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Instruction Set Architecture

e The ISA defines the functional contract
between the software and the hardware
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Abstraction & Your Program

High-level swap(int v[], int k)
language {int temp;
program temp = v[k];

High-level language i i

vlk+l] = temp;
- Level of abstraction closer to

problem domain Coompier)

* Provides for productivity and
pO I""Gb il i?y Assembly swap:

language muli $2, $5.4
program add %2, $4,%7

Assembly language for S 3

* Textual representation of o
instructions (ISA)

Hardware representation

}

° [ ] [ ]
B"‘ary r'epr'ese.11.a.r|orll of Binary machine  00000000101000010000000000011000
: : language 00000000000110000001100000100001
'ns.rr'UC?lons (ISA) program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Y
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Instruction Set Architecture

e The ISA defines the functional contract
between the software and the hardware

* The ISA is an abstraction that hides details of
the implementation from the software

* It is a functional abstraction of the processor
* What operations can be preformed
* How to name storage locations
* The format (bit pattern) of the instructions

e It does NOT define

» Timing of the operations
* Power used by operations

* How operations/storage are implemented
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ISA Goals

 Ease of Programming

* Ease of Implementation
* Good Performance

- Compatibility
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Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient
programs.

* Who is creating the programs?
* Early Days: Humans. Why?
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Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient

programs.
* Who is creating the programs?
* Early Days: Humans.
-No real compilers

-Resources very limited

-What does that mean for the ISA designer?
Probably want high-level operations

-7- CS 740 F'15



Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient

programs.
* Who is creating the programs?
* Early Days: Humans.
* Modern days (~1980 and beyond): Compilers

-Today's optimizing compiler do a much better job
than most humans could possibly do

-Leads to change in type of instructions towards
more fine-grained low-level instructions
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Ease of Implementation

« ISA shouldn't get in the way of
optimizing implementation

» Examples:
* Variable length instructions
* Varying instruction formats

* Implied registers

- Complex addressing modes

* Precise interrupts

- Appearance of atomic execution

-9- CS 740 F'15



ISA & Performance

* First, lets define performance

_10- CS 740 F'15



Performance
* Response time:
* AKA latency
* How long does a task take?
e ThroughputElEtiee RN
+ AKA bandwi
* How much

station w
the highway."

Tanenbaum, Computer Networks
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Performance
* Response time:
* AKA latency
* How long does a task take?
* Throughput:
- AKA bandwidth
* How much work can you do per unit time?

* Lets examine response time

* Elapsed time
Total time from start to finish including everything

* CPU time
Only time spent on CPU
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CPU Time

CPU Time = CPU clock cycles % clock cycle time
» CPU Clock Cycles

* Number of clock cycles to execute program
- Two components:

-# of instructions &

~-cycles per instruction

* Clock Cycle Time
* 1/Clock Frequency

, instructions cycles seconds
CPU Time = X - — X
program instruction cycle
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CPU Time

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

« Instr/program = instruction count (IC)
* Determined by program, compiler, & ISA
* This is the dynamic count of instructions executed

* Cycles/instr = cycles per instruction (CPI)
* Determined by program, compiler, ISA, & parch

« Seconds/cycle = clock period = 1/freq
* Determined by parch & technology

-14 - CS 740 F'15




CPI

I Ccls

_ clock cycles _on
CPI = — 2Cl$=1 CPI_ s X 7

instruction count

e Different instruction classes take different
numbers of cycles

e (In fact, even the same instruction can take a
different number of cycles, E.g.?)

* When we say CPI, we really mean
Weighted CPI
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CPU Time

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

* Improve performance by
* Reducing instruction count
* Reducing cycles taken by each instruction
* Reducing clock period

e There is a tension between these

- 16 - CS 740 F'15




CPI Example

« Computer A: Cycle Time = 250ps, CPT = 2.0
» Computer B: Cycle Time = 500ps, CPT = 1.2
* Same ISA

« Which is faster, and by how much?
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ISA & Performance

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

« CISC ISA:

» Complex instructions, I.e.,, lots of work/instr
+ - fewer instructions/program

* But, > more CPI & longer clock period

* (However, modern parch gets around this)

* RISC ISA:
» Simple instructions, I.e., less work/instr
* - more instructions/program
» But, > fewer CPI & shorter clock period
* Heavy reliance on compiler to do the right.thing




Other measures of “performance”

* Performance is not just CPU time
* Or, even elapsed time
*Eg.,?
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Other measures of “performance”

* Performance is not just CPU time
* Or, even elapsed time
e Power
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CMOS & POWER
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Compatibility

« ISA separates interface from implementation

« Thus, many different implementations possible

- IBM 360 first to do this and introduce 7 different
machines all with same ISA

- Intel from 4004 - core i7 > ?
- ARM ISA

e Protects software investment

* Important to decide what should be exposed
and what should be kept hidden.

* E.g., MIPS delay slots
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What Goes Into an ISA?

» Operands
* How many?
* What kind?
* Addressing mechanisms
* Operations
* What kind?
* How many?
* Format/Encoding
* Length(s) of bit pattern
* Which bits mean what

-23-
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Operands ¢<> Machine Model

» Three basic types of machine
» Stack
» Accumulator
- Register
* Two types of register machines
* Register-memory

-Most operands in most instructions can be either a
register or a memory address

- Load-store

-Instructions are either load/store or register-
based
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Operands Per Instruction
Depends on underlying model of machine:

e Stack
O address add

« Accumulator
1 address add A
* Register-Memory

2 address add R1, A
3 address add R1,R2, A
e Load-Store
3 address add R1, R2, R3
load R1, R2
Store R1, R2

-25-

mem[sp] < mem[sp] + mem[sp+1]

Acc & Acc + mem[A]

R1 < R1 + mem[EA(A)]
R1 < R2 + mem[EA(A)]

R1 ¢« R2 + R3
R1 < mem[R2]

mem[R1] < R2
CS 740 F'15



Examples
e Code for: A=X*Y - B*C

SP——

> O [ K X
+
(0's)

Stack

push 8(SP)
push 16(SP)
mult

push 4(sp)
push 12(sp)
mult

sub

st 20(sp)

POP _,,. CS 740 F'15




Examples

e Code for: A=X*Y - B*C

SP——

Stack

push 8(SP)
push 16(SP)
mult

push 4(sp)
push 12(sp)
mult

sub

st 20(sp)

POP ;7.

Accumulator

id 8(SP)
mult 12(SP)
st 20(SP)
iId 4(SP)
mult O(SP)
sub 20(sp)
st 16(sp)

> O [ K X
+
(0's)
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Examples

SP —— X

* Code for: A=X*Y - B*C Y +4
B +8
C +12
A +16

Stack Accumulator reg-mem

push 8(SP) Id 8(SP)

push 16(SP) mult 12(SP)

mult st 20(SP) |mult R1,8(SP),12(SP)

push 4(sp) Id 4(SP)

push 12(sp)

mult mult O(SP) |mult R2,0(SP),4(SP)

sub sub 20(sp)

st 20(sp) |st 16(sp) |[sub 16(sp).R2,R1

POP 25

CS 740 F'15




Examples

SP—— X

e Code for: A=X*Y - B*C Y +4

B | +8

C +12

A +16

Accumulator reg-mem |d/st

Id 8(SP) Id r1,8(SP)
mult 12(SP) Id r2,12(SP)
st 20(sP) |mult R1,8(SP),12(SP) 1d r3,4(SP)
Id  4(SP) Id  r4,0(SP)
mult r5,rl1,r2

mult o(sP) |mult R2,0(SP),4(SP) | mult r6,r3,r4
sub 20(sp) sub r7,r6,r5
st 16(sp) |[sub 16(sp),R2,R1 st 16(SP),r7

-29 -
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Model Trade-offs

» Stack and Accumulator:
* Each instruction encoding is short
* IC is high
* Very simple exposed architecture
* Register-Memory:
* Instruction encoding is much longer
* More work per instruction
+IC is low
* Architectural state more complex

e Load/Store:

* medium encoding length (EA longer than reg spec)
* less work per instruction

* IC is high

- Architectural state more complex €S 740 F12



Common Operand Types

e Register

e Immediate

* Memory
- direct
* register indirect
- displacement
* indexed
* indexed+displacement
» scaled+displacement
* memory indirect
- autoincrement
- autodecrement

add rl,r2 r3
add rl,r2

add r1 #7

add r1,[0x1000]

add r1,(r2)

add r1,100(r2)

add r1,(r2+r3)

add r1,100(r2+r3)

add r1,100(r2+r3*s)
add r1,([0x1000])

add rl,(r2)+

add r1,(r2)- €S 740 F15



Memory Operands

* Memory addressing modes, i.e.,

u
. H
. H

. b

ow to specify an effective address
ow many?

ow complex?

ow much memory can be addressed?

* Trade-offs?
* How useful is the addressing mode?
* What is the impact on CPI? IC? Freq?
* How many bits needed to encode in instruction?
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Frequency of Addressing Modes

o TeX | 1%
memory indirect spice 6%
2CC 1 1%

TeX 0%
SCG'ed !-IpiLT : lf!-r."f’i:
gec s
TeXx 24%

register indirect spice 3% |
J gec [N 1%

direct g 17% | ,
ecc T, 07
. TeX 32%
displacement _. 55%
gec 40%
0% 10% 20% 30% 40% 50% 60%

Frequencv of the addressing mode
Another question: How big a displacement?
-33- CS 740 F'15



How many registers?

* More registers means:
* longer instruction encoding
* Each register access is slower and/or
* More power per access

* More state is exposed
(more saves/restores per func call, context switch, ...)

* Fewer registers means:
* Harder for the compiler
» Think of registers as cache level-0
» small instructions
* more instructions

» Trend tfowards more registers. Why?

- 34 - CS 740 F'15



Operations

e Arithmetic

e Logical

* Data transfer

* Control flow

* OS support

* Parallelism support
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Control Flow

 Types:
- Jump
* Conditional Branch
* Indirect Jump
~-call
-return
* Trap
* Destination Specified
* Register
» Displacement
 Condition Codes
- set as side-effect?
- setiexplicitly? €5 740 F15



Instruction Encoding
* Length

* How long?
- Fixed or Variable?

* Format
- consistent? Specialized?

e Trade-offs:

- 37 - CS 740 F'15



Instruction Encoding
* Length

* How long?
- Fixed or Variable?

* Format
- consistent? Specialized?

« Trade-offs:
- fixed length
-simple fetch/decode/next
-not efficient use of instruction memory
* Variable length
-complex fetch/decode/next

-improved code density
- 38 - CS 740 F'15



Intel x86 Processors

 Totally dominate laptop/desktop/server market

* Evolutionary design
* Backwards compatible up until 8086, introduced in 1978
* Added more features as time goes on

« Complex instruction set computer (CISC)
* Many different instructions with many different formats
-But, only small subset encountered with Linux programs

* Hard to match performance of Reduced Instruction Set
Computers (RISC)

* But, Intel has done just that!

-In terms of speed. Less so for low power.
-39 - CS 740 F'15



Intel x86 Evolution: Milestones

Name Date Transistors MHz

» 8086 1978 29K 5-10
- First 16-bit Intel processor. Basis for IBM PC & DOS
- IMB address space

« 386 1985 275K 16-33

* First 32 bit Intel processor , referred to as TA32
* Added "flat addressing”, capable of running Unix

 Pentium 4F 2004 125M 2800-3800
- First 64-bit Intel processor, referred to as x86-64

* Core 2 2006 291IM 1060-3500
* First multi-core Intel processor

* Core i/ 2008 731M 1700-3900

* Four cores (our shark machines)
- 40 - CS 740 F'15



Intel x86 Processors, cont.

* Machine Evolution
- 386 1985
* Pentium 1993
* Pentium/MMX 1997
* PentiumPro 1995
* Pentium ITTI 1999
* Pentium 4 2001
+ Core 2 Duo 2006
« Core i/ 2008

 Added Features

0.3M Integi‘atedﬂﬂgﬁmrf E&ﬁimlleni-?aa_th DDR3:

3.1IM
45M
6.5M
8.2M
42M o)
291M I Shared L3 Cache

731m L

Core 0. Core 1 Core2 Core3 -

» Instructions to support multimedia operations
» Instructions to enable more efficient conditional operations
* Transition from 32 bits to 64 bits

« More cores

-41-
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x86 Clones: (AMD)

 Historically
* AMD has followed just behind Intel
* A little bit slower, a lot cheaper

e Then

» Recruited top circuit designers from Digital
Equipment Corp. and other downward trending
companies

* Built Opteron: tough competitor to Pentium 4
* Developed x86-64, their own extension to 64 bits

-42 - CS 740 F'15



Intel's 64-Bit

« Intel Attempted Radical Shift from IA32 to TA64

» Totally different architecture (Itanium)
* Executes IA32 code only as legacy
* Performance disappointing

 AMD Stepped in with Evolutionary Solution
+ x86-64 (now called "AMD64")

* Intel Felt Obligated to Focus on IA64
* Hard to admit mistake or that AMD is better

e 2004: Intel Announces EM64T extension to IA32

- Extended Memory 64-bit Technology
- Almost identical to x86-64!

* All but low-end x86 processors support x86-64
- But, lots of code still runs in 32-bit mode

-43 - CS 740 F'15



Assembly Programmer’s View

CPU Memory
Addresses
- >
Registers i Coda
PC < ata >
"Condition _ Data
Instructions
Codes < Stack

Programmer-Visible State

- PC: Program counter * Memory
- Address of next instruction - Byte addressable array
- Called “EIP" (TA32) or "RIP" (x86-64) - Code and user data
- Stack to support

* Register file
- Heavily used program data
- Condition codes

- Store status information about most
recent arithmetic operation

- Used for conditional branching CS 740 F'15

procedures



Turning C into Object Code

* Code in files pl.c p2.c

» Compile with command: gcc —01 pl.c p2.c -0 p
- Use basic optimizations (-01)
- Put resulting binary in file p

text

text

binary

binary

- 45 -

C program (pl1.c p2.c)

Compiler (gcc -95)

Asm program

(pl.s p2.s)

y

Object program (pl1.0 p2.0)

v

Linker (gcc or 1d)

Executable

program (p)

Assembler (gcc or as)

Static libraries

(-a)

CS 740 F'15



Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, Int y) sum:
{ pushl %ebp
Int t = xt+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax
popl %ebp
ret

Obtain with command

/usr/local/bin/gcc —01 -S code.c

Produces file code.s

-46 - CS 740 F'15



Assembly Characteristics: Data Types

* "Integer” data of 1, 2, or 4 bytes
* Data values
* Addresses (untyped pointers)

* Floating point data of 4, 8, or 10 bytes

* No aggregate types such as arrays or structures
- Just contiguously allocated bytes in memory

-47 - CS 740 F'15



Assembly Characteristics: Operations

* Perform arithmetic function on register or
memory data

* Transfer data between memory and register
* Load data from memory into register
- Store register data into memory

e Transfer control
* Unconditional jumps to/from procedures
- Conditional branches

-48 - CS 740 F'15



Object Code

Code for sum
e« Assembler

0x401040 <sum>: - Translates .s into .0

O0x55 » Binary encoding of each instruction

0x89 * Nearly-complete image of executable code
oxes * Missing linkages between code in different
Ox8b files

Ox45 » Linker

gigg - Resolves references between files

Ot - Combines with static run-time libraries
008 -E.g., code for malloc, printf

oxsd Total of 11 bytes Some libraries are dynamically linked

Each instruction
Oxc3 1, 2, or 3 bytes

Starts at address
0x401040

- Linking occurs when program begins
execution

- 49 - CS 740 F'15



Machine Instruction Example

int t = xty;

addl 8(%ebp) ,%eax

Similar to expression:
X += Yy

More precisely:

Int eax;

int *ebp;

eax += ebp[2]

0x80483ca: 03 45 08

- K0 -

e C Code

- Add two signed integers
» Assembly
- Add two 4-byte integers

- "Long" words in GCC parlance

- Same instruction whether
signed or unsigned

- Operands:
X: Register %eax
y: Memory  M[%ebp+8]
t: Register %eax
» Return function value in %eax

* Object Code

- 3-byte instruction
- Stored at address 0x80483ca

CS 740 F'15



Disassembling Object Code

Disassembled

080483c4 <sum>:
80483c4: 55 push  %ebp
80483c5: 89 e5 mov %esp,%ebp
80483c7: 8b 45 Oc mov Oxc (%ebp) ,%eax
80483ca: 03 45 08 add Ox8 (%ebp) , %eax
80483cd: b&d pop %ebp
80483ce: c3 ret

 Disassembler
objdump -d p
» Useful tool for examining object code
- Analyzes bit pattern of series of instructions
* Produces approximate rendition of assembly code
* Can be run on either a.out (complete executable) or .o file
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Alternate Disassembly
Disassembled
Dump of assembler code for function sum:

Object

0x401040:
0x55
Ox89
Oxe5
Ox8b
0x45
0Ox0c
0Ox03
0x45
0x08
Ox5d
Oxc3

0x080483c4 <sum+0>:
0x080483c5 <sum+1>:
0x080483c7 <sum+3>:
0x080483ca <sum+6>:
0x080483cd <sum+9>:
0x080483ce <sum+10>:

push
mov
mov
add
pPop
ret

%ebp

%esp ,%ebp
Oxc(%ebp) , %eax
Ox8 (%ebp) , %eax
%ebp

-52 -

« Within gdb Debugger

gdb p
disassemble sum

* Disassemble procedure

X/11xb sum

* Examine the 11 bytes starting at sum

CS 740 F'15




What Can be Disassembled?

% objdump -d WINWORD.EXE

WINWORD . EXE: file format peil-1386

No symbols 1n ""WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: ©6a ff push  $OXFFFFFFFT

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push  $0x304cdc9l

Anything that can be interpreted as executable code

Disassembler examines bytes and reconstructs assembly
sourceg _ CS 740 F'15




Integer Registers (IA32)

Origin
(mostly obsolete)

general purpose

%eax Y%ax %ah %al accumulate
%ecXx %CX %ch %cl counter
%edx %dx %dh %d | data
%ebx %bx %bh %b base
%esi %S source
%edi %d ?Ezgnaﬁon
stack
0 %s
hesp oF pointer
base
%ebp s pointer
\ )
Y

16-bit virtual registers
" o4 (backwards compatibilityfS 740 F'15



Moving Data: TA32

* Moving Data
movl Source, Dest:

* Operand Types
- Immediate: Constant integer data
- Example: $0x400, $-533
- Like C constant, but prefixed with “$”
- Encoded with 1, 2, or 4 bytes
* Register: One of 8 integer registers
- Example: %eax, %edx

%eax

%ecXx

Yedx

%ebx

%esi

Wedr

%esp

%ebp

- But %esp and %ebp reserved for special use
- Others have special uses for particular instructions

* Memory: 4 consecutive bytes of memory at address given by

register
- Simplest example: (%eax)
- Vanigus other "address modes”

CS 740 F'15




Moving Data: TA32 heax

* Moving Data hecx
mo aurce, Dest: %edx
» Operand Types hebx

-/ Immediate: Constant integer data Y%esi

- Example: $0x400, $-533 %edi

- Like C constant, but prefixed with “$”

0
-Encoded with 1, 2, or 4 bytes pesp

* Register: One of 8 integer registers %ebp

- Example: %eax, %edx
Byt %esp and %ebp reserved for special use
- Othexs have special uses for particular instructions

. Memary:nsecu’rive bytes of memory at address given by
register

- Simplest example: (%eax)
- Varigus other "address modes” S 740 F'15




movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p = -147;
0 0 — ;
movl < Reg Reg movl %eax,%edx temp2 templ;
Mem movl %eax, (%edx) *p = temp;

L Mem Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a
- single instruction o 740 P15



Simple Memory Addressing Modes
* Normal (R) Mem[Reg[R]]

* Register R specifies memory address
» Ahal Pointer dereferencing in C

movl (%ecx) ,%eax

* Displacement D(R) Mem[Reg[R]+D]
* Register R specifies start of memory region
» Constant displacement D specifies offset
- D is an arbitrary integer constrained to fit in 1-4
bytes

movl 8(%ebp) ,%edx

- 58 - CS 740 F'15



Using Simple Addressing Modes

swap:

void swap(int *xp, Int *yp) pushl %ebp . Set
{ movl %esp,%ebp

_ 0 J Up

int t0 = *xp; pushl %ebx N

int tl = *yp;

*xXp = tl; movl 8((%ebp), %edx

*yp = t0; movl 12(%ebp), %ecx > Body
+ movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx) o
Finish

popl %ebx
popl %ebp

59 - ret CS 740 F'15



Using Simple Addressing Modes

swap:
void swap(int *xp, Int *yp) pushl %ebp L Set
{ movl %esp,%ebp
~ Up
- 0
int t0 = *xp; pushl %ebx N
int tl = *yp;
*xXp = tl; movl 8(%ebp), %edx
*yp = t0; movl 12(%ebp), %ecx > Body
+ movl (%edx), %ebx
movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx) o
Finish

popl %ebx
popl %ebp

- 60 - ret CS 740 F'15



Understanding Swap

void swap(int *xp, int *yp)
{
int t0 = *xp;
int tl = *yp;
*Xp = ti;
*yp = t0;
+
Register Value moVvl
%edx Xp moVl
%ecx YP movV I
%eax tl movl
movl

-61-

o Stack
Offset : (in memory)

12 yp

8 Xp

4 | Rtn adr

O |Old %ebpjf—— %ebp

-4 |Old %ebx[—— %esp
8(%ebp), %edx # edx = xp
12(%ebp), %ecx # ecx = yp
(%edx), %ebx # ebx = *xp (t0)
(%ecx), %eax # eax = *yp (tl)
%eax, (%edx) # *xXp = tl
%ebx, (%ecx) # §§’94O:F'1g0



Understanding Swap

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x104

-62 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF H K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax

%edx

0x124

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x104

-63 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF H K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax

Y%edx

0x124

%ecx

0x120

%ebx

%esi

%edi

%esp

%ebp

0x104

- 64 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 6bH -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF OH K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 66 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
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Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

_67_

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

456

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 68 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

456

123

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0

CS 740 F'15



Complete Memory Addressing Modes

* Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
- D:  Constant "displacement” 1, 2, or 4 bytes
* Rb: Base register: Any of 8 integer registers

* Ri: Index register: Any, except for %esp
- Unlikely you'd use %ebp, either

+S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
69(Rb,Ri,S») Mem[Reg[Rb]+S*Reg[Ri]]

CS 740 F'15



Data Representations: IA32 + x86-64

 Sizes of C Objects (in Bytes)
C Data Type Generic 32-bit Intel IA32 Xx86-64

-unsigned £ 4 4
-int 4 4 4
~-long int 4 4 8
-char 1 1 1
-short 2 2 2
-float £ 4 4
-double 8 8 8
-long double 8 10/12 10/16
-char * 4 4 8

» Orany other pointer

-70- CS 740 F'15



x86-64 Integer Registers

%rax Yheax
%rbx %ebx
%rcx Y%hecx
%rdx Y%edx
%rsi Y%esi
%rdi %edi
%rsp Y%esp
%rbop %ebp

Wr8 %r8d

Wro %r9od

%rio %r10d
%ril %rild
%ril2 %ri2d
%ril3 %r13d
%rild %ril4d
%ril5s %r15d

- Extend existing registers. Add 8 new ones.

* Make %ebp/%rbp general purpose

CS 740 F'15




Instructions
» Long word 1 (4 Bytes) — Quad word g (8 Bytes)

* New instructions:
emovl = movq
addl = addq
esall = salq
- etc.

» 32-bit instructions that generate 32-bit results
» Set higher order bits of destination register to o
* Example: addl

-72- CS 740 F'15



32-bit code for swap

void swap(int *xp,
{
iInt t0 = *xp;
int tl = *yp;
*Xp = ti;
*yp = 10;
+

int *yp)

-73-

swap:
0
pushl %ebp | Set
movl %esp,%ebp
- Up
pushl %ebx N
movl 8((%ebp), %edx
movl 12(%ebp), %ecx > Body
movl (%edx), %ebx
movl (%ecx), %eax
movl %eax, (%edx)
movl  %ebx, (%ecx) o
Finish
popl %ebx
popl %ebp
ret

CS 740 F'15



64-bit code for swap

void swap(int *xp,
{
iInt t0 = *xp;
int tl = *yp;
*xXp = ti1;
*yp = 10;
+

int *yp)

swap:

movl
movl
movl
movl

} Set
Up
Chrdi), %edx )

(%rsi), %eax > Body
%eax, (%rdi)
%edx, (%rsi)

J
:>'Fhﬁsh

» Operands passed in registergtwhy useful?)
* First (xp) in %rdi, second (yp) in %rsi

- 64-bit pointers

* No stack operations required

e 32-bit data

* Data held in registers %eax and %edx

. m%/l operation

CS 740 F'15



64-bit code for long int swap

void swap(int *xp,
{
int t0 = *xp;
int tl = *yp;
*xXp = ti1;
*yp = 10;
}

int *yp)

e 64-bit data

swap_ 1I:

mov(q
movq
movq
movq

ret

:}_ Set
Up
%rdi), %rdx )

(wrsi), %rax > Body
%rax, (%rdrn) )

%rdx, (%rsi)
:>'Fhﬁsh

* Data held in registers %rax and %rdx
* movq operation

w_n

-"q" stands for quad-word

-7H -

CS 740 F'15



CISC v. RISC

* RISC: Reduced Instruction Set Computer
* Introduced Early 80's
* RISC-T (berkeley), MIPS (stanford), IBM 801
* Today: ARM

« CISC: Complex Instruction Set Computer
* What everything was before RISC
- Vax, x86, 68000
» Today: x86

* Outcome:
* RISC in academy (and in technology)
* CISC in commercial space, buft ...
. RI7566 in Embedded (and under the covers)

CS 740 F'15



Basic Comparison

« CISC
- variable length instructions: 1-321 bytes
* GP registers+special purpose registers+PC+SP+conditions
* Data: bytes to strings
* memory-memory instructions
- special instructions: e.qg., crc, polyf, ...

« RISC

- fixed length instructions: 4 bytes
* GP registers + PC
* load/store with few addressing modes

-77 - CS 740 F'15



ADD—Add

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
04 ib ADD AL, imm& | Valid Valid Add imm8& to AL.
05 iw ADD AX, imm16 | Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 | Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 | Valid N.E. Add imm3¢2 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8&, imm& M Valid Valid Add imm8& to r/m8.
REX + 80 /0 ib ADD r/m§& , imm8 M Walid MN.E. Add sign-extended imm8& to r/mG4.
81/0 iw ADD r/m16, imm16 M Valid Valid Add imm16 to /m16.
81 /0 id ADD r/m3Z, imm32 M Valid Valid Add imm3¢& to /m32.
REX.W +81 /0 id ADD r/m64, imm32 M Valid N.E. Add imm32 sign-extended to 64-bits to
r/mb4.
83 /0 ib ADD r/m16, imm#& Ml Walid Valid Add sign-extended imm& to r/m16.
83/0ib ADD r/fm32, imm8& Mi Valid Valid Add sign-extended imm8& to r/m32.
REX.W +B3 /0 ib ADD r/fmb&4, imm8& Mi Valid N.E. Add sign-extended imm8& to r/mb4.
00 /r ADD r/m8&, r8 MR  Valid Valid Add r8to /m8.
REX + 00 /r ADD r/m&, 8 MR  Valid N.E. Add r8to /m8.
01 /r ADD r/m16, r16 MR  Valid Valid Add r16to r/m16.
01 /r ADD r/m32, r32 MR  Valid Valid Add r32 to r/m32.
REXW + 01 /r ADD r/mb&4, ro4 MR  Valid N.E. Add rb4 to r/m&4.
02 fr ADD r§, r/m8 EM  Valid Valid Add /mBto 8.
REX + 02 /r ADD 8, #m8 RM  Valid N.E. Add /mBto 8.
03/r ADD r16, /m16 RM  Valid Valid Add /m16 to rie6.
03 /r ADD r32, r/m32 RM  \alid Valid Add r/m32 to r32.
REXW +03 /r ADD r64, r/mb4 RM  Valid N.E. Add r/mb4 to rb4.
NOTES:

*In 64-bit mode, r/mB can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.




Technology Trends

* Pre-1980

* lots of hand written assembly
» Compiler technology in its RISC Goals:
- multi-chip implementation:- enable single-chip CPU
* memory speed and CPU sp.- Rely on compiler
* Early 80's - Aim for high frequency &
- VLST makes single chip pri~ low CPT
(But only if very simple)
» Compiler technology improving

e Late 90's

* CPU speed vastly faster than memory speed

* More transistors makes pops possible
-79 - CS 740 F'15



MIPS v. VAX

Performance Ratio

Ratio of

MIPS
fo

VAX

2% more instr
1.0 6x lower CPI
2-4% higher perf

G_E_ ................................................................................................................................................

——— o
ﬂ-fé@#a;“;é;a&a
K & F @‘fb & &0

-- H&P, Appendix J, from Bhandarkar and Clark, 1991
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The RISC Design Tenets

» Single-cycle execution
- CISC: many multicycle operations

* Hardwired (simple) control

* CISC: microcode for multi-cycle operations
« Load/store architecture

* CISC: register-memory and memory-memory
* Few memory addressing modes

- CISC: many modes
* Fixed-length instruction format

* CISC: many formats and lengths

* Reliance on compiler optimizations
» CISC: hand assemble to get good performance

* Many registers (compilers can use them effectively)
- CISC: few registers CS 740 F'15



RISC vs CISC Performance Argument

, instructions cycles seconds
CPU Time =

X = — X
program instruction cycle

« CISC (Complex Instruction Set Computing)
* Reduce "instructions/program” with "complex” instructions
-But tends to increase "cycles/instruction” or clock period
* Easy for assembly-level programmers, good code density

e RISC (Reduced Instruction Set Computing)
* Improve "cycles/instruction” with many 1-cycle instructions
* Increases “instruction/program”, but hopefully not as much
-Help from smart compiler
* Perhaps improve clock cycle time (seconds/cycle)

-via aggressive implementation allowed by simgler' insn
- 82= CS 740 F'15




The Debate
* RISC argument

» CISC is fundamentally handicapped

* For a given technology, RISC implementation will be faster
-Current technology enables single-chip RISC
-When it enables single-chip CISC, RISC will be pipelined
-When it enables pipelined CISC, RISC will have caches
-When it enables CISC with caches, RISC will have ...

o CISC rebutta
- CISC flaws not fundamental, can be fixed with more Ts
* Moore's Law will narrow the RISC/CISC gap (true)
-Good pipeline: RISC = 100K transistors, CISC = 300K
-By 1995: 2M+ transistors had evened playing field
* Software costs dominate, compatibility is Pgramount




Intel's x86 Trick: RISC Inside

o F1>993: Intel wanted "out-of-order execution” in Pentium
ro

* Hard to do with a coarse grain ISA like x86
* Solution? Translate x86 to RISC micro-ops (nops) in
hardwr
push $eax - store $eax, -4($esp)
addi $esp,besp,-4
+Processor maintains x86 ISA externally for compatibility
+ But executes RISC puISA internally for implementability
» Given translator, x86 almost as easy to implement as RISC
-Intel implemented “out-of-order” before any RISC company
-"000" also helps x86 more (because ISA limits compiler)
» Also used by other x86 implementations (AMD)
Different pops for different designs
- Not part of the ISA specification

-84 - 84740 F15



Potential Micro-op Scheme

* Most instructions are a single micro-op

- Add, xor, compare, branch, etc.

* Loads example: mov -4(%rax), %ebx

- Stores example: mov %ebx, -4(%rax)
« Each memory access adds a micro-op

- “addl -4(%rax), %ebx" is two micro-ops (load, add)

- “addl %ebx, -4(%rax)" is three micro-ops (load, add, store)
 Function call (CALL) - 4 uops

* Get program counter, store program counter to stack,
adjust stack pointer, unconditional jump to function start

« Return from function (RET) - 3 uops
- Adjust stack pointer, load return address from stack, jump register

 Again, just a basic idea, micro-ops are specific to each chip

- 85 - 85740 F15



More About Micro-ops

« Two forms of pops "cracking”
* Hard-coded logic: fast, but complex (for insn in few pops)

* Table: slow, but "off to the side”, doesn't complicate rest
of machine

-Handles the really complicated instructions
« X86 code is becoming more "RISC-like"

* In 32-bit to 64-bit transition, x86 made two key changes:
-2x number of registers, better function conventions
-More registers, fewer pushes/pops

* Result? Fewer complicated instructions
-Smaller number of pops per x86 insn

- 86 - CS 740 F'15



Winner for Desktop PCs: CISC

» x86 was first mainstream 16-bit microprocessor by ~2 years
+ IBM put it into its PCs...
- Rest is historical inertia, Moore's law, and "financial feedback"
- x86 is most difficult ISA to implement and do it fast but...
- Because Intel sells the most non-embedded processors...
- It hires more and better engineers...
- Which help it maintain competitive performance ...
- And given competitive performance, compatibility wins...
- So Intel sells the most non-embedded processors...
- AMD as a competitor keeps pressure on x86 performance

* Moore's Law has helped Intel in a big way
* Most engineering problems can be solved with more transistors

-87 - CS 740 F'15



Winner for Embedded: RISC

« ARM (Acorn RISC Machine — Advanced RISC Machine)
* First ARM chip in mid-1980s (from Acorn Computer Ltd).
» 3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)
* Low-power and embedded devices (phones, for example)
- Significance of embedded? ISA Compatibility less powerful force

» 32-bit RISC ISA

* 16 registers, PC is one of them
- Rich addressing modes, e.g., auto increment
- Condition codes, each instruction can be conditional

* ARM does not sell chips; it licenses its ISA & core designs

* ARM chips from many vendors

* Qualcomm, Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

- 88 - CS 740 F'15



Redux: Are ISAs Important?

* Does "quality” of ISA actually matter?
* Not for performance (mostly)
- Mostly comes as a design complexity issue
- Insn/program: everything is compiled, compilers are good
- Cycles/insn and seconds/cycle: nISA, many other tricks
* What about power efficiency? Maybe

- ARMs are most power efficient today...
» ..but Intel is moving x86 that way (e.g, Intel's Atom)

- Open question: can x86 be as power efficient as ARM?

* Does "nastiness” of ISA matter?
* Mostly no, only compiler writers and hardware designers see it

« Even compatibility is not what it used to be

- Software emulation, cloud services
- Open question: will "ARM compatibility” be the next x86?
-89 - CS 740 F'15
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