m | @OEGEE
P1 |E!D B1|B2|B3 B4 as|
Bi
P2 cofe1]ez]ca]ce[cs)
— — time
II:I Lo t; L, t:i 'u L tﬂ tB t.": th t

(b} d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. Iteration | comprises Ai, Bi, Ci.
(e) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.
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File Compression Example

STAGE St STAGES2 | STAGE 83 STAGE $4 STAGE 85
'ALLOCATE | » [READINPUT| o [ COMPRESS | | (WRTEOUTPUT) || (DEALLOCATE
||"IDLI1 — = Alocate buffers - ' o Q=QUEUEIPopl) | ' o O =QUEUEZ Pop() o Q=QUEUE3Pop() || | Q=0UEUE4Pop) |
File QUEUES Push(Buf| : Read file to Buf : Compress O | Write oldest Q to File | Deallocate Buffers
o | QUEUE2PushiBu) | || | QUEUE3.Push@) o | QUEUE£Push(Q) o
b, / | L L || i L ,
L] L L] L
QUEUET QUEUE? QUEUES QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism
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Systolic Array

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching

o High concurrency
o Regular design (both data and control flow)

Disadvantages
o Not good at exploiting irregular parallelism

o Relatively special purpose - need software, programmer
support to be a general purpose model
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The WARP Computer

HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

109



The WARP Computer

Adr

INTERFACE

WARP PROCESSOR ARRAY

Figure 1: Warp system overview
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

15-745 @flgefh Copen Goldstein 2000-5



Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

SASA LSS LSS LSS S LSS LSS LSS S LSS LSS LS LSS S LSS S S LSS S AL AL S S LA SAS SIS,

resources must
be within
constraints
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

l

S

I T
-’S

I T
-’S

SASSSSSSASSSSSSS SIS,

resources must
be within
constraints
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

l

S
SLLSSSSSSSSSSSSSSIY.
-’S
SLLSSSSSSSSSSSSSSIY.
-’S

SAS S AL A LSS SSSASSASSY.

resources must
be within
constraints
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

resources must
be within
constraints
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

U
)\

resources must
be within
constraints
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Sottware Pipelining Goal

= FIind the same schedule for each iteration.
= Stagger by iteration initiation interval, s
= Goal: minimize s.

SASSSSASASSASS SIS,

SASSASASASSASSASSASSY, } S

resources must modulo resource table
be within

constraints

15-745 %ée‘rh Copen Goldstein 2000-5



Precedence Constraints

Review: for acyclic scheduling, constraint is just the
required delay between two ops u, V:
<d(u,v)>

For an edge, u—v, we must have
c(V)-o(u) > d(u,v)

15-745 GIJZBQTh Copen Goldstein 2000-5



Precedence Constraints

Cyclic: constraint becomes a tuple: <p,d>

o p is the minimum iteration delay
(or the loop carried dependence distance)

o dis the delay

For an edge, u—Vv, we must have
o(v)-o(u) > d(u,v)-s*p(u,v)

Pp=>0

If data dependence is

o within an iteration, p=0

o loop-carried across p iter boundaries, p>0

15-745 @fz‘.ie‘rh Copen Goldstein 2000-5



Iterative Approach

Finding minimum S that satisfies the constraints is NP-
Complete.

Heuristic:

o Find lower and upper bounds for S

o foreach s from lower to
Schedule graph.
If succeed, done
Otherwise try again (with next higher s)

Thus: “Iterative Modulo Scheduling” Rau, et.al.

15-745 @lJzae‘rh Copen Goldstein 2000-5



Iterative Approach

Heuristic:
o Find lower and upper bounds for S

o foreach s from lower to upper bound
Schedule graph.
If succeed, done
Otherwise try again (with next higher s)

So the key difference:
o ANB88 does not assume S when scheduling

a2 IMS must assume an S for each scheduling attempt to
understand resource conflicts

15-745 @132§e‘rh Copen Goldstein 2000-5



IL.ower Bounds

Resource Constraints: S, (also called 11,..)

maximum over all resources of # of uses divided by #
available...

Precedence Constraints: S¢ (also called I1,..)
max over all cycles: d(c)/p(c)

In practice, one is easy, other is hard.

Tim’s secret approach: just use S, as lower bound, then do
binary search for best S

15-745 @lJzae‘rh Copen Goldstein 2000-5



L.ower Bound on s

- Assume 1 ALU and 1 MU

+ Assume latency Op or load is 1 cycle

- P
S SRR RE
\\
\\\

=
@)
q
I
=
"
o
=
Q
o

a:=3]1@&h0Db
b :=a®&f <O'1>
C = e @ ]
d :=TFT & c
e :=b &d
T = U[I1]
g: V[1] =D
h: W[i] :=d
3 = X[1]

11>.1Cr

<0,1>

7’
7
-
-
-
e o
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Scheduling data structures

To schedule for initiation interval s:
Create a resource table with s rows and R columns

Create a vector, o, of length N for n instructions in the
loop

o o[n] = the time at which n is scheduled,
or NONE

Prioritize instructions by some heuristic
o critical path (or cycle)
o resource critical

-745 © i N
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Scheduling algorithm

Pick an instruction, n

Calculate earliest time due to dependence constraints
For all x=pred(n),
earliest = max(earliest, o(x)+d(x,n)-s-p(x,n))

try and schedule n from earliest to (earliest+s-1)
s.t. resource constraints are obeyed.

o possible twist: deschedule a conflicting node to make
way for n, maybe randomly, like sim anneal

If we fail, then this schedule is faulty
(i.e. give up on this s)
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Scheduling algorithm — cont.

We now schedule n at earliest, I.e., o(n) = earliest
Fix up schedule

o Successors, X, of n must be scheduled s.t.

o(X) >= o(n)+d(n,x)-s'p(n,x), otherwise they are removed
(descheduled) and put back on worklist.

repeat this number of times until either
o succeed, then register allocate
o fall, then increase s
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Simplest Example

for O {
a = b+c A
b = a*a <11
\ Cc = a*194 A .15
<0,1> ,
od

Resources: |1 | |1

What is IIres?
What is IIrec?
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Simplest Example

for O {

a b+c

b a*a

C a*194
¥

Try IT = 2

Modulo Resource Table:

0 |1
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Simplest Example

for O {

a b+c

b a*a

C a*194
¥

Try IT = 2

Modulo Resource Table:

0 |1
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Simplest Example

for O {

a b+c

b a*a

C a*194
¥

Try IT = 2

Modulo Resource Table:

o (1]|1
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Simplest Example

for O { 0,
a = b+c o o

b = a*a \

C a*194
¥

Try IT = 2

Modulo Resource Table:

0 1
earliest a: sigma(c) + delay(c) - 2
1 1 =2+1-2=1
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Simplest Example

for O { 0
a = b+c
b=a*a U ——
c = a*194 1
} b ar,
T — \ .......... :, ................. 2
ry IT=2 )
C R

Modulo Resource Table:
earliest b?

0 1 scheduled b?
what next?

-745 © i N
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Simplest Example

for O { 0,
a = b+c
[0 JEET > o> U
c = a*194 1
} A,

Try IT = 2

Modulo Resource Table:

Lesson: lower bound
1 1 may not be achievable
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for 1:=1 to N do
a:=j®b s=hH
b :=a®&f
C :=e @ j
d :=F & c
e :=b &d
T = U[I1]
g: V[i1] = Db
h: W[i] :=d
J = XLi]

ALU

MU

instr| o

o

Q| O

— | IO | | ©O
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for 1:=1 to N do
a:=3]1@&h0b
b :=a® f
C :=e @ j
d :=fF & c
e :=b & d
T = U[1]

g: V[i1] = Db

h: W[i] :=d
3 = X[1]

s=hH

ALU

MU

instr| o
a

b

C 0
d 1
e 2
f

9

h

J
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for 1:=1 to N do
a:=3]1@&h0b
b :=a® f
C :=e @ j
d :=fF & c
e :=b & d
T = U[1]

g: V[i1] = Db

h: W[i] :=d
3 = X[1]

s=hH

ALU

MU

instr| o
a 3
b

C 0
d 1
e 2
f

9

h

J
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for 1:=1 to N do
a:=3]1@&h0b
b :=a® f
C = e & ]}
d :=fF & c
e :=b & d
T = U[1]

g: V[i1] = Db

h: W[i] :=d
3 = X[1]

s=hH

ALU

MU

instr| o
a 3
b 4
C 0
d 1
e 2
f

9

h

J
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for 1:=1 to N do -
a - = j @ b 5:5 '“Str' 0}
b :=a®& T
C = e & ]} a 3
d :=F & c b 4
o ALU |MU
- C 0)
ﬂ: VF% o= 3 C
- W] :=
i = X[ d d |l
Priorities: e f,j,g,h e
»a"’—j ~~~~~~~ o C . a f
N\ AT \ b 9
Cby T h
z d E
h J

b causes b->e edge violation
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MU

for 12=1 to N do
a:=jJ@&b s=h
b :=a & f
C = e & ]
d :=fF&c
e :==b&d
T = U[1] ALU
g: V[i1] = Db C
h: W[i] :=d
i = XLl d
Priorities: e f,j,g,h c
> a *‘—J ~~~~~~ » C o a
N F \ b
b K \ :
\Cii
h |

instr| o
a 3
b 4
C 0
d 1
e 7/
f

9

h

J

e causes e->c edge violation
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Creating the Loop instr
a
Create the body from the schedule. 5
Determine which iteration an instruction
falls into C
o Mark its sources and dest as belonging r

to that iteration.

o Add Moves to update registers

Prolog fills in gaps at beginning
o For each move we will have an

Instruction in prolog, and we fill in

dependent instructions
Epilog fills in gaps at end

""OO\IO\IO\U'IAUUQ

— | >SS O | | ®
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fO = U[0];
J0 = X[OJ;

FORi=0toN
f1 .= U[i+1]
J1 = X[i+1]
nop
a:=j0?b
b:=a?f0
c:=e?]j0
d:=f0?c
e:=b?d g: V[i] :.=0b

h: W[i] :=d
fO =11
j0=j1
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Conditionals

What about internal control structure, l.e., conditionals
Three approaches

o Schedule both sides and use conditional moves

o Schedule each side, then make the body of the conditional a
macro op with appropriate resource vector

o Trace schedule the loop
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What to take away

Architecture includes compiler!

Dependence analysis is very important
(including alias analysis)

Software pipelining crucial for statically scheduled, but also
very useful for dynamically scheduled
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