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Key Questions 
Q1. How do we find independent instructions to fetch/execute? 
 
Q2. How do we enable more compiler optimizations? 
 e.g., common subexpression elimination, constant 
 propagation, dead code elimination, redundancy 
 elimination, … 
 
Q3. How do we increase the instruction fetch rate?  
 i.e., have the ability to fetch more instructions per cycle 
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Key Questions 
Q1. How do we find independent instructions to fetch/execute? 
 
Q2. How do we enable more compiler optimizations? 
 e.g., common subexpression elimination, constant 
 propagation, dead code elimination, redundancy 
 elimination, … 
 
Q3. How do we increase the instruction fetch rate?  
 i.e., have the ability to fetch more instructions per cycle 
 
A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above 
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VLIW (Very Long Instruction Word 
 Simple hardware with multiple function units 

 Reduced hardware complexity 
 Little or no scheduling done in hardware, e.g., in-order 
 Hopefully, faster clock and less power 

 Compiler required to group and schedule instructions 
(compare to OoO superscalar) 
 Predicated instructions to help with scheduling (trace, etc.) 
 More registers (for software pipelining, etc.) 

 Example machines: 
 Multiflow, Cydra 5 (8-16 ops per VLIW) 
 IA-64 (3 ops per bundle) 
 TMS32xxxx (5+ ops per VLIW) 
 Crusoe (4 ops per VLIW) 
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Comparison between SS ↔ VLIW 

From Mark Smotherman, “Understanding EPIC Architectures and Implementations” 

http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf


Comparison: CISC, RISC, VLIW 







EPIC – Intel IA-64 Architecture 
 Gets rid of lock-step execution of instructions within a VLIW 

instruction 
 Idea: More ISA support for static scheduling and parallelization 

 Specify dependencies within and between VLIW instructions 
(explicitly parallel) 

 
+ No lock-step execution 
+ Static reordering of stores and loads + dynamic checking 
-- Hardware needs to perform dependency checking (albeit aided by 

software) 
-- Other disadvantages of VLIW still exist 
 
 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 

2000. 
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IA-64 Instructions 
 IA-64 “Bundle” (~EPIC Instruction) 

 Total of 128 bits 
 Contains three IA-64 instructions 
 Template bits in each bundle specify dependencies within a 

bundle 
  
\ 
 
 

 IA-64 Instruction 
 Fixed-length 41 bits long 
 Contains three 7-bit register specifiers 
 Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers 
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IA-64 Instruction Bundles and Groups 
 Groups of instructions can be 

executed safely in parallel 
 Marked by “stop bits” 

 
 Bundles are for packaging 

 Groups can span multiple bundles 
 Alleviates recompilation need 

somewhat  
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VLIW: Finding Independent Operations 
 Within a basic block, there is limited instruction-level 

parallelism 
 To find multiple instructions to be executed in parallel, the 

compiler needs to consider multiple basic blocks 
 

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed 
 

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths 
 Trace scheduling 
 Superblock scheduling  
 Hyperblock scheduling 
 Software Pipelining 
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It’s all about the compiler 
and how to schedule the 
instructions to maximize 
parallelism 



List Scheduling: For 1 basic block 
 Assign priority to each instruction 
 Initialize ready list that holds all ready instructions 

  Ready = data ready and can be scheduled 
 Choose one ready instruction I   from ready list with the 

highest priority 
  Possibly using tie-breaking heuristics  

 Insert I  into schedule  
  Making sure resource constraints are satisfied 

 Add those instructions whose precedence constraints are 
now satisfied into the ready list  
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Data Precedence Graph 
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Instruction Prioritization Heuristics 
 Number of descendants in precedence graph 
 Maximum latency from root node of precedence graph 
 Length of operation latency 
 Ranking of paths based on importance 
 Combination of above 
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VLIW List Scheduling 
 Assign Priorities 
 Compute Data Ready List - all operations whose predecessors have 

been scheduled. 
 Select from DRL in priority order while checking resource constraints 
 Add newly ready operations to DRL and repeat for next instruction 
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Extending the scheduling domain 
 Basic block is too small to get any real parallelism 
 How to extend the basic block? 

 Why do we have basic blocks in the first place? 
 Loops 

 Loop unrolling 
 Software pipelining 

 Non-loops 
 Will almost always involve some speculation 
 And, thus, profiling may be very important 
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Safety and Legality in Code Motion 
 Two characteristics of speculative code motion: 

 Safety: whether or not spurious exceptions may occur 
 Legality: whether or not result will be always correct 

 Four possible types of code motion: 
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r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints 
 Downward 

 When moving an operation from a BB to one of its dest BB’s, 
 all the other dest basic blocks should still be able to use the result 

of the operation 
 the other source BB’s of the dest BB should not be disturbed 

 
 Upward 

 When moving an operation from a BB to its source BB’s 
 register values required by the other dest BB’s must not be 

destroyed 
 the movement must not cause new exceptions 
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Trace Scheduling  
 Trace: A frequently executed path in the control-flow graph 

(has multiple side entrances and multiple side exits) 
  
 Idea: Find independent operations within a trace to pack 

into VLIW instructions.  
 Traces determined via profiling 
 Compiler adds fix-up code for correctness (if a side entrance 

or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed) 
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Trace Scheduling Idea 
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Trace Scheduling (II) 
 There may be conditional branches from the middle of the 

trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances). 
 

 These control-flow transitions are ignored during trace 
scheduling. 
 

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code. 
 

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981.  
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Trace Scheduling (III) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

What bookeeping is required when Instr 1  
is moved below the side entrance in the trace? 



Trace Scheduling (IV) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 2 
Instr 3 
Instr 4 
Instr 1 
Instr 5 

Instr 3 
Instr 4 



Trace Scheduling (V) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

What bookeeping is required when Instr 5  
moves above the side entrance in the trace? 



Trace Scheduling (VI) 
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Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 

Instr 1 
Instr 5 
Instr 2 
Instr 3 
Instr 4 

Instr 5 



Trace Scheduling Fixup Code Issues 
 Sometimes need to copy instructions more than once to 

ensure correctness on all paths (see C below) 
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Trace Scheduling Overview 
 Trace Selection 

 select seed block (the highest frequency basic block) 
 extend trace (along the highest frequency edges) 

forward (successor of the last block of the trace) 
backward (predecessor of the first block of the trace) 

 don’t cross loop back edge 
 bound max_trace_length heuristically 

 

  Trace Scheduling 
 build data precedence graph for a whole trace 
 perform list scheduling and allocate registers 
 add compensation code to maintain semantic correctness 

 

 Speculative Code Motion (upward) 
 move an instruction above a branch if safe 
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Trace Scheduling Example (I) 
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV) 
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V) 
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fdiv  f1,  f2,  f3
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs  
 Advantages 

+ Enables the finding of more independent instructions  fewer 
NOPs in a VLIW instruction 

 
 Disadvantages 

-- Profile dependent  
 -- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions 
-- Code bloat and additional fix-up code executed 
 -- Due to side entrances and side exits 
    -- Infrequent paths interfere with the frequent path 
-- Effectiveness depends on the bias of branches 
 -- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions 
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Superblock Scheduling 
 Trace: multiple entry, multiple exit block 
 Superblock: single-entry, multiple exit block 

 A trace with side entrances are eliminated 
 Infrequent paths do not interfere with the frequent path 

+ More optimization/scheduling opportunity than traces 
+ Eliminates “difficult” bookkeeping due to side entrances 

36 Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991. 



Can You Do This with a Trace? 
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opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

1 

Original Code 

opA: mul r1,r2,3 

opC: mul r3,r2,3 

opB: add r2,r2,1 99 

1 

Code After Superblock Formation 

opC’: mul r3,r2,3 

opA: mul r1,r2,3 

opC: mov r3,r1 

opB: add r2,r2,1 99 

1 

Code After Common  
Subexpression Elimination 

opC’: mul r3,r2,3 



Superblock Scheduling Shortcomings 
-- Still profile-dependent 
 
-- No single frequently executed path if there is an unbiased 

branch 
 -- Reduces the size of superblocks 
 
-- Code bloat and additional fix-up code executed 
 -- Due to side exits 
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Hyperblock Scheduling 
 Idea: Use predication support to eliminate unbiased branches 

and increase the size of superblocks 
 Hyperblock: A single-entry, multiple-exit block with internal 

control flow eliminated using predication (if-conversion) 
 

 Advantages 
 + Reduces the effect of unbiased branches on scheduled block size 

 
 Disadvantages 

-- Requires predicated execution support 
-- All disadvantages of predicated execution  
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Hyperblock Formation (I) 
 Hyperblock formation 
 1. Block selection 
 2. Tail duplication 
 3. If-conversion 

 
 Block selection 

 Select subset of BBs for inclusion in HB 
 Difficult problem 
 Weighted cost/benefit function 

 Height overhead 
 Resource overhead 
 Dependency overhead 
 Branch elimination benefit 
 Weighted by frequency 

 
 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 

Hyperblock,” MICRO 1992. 
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Hyperblock Formation (II) 
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BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

90 

10 

80 20 

10 

BB2 

BB4 

BB6 

BB5 

BB1 

BB3 

80 20 

10 

90 

10 

81 
9 

80 20 

10 

BB6’ 

9 
1 

Tail duplication same as with Superblock formation 



Hyperblock Formation (III) 
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BB2 
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BB1 

BB3 

80 20 

10 

90 

10 

81 
9 

80 20 

10 

BB6’ 

9 
1 

BB1 
p1,p2 = CMPP 

BB2 if p1 

BB3 if p2 

BB4 

BB6 BB5 

10 

BB6’ 

81 9 

1 

10 

If-convert (predicate) intra-hyperblock branches 



Can We Do Better? 
 Hyperblock still 

 Profile dependent 
 Requires fix-up code 
 And, requires predication support 

 
 Single-entry, single-exit enlarged blocks 

 Block-structured ISA 
 Optimizes multiple paths (can use predication to enlarge blocks) 
 No need for fix-up code (duplication instead of fixup) 
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Non-Faulting Loads and Exception Propagation 

 
 
 
 
 
 
 
 
 
 ld.s fetches speculatively from memory 

 i.e. any exception due to ld.s is suppressed 
 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 

branch is taken (to execute some compensation code) 
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inst 1 
inst 2 
…. 
 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1 
inst 2 
…. 
br 

chk.s r1 
use=r1 

…. ld r1=[a] 

br 



Non-Faulting Loads and Exception Propagation in IA-64 

 
 
 
 
 
 
 
 
 
 

 Load data can be speculatively consumed prior to check 
 “speculation” status is propagated with speculated data 
 Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions) 
 chk.s checks the entire dataflow sequence for exceptions 
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inst 1 
inst 2 
…. 
br 

ld r1=[a] 
use=r1 

unsafe 
code  
motion 

…. 

ld.s r1=[a] 
inst 1  
inst 2 
use=r1 
…. 
br 

chk.s use …. ld r1=[a] 
use=r1 

br 



Aggressive ST-LD Reordering in IA-64 
 
 
 
 
 
 
 
 
 

 ld.a starts the monitoring of any store to the same address as the 
advanced load 

 If no aliasing has occurred since ld.a, ld.c is a NOP 
 If aliasing has occurred, ld.c re-loads from memory 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
…. 
st [?] 
…. 
ld.c r1=[x] 
use=r1 

st[?] 



Aggressive ST-LD Reordering in IA-64 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
use=r1  
…. 
st [?] 
…. 
chk.a X 
…. 

st[?] 

ld r1=[a] 
use=r1 



Summary and Questions 
 Trace, superblock, hyperblock, block-structured ISA 

 
 How many entries, how many exits does each of them have? 

 What are the corresponding benefits and downsides? 
 

 What are the common benefits? 
 Enable and enlarge the scope of code optimizations 
 Reduce fetch breaks; increase fetch rate 

 
 What are the common downsides? 

 Code bloat (code size increase) 
 Wasted work if control flow deviates from enlarged block’s path 
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What about loops? 
 Unrolling 
 Software pipelining 

54 



Loop Unrolling 
 
 
 
 
 
 
 

 Idea: Replicate loop body multiple times within an iteration 
+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 
 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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15-745 © Seth Copen Goldstein 2000-5 
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Software Pipelining 
 Software pipelining is an instruction scheduling technique 

that reorders the instructions in a loop. 
 Possibly moving instructions from one iteration to the 

previous or the next iteration. 
 Very large improvements in running time are possible. 

 The first serious approach to software pipelining was 
presented by Aiken & Nicolau. 
 Aiken’s 1988 Ph.D. thesis. 
 Impractical as it ignores resource hazards (focusing only 

on data-dependence constraints). 
 But sparked a large amount of follow-on research. 



15-745 © Seth Copen Goldstein 2000-5 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A: a ← ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 

Assume all have latency of 2 

A B C D 



15-745 © Seth Copen Goldstein 2000-5 
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Can we decrease the latency? 

 Lets unroll 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d ←  d + 4 
A1: a ←  ld [d] 
B1: b ←  a * a 
C1:  st [d], b 
D1: d ←  d + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
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Rename variables 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A B C D A1 B1 C1 D1 



15-745 © Seth Copen Goldstein 2000-5 
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Schedule 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d ←  d1 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A B C D1 
D A1 B1 C1 



15-745 © Seth Copen Goldstein 2000-5 
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Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D2 

A B C D2 
D A1 B1 C1 

D1 A2 B2 C2 



15-745 © Seth Copen Goldstein 2000-5 
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Unroll Some More 
A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 

A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

D1 A2 B2 C2   
  D2   A3 B3 C3 

D2 

A3 

B3 

C3 
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One More Time 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 
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Can Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 A B C D4 
D A1 B1 C1 

D1 A2 B2 C2   
D2 A3 B3 C3   

  D3   A4 B4 C4 

D2 

A3 

B3 

C3 

A4 

B4 

C4 
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Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D3 

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 
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Rearrange 
A 

B 

C 

D 

A1 

B1 

C1 

D1 

A2 

B2 

C2 

D  

A B C D3 
D A1 B1 C1 

  D1   A2   B2 C2     
      D2 A3 B3 C3 

D2 

A3 

B3 

C3 

A: a ←  ld [d] 
B: b ←  a * a 
C:  st [d], b 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
B1: b1 ←  a1 * a1 
C1:  st [d1], b1 
D1: d2 ←  d1 + 4 
A2: a2 ←  ld [d2] 
B2: b2 ←  a2 * a2 
C2:  st [d2], b2 
D2: d ←  d2 + 4 
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SP Loop 
A: a ←  ld [d] 
B: b ←  a * a 
D: d1 ←  d + 4 
A1: a1 ←  ld [d1] 
D1: d2 ←  d1 + 4 
 
C:  st [d], b 
B1: b1 ←  a1 * a1 
A2: a2 ←  ld [d2] 
D2: d ←  d2 + 4 
 
B2: b2 ←  a2 * a2 
C1:  st [d1], b1 
D3: d2 ←  d1 + 4 
C2:  st [d2], b2 

A B C C C D3 
D A1 B1 B1 B1 C1 

  D1   A2 A2 A2 B2 C2 
      D2 D2 D2 

Prolog 

Body 

Epilog 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

A 

B 

C 

dependencies 
in initial loop 

A 

B 

C 

iteration i i+1 i+2 

after SP 
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Goal of SP 

 Increase distance between dependent operations by 
moving destination operation to a later iteration 

 But also, to uncover ILP across iteration boundaries! 
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Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

A2 B1 C0 

A3 B2 C1 

B3 C2 

C3 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 
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Example 
Assume operating on a infinite wide machine 

A0 

A1 B0 

Ai Bi-1 Ci-2 

Bi Ci-1 

Ci 

Prolog 

epilog 

loop body 
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for (i=0; i<N; 
i++)  
{ 
 Ai 
 Bi 
 Ci 
} 
 

Dealing with exit conditions 

 i=0 
 if (i >= N) goto done 
 A0 

 B0 

 if (i+1 == N) goto last 
 i=1 
 A1 

 if (i+2 == N) goto epilog 
 i=2 

loop: 
 Ai 

 Bi-1 

 Ci-2 

 i++ 
 if (i < N) goto loop 
epilog: 
 Bi 

 Ci-1 

last: 
 ci 

done:  
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Loop Unrolling V. SP 

For SuperScalar or VLIW 
 Loop Unrolling reduces loop overhead 
 Software Pipelining reduces fill/drain 
 Best is if you combine them  

Software Pipelining 

Loop Unrolling 

# of 
overlapped 
iterations 

Time 



VLIW 
 Depends on the compiler 

 As often is the case: compiler algs developed for VLIW are 
relevant to superscalar, e.g., software pipelining. 

 Why wouldn’t SS dynamically “software pipeline?” 
 

 As always: Is there enough statically knowable parallelism? 
 

 What about wasted Fus?  Code bloat? 
 

 Many DSPs are VLIW.  Why? 
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Small Aside 
 Scalar Replacement & Dependencies 

75 



Scalar Replacement: Example 
DO I = 1, N 
 DO J = 1, M 
  A(I) = A(I) + B(J) 
 ENDDO 
ENDDO 
 

 
 
 

 A(I) can be left in a register 
throughout the inner loop 

 Superscalar + cache will get most of 
this, but not allocate A(I) to register 

DO I = 1, N 
 T = A(I) 
 DO J = 1, M 
  T = T + B(J) 
 ENDDO 
 A(I) = T 
ENDDO 
 

 

 All loads and stores to A in the inner 
loop have been saved 

 High chance of T being allocated a 
register by compiler 



Scalar Replacement 

 Convert array reference to scalar reference 
 Approach is to use dependences to achieve these memory 

hierarchy transformations 



Dependence and  Memory Hierarchy 

 True or Flow - save loads and cache miss 
 Anti - save cache miss? 
 Output - save stores 
 Input - save loads 

 
    A(I) = ... + B(I) 
    ...  = A(I) + k 
    A(I) = ... 
    ...  = B(I) 



Dependence and Memory Hierarchy 
 Loop Carried dependences - Consistent dependences most 

useful for memory management purposes 
 Consistent dependences - dependences with constant 

dependence distance 
 



 In the reduction example 
 

DO I = 1, N 
 DO J = 1, M 
 
  A(I) = A(I) + B(J) 
 
 ENDDO 
ENDDO 

Using Dependences 
DO I = 1, N 
 T = A(I) 
 DO J = 1, M 
  T = T + B(J) 
 ENDDO 
 A(I) = T 
ENDDO 
 

 True dependence - replace the 
references to A in the inner loop by 
scalar T 

 Output dependence - store can be 
moved outside the inner loop 

 Antidependence - load can be 
moved before the inner loop 



Scalar Replacement 

 Example: Scalar 
Replacement in case of 
loop independent 
dependence 

 
 DO I = 1, N 
  A(I) = B(I) + C 
  X(I) = A(I)*Q 
 ENDDO 

 DO I = 1, N 
  t = B(I) + C 
  A(I) = t 
  X(I) = t*Q 
 ENDDO 
 
 One less load for each 

iteration for reference to A 



Scalar Replacement 
 Example: Scalar 

Replacement in case of 
loop carried dependence 
spanning single iteration 

  

 DO I = 1, N 
  A(I) = B(I-1) 
  B(I) = A(I) + 
C(I) 

 ENDDO 

 tB = B(0) 
 DO I = 1, N 
  tA = tB 
  A(I) = tA 
  tB = tA + C(I) 
  B(I) = tB 
 ENDDO 
 

 One less load for each iter for 
ref to B which had a loop carried 
true dependence of 1 iter  

 Also one less load per iter for 
reference to A 



Scalar Replacement 
 Example: Scalar 

Replacement in case of 
loop carried dependence 
spanning multiple 
iterations 

  

 DO I = 1, N 
  A(I) = B(I-1) + 
B(I+1) 

 ENDDO 

 t1 = B(0) 
 t2 = B(1) 
 DO I = 1, N 
  t3 = B(I+1) 
  A(I) = t1 + t3 
  t1 = t2 
  t2 = t3 
 ENDDO 
 One less load for each iter 

for ref to B which had a loop 
carried input dependence of 
2 iters 

 Invariants maintained were 
t1=B(I-1); t2=B(I); 
t3=B(I+1) 
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Aiken/Nicolau Scheduling 
Step 1 

Perform scalar replacement to eliminate memory 
references where possible. 

for i:=1 to N do 
    a := j ⊕ V[i-1] 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 
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Aiken/Nicolau Scheduling 
Step 2 

Unroll the loop and compute the data-dependence 
graph (DDG). 
 
DDG for rolled loop: 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a 

b 

c 

d 

e 

f g 

h 

j 
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Aiken/Nicolau Scheduling 
Step 2, cont’d 

DDG for unrolled loop: 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 
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Aiken/Nicolau Scheduling 
Step 3 

Build a tableau of iteration number vs cycle time. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 
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Aiken/Nicolau Scheduling 
Step 3 

Build a tableau of iteration number vs cycle time. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

a1 

b1 

c1 

d1 

e1 
j1 

f1 
g1 h1 a2 

b2 

a3 

b3 

g2 
j2 

f2 

c2 

d2 

e2 
h1 

c3 

basically, you’re emulating 
a superscalar with infinite 
resources, infinite register 
renaming, always predicting 
the loop-back branch: 
thus, just pure 
data dependency 
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Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 
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Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 
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Aiken/Nicolau Scheduling 
Step 4 

Find repeating patterns of instructions. 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e Go back and  

relate slopes 
to DDG 
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Aiken/Nicolau Scheduling 
Step 5 

“Coalesce” the slopes. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

acfj fj fj fj fj fj 
bd 
egh  a 
     cb 
     dg a 
     eh b 
        cg a 
        d  b 
        eh g  a 
           c  b 
           d  g  a 
           eh    b 
              c  g 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 
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Aiken/Nicolau Scheduling 
Step 6 

Find the loop body and “reroll” the loop. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 



15-745 © Seth Copen Goldstein 2000-5 94 

Aiken/Nicolau Scheduling 
Step 6 

Find the loop body and “reroll” the loop. 

acfj 
bd   fj 
egh  a 
     cb fj 
     dg a 
     eh b  fj 
        cg a 
        d  b 
        eh g  fj 
           c  a 
           d  b 
           eh g 
              c 
              d 
              eh 

    iteration 
 1    2   3   4   5   6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

cy
cl
e 

Prologue/entry code 

Loop body 

Epilogue/exit code 



15-745 © Seth Copen Goldstein 2000-5 95 

Aiken/Nicolau Scheduling 
Step 7 

Generate code. 
(Assume VLIW-like machine for this example.  The instructions on 
each line should be issued in parallel.) 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f2 := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f3 := U[3]     j3 := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f2  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j3 ⊕ b3   i := 3 
L: 
   di := fi-1 ⊕ ci    bi+1 := ai ⊕ fi 
   ei := bi ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ ji    ai+2 := ji+1 ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 
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Aiken/Nicolau Scheduling 
Step 8 
 Since several versions of a variable (e.g., ji and ji+1) might 

be live simultaneously, we need to add new temps and 
moves 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f2 := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f3 := U[3]     j3 := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f2  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j3 ⊕ b3   i := 3 
L: 
   di := fi-1 ⊕ ci    bi+1 := ai ⊕ fi 
   ei := bi ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ ji    ai+2 := ji+1 ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 
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Aiken/Nicolau Scheduling 
Step 8 
 Since several versions of a variable (e.g., ji and ji+1) might 

be live simultaneously, we need to add new temps and 
moves 

   a1 := j0 ⊕ b0    c1 := e0 ⊕ j0    f1 := U[1]     j1 := X[1] 
   b1 := a1 ⊕ f0    d1 := f0 ⊕ c1    f’’ := U[2]     j2 := X[2] 
   e1 := b1 ⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕ b1 
   c2 := e1 ⊕ j1    b2 := a2 ⊕ f1    f’ := U[3]     j’ := X[3] 
   d2 := f1 ⊕ c2    V[2] := b2       a3 := j2 ⊕ b2 
   e2 := b2 ⊕ d2    W[2] := d2       b3 := a3 ⊕ f’’  f4 := U[4]    j4 := X[4] 
   c3 := e2 ⊕ j2    V[3] := b3       a4 := j’ ⊕ b3   i := 3 
L: 
   di := f’’ ⊕ ci    bi+1 := a’ ⊕ f’    b’ := b; a’=a; f’’=f’; f’=f; j’’=j’; j’=j 
   ei := b’ ⊕ di     W[i] := di        V[i+1] := bi+1  fi+2 := U[I+2]  ji+2 := X[i+2] 
   ci+1 := ei ⊕ j’    ai+2 := j’’ ⊕ bi+1 i := i+1       if i<N-2 goto L 
 
   dN-1 := fN-2 ⊕ cN-1 bN := aN ⊕ fN-1 
   eN-1 := bN-1 ⊕ dN-1 W[N-1] := dN-1   v[N] := bN 
   cN := eN-1 ⊕ jN-1 
   dN := fN-1 + cN 
   eN := bN ⊕ dN     w[N] := dN 
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Next Step in SP 

 AN88 did not deal with resource constraints. 
 Modulo Scheduling is a SP algorithm that does. 
 It schedules the loop based on 

 resource constraints 
 precedence constraints 

 
 Basically, it’s list scheduling that takes into account 

resource conflicts from overlapping iterations 
 

 Look at original motivation: Systolic Arrays 



Why Systolic Architectures? 
 Idea: Data flows from the computer memory in a rhythmic 

fashion, passing through many processing elements before it 
returns to memory 
 

 Similar to an assembly line 
 Different people work on the same car 
 Many cars are assembled simultaneously 
 Can be two-dimensional 

 

 Special purpose accelerators/architectures need 
 Simple, regular designs (keep # unique parts small and 

regular) 
 High concurrency  high performance 
 Balanced computation and I/O (memory access) 
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Systolic Architectures 
 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 

 
 

100 

Memory: heart 
PEs: cells 
 
 
Memory pulses  
data through  
cells 
 



Systolic Architectures 
 Basic principle: Replace a single PE with a regular array of 

PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 
bandwidth requirements 
 
 
 

 Differences from pipelining: 
 Array structure can be non-linear  

and multi-dimensional  
 PE connections can be multidirectional (and different 

speed) 
 PEs can have local memory and execute kernels (rather 

than a piece of the instruction) 
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Systolic Computation Example 
 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
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Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 
 

 y2 = w1x2 + 
w2x3 + w3x4 
 

 y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

 
 
 
 
 
 
 
 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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 Each PE in a systolic array 
 Can store multiple “weights” 
 Weights can be selected on the fly 
 Eases implementation of, e.g., adaptive filtering 

 Taken further 
 Each PE can have its own data and instruction memory 
 Data memory  to store partial/temporary results, 

constants 
 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 

105 

More Programmability 



Pipeline Parallelism 
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File Compression Example 
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Systolic Array 
 Advantages 

 Makes multiple uses of each data item  reduced need for 
fetching/refetching 

 High concurrency 
 Regular design (both data and control flow) 

 
 Disadvantages 

 Not good at exploiting irregular parallelism 
 Relatively special purpose  need software, programmer 

support to be a general purpose model 
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The WARP Computer 
 HT Kung, CMU, 1984-1988 

 
 Linear array of 10 cells, each cell a 10 Mflop programmable 

processor 
 Attached to a general purpose host machine 
 HLL and optimizing compiler to program the systolic array 
 Used extensively to accelerate vision and robotics tasks 

 
 Annaratone et al., “Warp Architecture and 

Implementation,” ISCA 1986.  
 Annaratone et al., “The Warp Computer: Architecture, 

Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 
s 

s 
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 
s 

s 

resources must  
be within 
constraints 
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
be within 
constraints 

s 
s 
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
be within 
constraints 

s 
s 
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

s 

resources must  
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s 
s 



15-745 © Seth Copen Goldstein 2000-5 118 

Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

resources must  
be within 
constraints 

U 
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Software Pipelining Goal 

 Find the same schedule for each iteration. 
 Stagger by iteration initiation interval, s 
 Goal: minimize s. 

 

resources must  
be within 
constraints 

s 

modulo resource table 
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Precedence Constraints 
 Review: for acyclic scheduling, constraint is just the 

required delay between two ops u, v: 
<d(u,v)> 
 

 For an edge, u→v, we must have 
σ(v)-σ(u) ≥ d(u,v) 
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Precedence Constraints 
 Cyclic: constraint becomes a tuple: <p,d> 

 p is the minimum iteration delay 
(or the loop carried dependence distance) 

 d is the delay 
 For an edge, u→v, we must have 

σ(v)-σ(u) ≥ d(u,v)-s*p(u,v) 
 p ≥ 0 
 If data dependence is   

 within an iteration, p=0 
 loop-carried across p iter boundaries,  p>0 
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Iterative Approach 

 Finding minimum S that satisfies the constraints is NP-
Complete. 

 Heuristic: 
 Find lower and upper bounds for S 
 foreach s from lower to upper bound? 

 Schedule graph. 
 If succeed, done 
 Otherwise try again (with next higher s) 

 

 Thus: “Iterative Modulo Scheduling” Rau, et.al. 
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Iterative Approach 

 Heuristic: 
 Find lower and upper bounds for S 
 foreach s from lower to upper bound 

 Schedule graph. 
 If succeed, done 
 Otherwise try again (with next higher s) 

 

 So the  key difference: 
 AN88 does not assume S when scheduling 
 IMS must assume an S for each scheduling attempt to 

understand resource conflicts 
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Lower Bounds 
 Resource Constraints: SR  (also called IIres) 
 maximum over all resources of # of uses divided by # 

available… 
 
 Precedence Constraints: SE  (also called IIrec) 
 max over all cycles: d(c)/p(c) 
 
In practice, one is easy, other is hard. 
Tim’s secret approach: just use SR as lower bound, then do 

binary search for best S 
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Lower Bound on s 

for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

a 

b 

c 

d 

e 

f 

g 
h 

j 

• Assume 1 ALU and 1 MU 
• Assume latency Op or load is 1 cycle 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 

Resources => 5 cycles 
Dependencies => 3 cycles 



15-745 © Seth Copen Goldstein 2000-5 127 

Scheduling data structures 
To schedule for initiation interval s: 
 Create a resource table with s rows and R columns 
 Create a vector, σ,  of length N for n instructions in the 

loop 
 σ[n] = the time at which n is scheduled, 

          or NONE 
 Prioritize instructions by some heuristic 

 critical path (or cycle) 
 resource critical 
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Scheduling algorithm 
 Pick an instruction, n 
 Calculate earliest time due to dependence constraints 

For all x=pred(n),  
 earliest = max(earliest, σ(x)+d(x,n)-s.p(x,n)) 

 try and schedule n from earliest to (earliest+s-1)  
s.t. resource constraints are obeyed. 
 possible twist: deschedule a conflicting node to make 

way for n, maybe randomly, like sim anneal 
 If we fail, then this schedule is faulty 

(i.e. give up on this s) 
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Scheduling algorithm – cont. 

 We now schedule n at earliest, I.e., σ(n) = earliest 
 Fix up schedule 

 Successors, x, of n must be scheduled s.t. 
 σ(x) >= σ(n)+d(n,x)-s.p(n,x), otherwise they are removed 
(descheduled) and put back on worklist. 

 repeat this some number of times until either 
 succeed, then register allocate 
 fail, then increase s 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

<1,1> 
<1,1> 

<0,1> <0,1> 
c 

What is IIres? 
What is IIrec? 

1 1 Resources: 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b c 

Try II = 2 

1 

Modulo Resource Table: 

0 
1 

0 

1 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b c 

Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

c Try II = 2 

1 1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} 

a 

b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

earliest a: sigma(c) + delay(c) - 2 
                = 2+1-2 = 1 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} a b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

earliest b? 
scheduled b? 
what next? 
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Simplest Example 
for () { 
  a = b+c 
  b = a*a 
  c = a*194 
} a 

b 

c Try II = 2 

1 

Modulo Resource Table: 

1 
0 
1 

0 

1 

2 

3 

Lesson: lower bound  
may not be achievable 
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Example 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: ? 

a 

b 

c 

d 

e 

f 

g 
h 

j 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 
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Example 
for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: c,d,e,a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 
h 

j 

<1,1> 

<1,1> 

<1,1> 

<0,1> 

<0,1> 

<0,1> 
<1,1> 

<0,1> 

<0,1> 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: c,d,e,a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 

instr  σ 
a 

b 

c 

d 

e 

f 

g 

h 

j 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: a,b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

instr  σ 
a 

b 

c 0 

d 1 

e 2 

f 

g 

h 

j 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

instr  σ 
a 3 

b 

c 0 

d 1 

e 2 

f 

g 

h 

j 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: b,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 2 

f 

g 

h 

j 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: e,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 

f 

g 

h 

j 

b causes b->e edge violation 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: e,f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 0 

d 1 

e 7 

f 

g 

h 

j 

e causes e->c edge violation 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities: f,j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 

h 

j 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities:j,g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d j 

e 

a 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 

h 

j 1 
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for i:=1 to N do 
    a := j ⊕ b 
    b := a ⊕ f 
    c := e ⊕ j 
    d := f ⊕ c 
    e := b ⊕ d 
    f := U[i] 
 g: V[i] := b 
 h: W[i] := d 
    j := X[i] 

Priorities:g,h 

a 

b 

c 

d 

e 

f 

g 

h 

j 

s=5 

ALU MU 
c f 

d j 

e g 

a h 

b 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 7 

h 8 

j 1 



15-745 © Seth Copen Goldstein 2000-5 148 

Creating the Loop 
 Create the body from the schedule. 
 Determine which iteration an instruction 

falls into 
 Mark its sources and dest as belonging 

to that iteration. 
 Add Moves to update registers 

 Prolog fills in gaps at  beginning 
 For each move we will have an 

instruction in prolog, and we fill in 
dependent instructions 

 Epilog fills in gaps at end 

instr  σ 
a 3 

b 4 

c 5 

d 6 

e 7 

f 0 

g 7 

h 8 

j 1 
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f0 = U[0]; 
j0 = X[0]; 
 
FOR i = 0 to N 
    f1 := U[i+1] 
    j1 := X[i+1] 
    nop 
    a := j0 ? b 
    b := a ? f0 
    c := e ? j0 
    d := f0 ? c 
    e := b ? d   g: V[i] := b 
 h: W[i] := d 
    f0 = f1 
    j0 = j1 
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Conditionals 
 What about internal control structure, I.e., conditionals 
 Three approaches 

 Schedule both sides and use conditional moves 
 Schedule each side, then make the body of the conditional a 

macro op with appropriate resource vector 
 Trace schedule the loop 
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What to take away 
 Architecture includes compiler! 
 Dependence analysis is very important 

(including alias analysis) 
 Software pipelining crucial for statically scheduled, but also 

very useful for dynamically scheduled 
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