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Instruction Set Architecture 
• The ISA defines the functional contract 

between the software and the hardware 

Algorithm 

Gates/Register-Transfer Level (RTL) 

Application 

Instruction Set Architecture (ISA) 
Operating System/Virtual Machine 

Microarchitecture 

Devices 

Programming Language 

Circuits 

Physics 
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Abstraction & Your Program 
High-level language 

• Level of abstraction closer to 
problem domain 

• Provides for productivity and 
portability  

Assembly language 
• Textual representation of 
instructions (ISA) 

Hardware representation 
• Binary representation of 
instructions (ISA) 

Microarchitecture 
↓ 
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Instruction Set Architecture 
• The ISA defines the functional contract 

between the software and the hardware 
• The ISA is an abstraction that hides details of 

the implementation from the software 
• It is a functional abstraction of the processor 

• What operations can be preformed 
• How to name storage locations 
• The format (bit pattern) of the instructions 

• It does NOT define 
• Timing of the operations 
• Power used by operations 
• How operations/storage are implemented 
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ISA Goals 
• Ease of Programming 
• Ease of Implementation 
• Good Performance 
• Compatibility 
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Ease of Programming 
• The ISA should make it easy to express 

programs and make it easy to create efficient 
programs. 

• Who is creating the programs? 
• Early Days: Humans.  Why? 
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Ease of Programming 
• The ISA should make it easy to express 

programs and make it easy to create efficient 
programs. 

• Who is creating the programs? 
• Early Days: Humans.  
–No real compilers 
–Resources very limited 
–What does that mean for the ISA designer? 
Probably want high-level operations 
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Ease of Programming 
• The ISA should make it easy to express 

programs and make it easy to create efficient 
programs. 

• Who is creating the programs? 
• Early Days: Humans.  
• Modern days (~1980 and beyond): Compilers 
–Today’s optimizing compiler do a much better job 
than most humans could possibly do 

–Leads to change in type of instructions towards 
more fine-grained low-level instructions 
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Ease of Implementation 
• ISA shouldn’t get in the way of 

optimizing implementation 
• Examples: 

• Variable length instructions 
• Varying instruction formats 
• Implied registers 
• Complex addressing modes 
• Precise interrupts 
• Appearance of atomic execution 

Fetch 
Decode 
Read Inputs 
Execute 
Write Output 
Next Insn 
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ISA & Performance 
• First, lets define performance 



CS 740 F’15 – 11 – 

Performance 
• Response time: 

• AKA latency 
• How long does a task take? 

• Throughput: 
• AKA bandwidth 
• How much work can you do per unit time? 
 

 

“Never underestimate the bandwidth of a 
station wagon full of tapes hurtling down 
the highway.” 

Tanenbaum, Computer Networks 

xkcd 
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Performance 
• Response time: 

• AKA latency 
• How long does a task take? 

• Throughput: 
• AKA bandwidth 
• How much work can you do per unit time? 

• Lets examine response time 
• Elapsed time 
Total time from start to finish including everything 

• CPU time 
Only time spent on CPU 
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CPU Time 

• CPU Clock Cycles 
• Number of clock cycles to execute program 
• Two components:  
–# of instructions &  
–cycles per instruction 

• Clock Cycle Time 
• 1/Clock Frequency 
 

CPU Time =  𝑪𝑪𝑪 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄 × 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄 𝒕𝒕𝒕𝒕 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =  
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CPU Time 

• Instr/program = instruction count (IC) 
• Determined by program, compiler, & ISA 
• This is the dynamic count of instructions executed 

• Cycles/instr = cycles per instruction (CPI) 
• Determined by program, compiler, ISA, & µarch 

• Seconds/cycle = clock period = 1/freq 
• Determined by µarch & technology 
 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =  
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CPI 

• Different instruction classes take different 
numbers of cycles 

• (In fact, even the same instruction can take a 
different number of cycles, E.g.?) 

• When we say CPI, we really mean  
   Weighted CPI 

CPI = 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒄

 =  ∑ 𝑪𝑪𝑪𝒄𝒄𝒄 ×  𝑰𝑰𝒄𝒄𝒄
𝑰𝑰

𝒏
𝒄𝒍𝒍=𝟏  
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CPU Time 

• Improve performance by 
• Reducing instruction count 
• Reducing cycles taken by each instruction 
• Reducing clock period 

• There is a tension between these 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =  
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CPI Example 
• Computer A: Cycle Time = 250ps, CPI = 2.0 
• Computer B: Cycle Time = 500ps, CPI = 1.2 
• Same ISA 
• Which is faster, and by how much? 

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
×
×

=

×=××=

××=

×=××=

××=

A is faster… 

…by this much 
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ISA & Performance 

• CISC ISA: 
• Complex instructions, I.e.,, lots of work/instr 
•  → fewer instructions/program 
• But, → more CPI & longer clock period 
• (However, modern µarch gets around this)  

• RISC ISA: 
• Simple instructions, I.e., less work/instr 
•  → more instructions/program 
• But, → fewer CPI & shorter clock period 
• Heavy reliance on compiler to do the right thing 
 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =  
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Other measures of “performance” 
• Performance is not just CPU time 
• Or, even elapsed time 
• E.g., ? 
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Other measures of “performance” 
• Performance is not just CPU time 
• Or, even elapsed time 
• Power 
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CMOS & POWER 

In CMOS IC technology 

FrequencyVoltageload CapacitivePower 2 ××=

×1000 ×30 5V → 1V 
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Compatibility 
• ISA separates interface from implementation 
• Thus, many different implementations possible 

• IBM 360 first to do this and introduce 7 different 
machines all with same ISA 

• Intel from 4004 → core i7 → ?  
• ARM ISA 

• Protects software investment 
 

• Important to decide what should be exposed 
and what should be kept hidden. 
• E.g., MIPS delay slots 
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What Goes Into an ISA? 
• Operands 

• How many? 
• What kind? 
• Addressing mechanisms 

• Operations 
• What kind? 
• How many? 

• Format/Encoding 
• Length(s) of bit pattern 
• Which bits mean what 
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Operands ↔ Machine Model 
• Three basic types of machine 

• Stack 
• Accumulator 
• Register 

• Two types of register machines 
• Register-memory 
–Most operands in most instructions can be either a 
register or a memory address 

• Load-store 
–Instructions are either load/store or register-
based 
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Depends on underlying model of machine: 
• Stack 

 
• Accumulator 

 
• Register-Memory 

 
 

• Load-Store 

1 address add A Acc ← Acc + mem[A] 

Operands Per Instruction 

0 address add mem[sp] ← mem[sp] + mem[sp+1] 

2 address add R1, A R1 ← R1 + mem[EA(A)] 
3 address add R1, R2, A R1 ← R2 + mem[EA(A)] 

3 address add R1, R2, R3 R1 ← R2 + R3 
load R1, R2 R1 ← mem[R2] 
Store R1, R2 mem[R1] ← R2 
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Examples 
• Code for: A=X*Y – B*C 

X 
Y 
B 
C 
A 

SP 
+ 4 
+ 8 
+12 
+16 

Stack 
push 8(SP) 
push 16(SP) 
mult 
push 4(sp) 
push 12(sp) 
mult 
sub 
st 20(sp) 
pop 
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• Code for: A=X*Y – B*C 

Accumulator 
ld 8(SP) 
mult 12(SP) 
st 20(SP) 
ld 4(SP) 
 
mult 0(SP) 
sub 20(sp) 
st 16(sp) 

Examples 
X 
Y 
B 
C 
A 

SP 
+ 4 
+ 8 
+12 
+16 

Stack 
push 8(SP) 
push 16(SP) 
mult 
push 4(sp) 
push 12(sp) 
mult 
sub 
st 20(sp) 
pop 
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• Code for: A=X*Y – B*C 

reg-mem 
 
 
mult R1,8(SP),12(SP) 
 
 
mult R2,0(SP),4(SP) 
 
sub 16(sp),R2,R1 

Examples 
X 
Y 
B 
C 
A 

SP 
+ 4 
+ 8 
+12 
+16 

Accumulator 
ld 8(SP) 
mult 12(SP) 
st 20(SP) 
ld 4(SP) 
 
mult 0(SP) 
sub 20(sp) 
st 16(sp) 

Stack 
push 8(SP) 
push 16(SP) 
mult 
push 4(sp) 
push 12(sp) 
mult 
sub 
st 20(sp) 
pop 
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• Code for: A=X*Y – B*C 

Examples 
X 
Y 
B 
C 
A 

SP 
+ 4 
+ 8 
+12 
+16 

reg-mem 
 
 
mult R1,8(SP),12(SP) 
 
 
mult R2,0(SP),4(SP) 
 
sub 16(sp),R2,R1 

Accumulator 
ld 8(SP) 
mult 12(SP) 
st 20(SP) 
ld 4(SP) 
 
mult 0(SP) 
sub 20(sp) 
st 16(sp) 

ld/st 
ld r1,8(SP) 
ld r2,12(SP) 
ld r3,4(SP) 
ld r4,0(SP) 
mult r5,r1,r2 
mult r6,r3,r4 
sub r7,r6,r5 
st 16(SP),r7 



CS 740 F’15 – 30 – 

Model Trade-offs 
• Stack and Accumulator: 

• Each instruction encoding is short 
• IC is high 
• Very simple exposed architecture 

• Register-Memory: 
• Instruction encoding is much longer  
• More work per instruction 
• IC is low 
• Architectural state more complex 

• Load/Store: 
• medium encoding length (EA longer than reg spec) 
• less work per instruction 
• IC is high 
• Architectural state more complex 
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Common Operand Types 
• Register add r1,r2,r3 

 add r1,r2 
• Immediate add r1,#7 
• Memory 

• direct add r1,[0x1000] 
• register indirect add r1,(r2) 
• displacement add r1,100(r2) 
• indexed add r1,(r2+r3) 
• indexed+displacement add r1,100(r2+r3) 
• scaled+displacement add r1,100(r2+r3*s) 
• memory indirect add r1,([0x1000]) 
• autoincrement add r1,(r2)+ 
• autodecrement add r1,(r2)- 
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Memory Operands 
• Memory addressing modes, i.e., 

How to specify an effective address 
• How many? 
• How complex? 
• How much memory can be addressed? 
• Trade-offs? 

• How useful is the addressing mode? 
• What is the impact on CPI? IC? Freq? 
• How many bits needed to encode in instruction? 
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Frequency of Addressing Modes 

memory indirect 

scaled 

register indirect 

direct 

displacement 

Another question: How big a displacement? 
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How many registers? 
• More registers means: 

• longer instruction encoding 
• Each register access is slower and/or 
• More power per access 
• More state is exposed  
(more saves/restores per func call, context switch, …) 

• Fewer registers means: 
• Harder for the compiler 
• Think of registers as cache level-0 
• small instructions 
• more instructions 

• Trend towards more registers.  Why? 
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Operations 
• Arithmetic 
• Logical 
• Data transfer 
• Control flow 
• OS support 
• Parallelism support 
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Control Flow 
• Types: 

• Jump 
• Conditional Branch 
• Indirect Jump  
–call 
–return 

• Trap 
• Destination Specified 

• Register 
• Displacement 

• Condition Codes 
• set as side-effect? 
• set explicitly? 
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Instruction Encoding 
• Length 

• How long? 
• Fixed or Variable? 

• Format 
• consistent? Specialized? 

• Trade-offs: 
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Instruction Encoding 
• Length 

• How long? 
• Fixed or Variable? 

• Format 
• consistent? Specialized? 

• Trade-offs: 
• fixed length 
–simple fetch/decode/next 
–not efficient use of instruction memory 

• Variable length 
–complex fetch/decode/next 
–improved code density 
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Intel x86 Processors 
• Totally dominate laptop/desktop/server market 

 

• Evolutionary design 
• Backwards compatible up until 8086, introduced in 1978 
• Added more features as time goes on 
 

• Complex instruction set computer (CISC) 
• Many different instructions with many different formats 
–But, only small subset encountered with Linux programs 

• Hard to match performance of Reduced Instruction Set 
Computers (RISC) 

• But, Intel has done just that! 
–In terms of speed.  Less so for low power. 
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Intel x86 Evolution: Milestones 
 Name Date Transistors MHz 
• 8086 1978 29K 5-10 

• First 16-bit Intel processor.  Basis for IBM PC & DOS 
• 1MB address space 

• 386 1985 275K 16-33 
• First 32 bit Intel processor , referred to as IA32 
• Added “flat addressing”, capable of running Unix 

• Pentium 4F 2004 125M 2800-3800 
• First 64-bit Intel processor, referred to as x86-64 

• Core 2 2006 291M 1060-3500 
• First multi-core Intel processor 

• Core i7 2008 731M 1700-3900 
• Four cores (our shark machines) 
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Intel x86 Processors, cont. 
• Machine Evolution 

• 386 1985 0.3M  
• Pentium 1993 3.1M 
• Pentium/MMX 1997 4.5M 
• PentiumPro 1995 6.5M 
• Pentium III 1999 8.2M 
• Pentium 4 2001 42M 
• Core 2 Duo 2006 291M 
• Core i7 2008 731M 

• Added Features 
• Instructions to support multimedia operations 
• Instructions to enable more efficient conditional operations 
• Transition from 32 bits to 64 bits 
• More cores 
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x86 Clones: (AMD) 

• Historically 
• AMD has followed just behind Intel 
• A little bit slower, a lot cheaper 

• Then 
• Recruited top circuit designers from Digital 
Equipment Corp. and other downward trending 
companies 

• Built Opteron: tough competitor to Pentium 4 
• Developed x86-64, their own extension to 64 bits 
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Intel’s 64-Bit 
• Intel Attempted Radical Shift from IA32 to IA64 

• Totally different architecture (Itanium) 
• Executes IA32 code only as legacy 
• Performance disappointing 

• AMD Stepped in with Evolutionary Solution 
• x86-64 (now called “AMD64”) 

• Intel Felt Obligated to Focus on IA64 
• Hard to admit mistake or that AMD is better 

• 2004: Intel Announces EM64T extension to IA32 
• Extended Memory 64-bit Technology 
• Almost identical to x86-64! 

• All but low-end x86 processors support x86-64 
• But, lots of code still runs in 32-bit mode 
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CPU 

Assembly Programmer’s View 

Programmer-Visible State 
• PC: Program counter 

– Address of next instruction 
– Called “EIP” (IA32) or “RIP” (x86-64) 

• Register file 
– Heavily used program data 

• Condition codes 
– Store status information about most 

recent arithmetic operation 
– Used for conditional branching 

PC 
Registers 

Memory 

Code 
Data 
Stack 

Addresses 

Data 

Instructions 
Condition 

Codes 

• Memory 
– Byte addressable array 
– Code and user data 
– Stack to support 

procedures 
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text 

text 

binary 

binary 

Compiler (gcc -S) 

Assembler (gcc or as) 

Linker (gcc or ld) 

C program (p1.c p2.c) 

Asm program (p1.s p2.s) 

Object program (p1.o p2.o) 

Executable program (p) 

Static libraries 
(.a) 

Turning C into Object Code 
• Code in files  p1.c p2.c 
• Compile with command:  gcc –O1 p1.c p2.c -o p 

– Use basic optimizations (-O1) 
– Put resulting binary in file p 
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Compiling Into Assembly 
C Code 
 int sum(int x, int y) 
{ 

  int t = x+y; 

  return t; 

} 

Generated IA32 Assembly 
 sum: 
   pushl %ebp 

   movl %esp,%ebp 

   movl 12(%ebp),%eax 

   addl 8(%ebp),%eax 

   popl %ebp 

   ret 

Obtain with command 

/usr/local/bin/gcc –O1 -S code.c 

Produces file code.s 
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Assembly Characteristics: Data Types 
• “Integer” data of 1, 2, or 4 bytes 

• Data values 
• Addresses (untyped pointers) 
 

• Floating point data of 4, 8, or 10 bytes 
 

• No aggregate types such as arrays or structures 
• Just contiguously allocated bytes in memory 
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Assembly Characteristics: Operations 
• Perform arithmetic function on register or 

memory data 
 

• Transfer data between memory and register 
• Load data from memory into register 
• Store register data into memory 
 

• Transfer control 
• Unconditional jumps to/from procedures 
• Conditional branches 
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Code for sum 
 0x401040 <sum>:      
   0x55 

   0x89 

   0xe5 

   0x8b 

   0x45 

   0x0c 

   0x03 

   0x45 

   0x08 

   0x5d 

   0xc3 

Object Code 
• Assembler 

• Translates .s into .o 
• Binary encoding of each instruction 
• Nearly-complete image of executable code 
• Missing linkages between code in different 

files 
• Linker 

• Resolves references between files 
• Combines with static run-time libraries 

– E.g., code for malloc, printf 
• Some libraries are dynamically linked 

– Linking occurs when program begins 
execution 

• Total of 11 bytes 
• Each instruction 

1, 2, or 3 bytes 
• Starts at address 
0x401040 
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Machine Instruction Example 
• C Code 

• Add two signed integers 
• Assembly 

• Add two 4-byte integers 
– “Long” words in GCC parlance 
– Same instruction whether 

signed or unsigned 
• Operands: 

x: Register %eax 
y: Memory M[%ebp+8] 
t: Register %eax 

»Return function value in %eax 

• Object Code 
• 3-byte instruction 
• Stored at address 0x80483ca 

int t = x+y; 

addl 8(%ebp),%eax 

0x80483ca:  03 45 08 

Similar to expression:   

x += y 

More precisely: 
int eax; 

int *ebp; 

eax += ebp[2] 
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Disassembled 
 

Disassembling Object Code 

• Disassembler 
objdump -d p 
• Useful tool for examining object code 
• Analyzes bit pattern of series of instructions 
• Produces approximate rendition of assembly code 
• Can be run on either a.out (complete executable) or .o file 

080483c4 <sum>: 
 80483c4:  55        push   %ebp 
 80483c5:  89 e5     mov    %esp,%ebp 
 80483c7:  8b 45 0c  mov    0xc(%ebp),%eax 
 80483ca:  03 45 08  add    0x8(%ebp),%eax 
 80483cd:  5d        pop    %ebp 
 80483ce:  c3        ret  
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Disassembled 
 Dump of assembler code for function sum: 

0x080483c4 <sum+0>:     push   %ebp 
0x080483c5 <sum+1>:     mov    %esp,%ebp 
0x080483c7 <sum+3>:     mov    0xc(%ebp),%eax 
0x080483ca <sum+6>:     add    0x8(%ebp),%eax 
0x080483cd <sum+9>:     pop    %ebp 
0x080483ce <sum+10>:    ret 

Alternate Disassembly 

• Within gdb Debugger 
gdb p 
disassemble sum 
• Disassemble procedure 
x/11xb sum 
• Examine the 11 bytes starting at sum 
 

Object 
 0x401040:  
   0x55 

   0x89 

   0xe5 

   0x8b 

   0x45 

   0x0c 

   0x03 

   0x45 

   0x08 

   0x5d 

   0xc3 
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What Can be Disassembled? 

• Anything that can be interpreted as executable code 
• Disassembler examines bytes and reconstructs assembly 

source 

% objdump -d WINWORD.EXE 

 

WINWORD.EXE:   file format pei-i386 

 

No symbols in "WINWORD.EXE". 

Disassembly of section .text: 

 

30001000 <.text>: 

30001000:  55             push   %ebp 

30001001:  8b ec          mov    %esp,%ebp 

30001003:  6a ff          push   $0xffffffff 

30001005:  68 90 10 00 30 push   $0x30001090 

3000100a:  68 91 dc 4c 30 push   $0x304cdc91 
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Integer Registers (IA32) 

%eax 

%ecx 

%edx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

%ax 

%cx 

%dx 

%bx 

%si 

%di 

%sp 

%bp 

%ah 

%ch 

%dh 

%bh 

%al 

%cl 

%dl 

%bl 

16-bit virtual registers 
(backwards compatibility) 

ge
ne

ra
l p

ur
po

se
 

accumulate 

counter 

data 

base 

source  
index 

destination 
index 

stack  
pointer 
base 
pointer 

Origin 
(mostly obsolete) 
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Moving Data: IA32 
• Moving Data 
movl Source, Dest: 

• Operand Types 
• Immediate:  Constant integer data 

– Example: $0x400, $-533 
– Like C constant, but prefixed with ‘$’ 
– Encoded with 1, 2, or 4 bytes 

• Register:  One of 8 integer registers 
– Example: %eax, %edx 
– But %esp and %ebp reserved for special use 
– Others have special uses for particular instructions 

• Memory:  4 consecutive bytes of memory at address given by 
register 
– Simplest example: (%eax) 
– Various other “address modes” 

%eax 

%ecx 

%edx 

%ebx 

%esi 

%edi 

%esp 

%ebp 
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Moving Data: IA32 
• Moving Data 
movl Source, Dest: 

• Operand Types 
• Immediate:  Constant integer data 

– Example: $0x400, $-533 
– Like C constant, but prefixed with ‘$’ 
– Encoded with 1, 2, or 4 bytes 

• Register:  One of 8 integer registers 
– Example: %eax, %edx 
– But %esp and %ebp reserved for special use 
– Others have special uses for particular instructions 

• Memory:  4 consecutive bytes of memory at address given by 
register 
– Simplest example: (%eax) 
– Various other “address modes” 

%eax 

%ecx 

%edx 

%ebx 

%esi 

%edi 

%esp 

%ebp 
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movl Operand Combinations 

Cannot do memory-memory transfer with a 
single instruction 

movl 

Imm 

Reg 

Mem 

Reg 
Mem 

Reg 
Mem 

Reg 

Source Dest C Analog 

movl $0x4,%eax temp = 0x4; 

movl $-147,(%eax) *p = -147; 

movl %eax,%edx temp2 = temp1; 

movl %eax,(%edx) *p = temp; 

movl (%eax),%edx temp = *p; 

Src,Dest 
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Simple Memory Addressing Modes 
• Normal (R) Mem[Reg[R]] 

• Register R specifies memory address 
• Aha! Pointer dereferencing in C 
 

 movl (%ecx),%eax 
 

• Displacement D(R) Mem[Reg[R]+D] 
• Register R specifies start of memory region 
• Constant displacement D specifies offset 

– D is an arbitrary integer constrained to fit in 1-4 
bytes 
 

 movl 8(%ebp),%edx 
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Using Simple Addressing Modes 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 

Body 

Set 
Up 

Finish 

swap: 

  pushl %ebp 

  movl  %esp,%ebp 

  pushl %ebx 

 
  movl  8(%ebp), %edx 
  movl  12(%ebp), %ecx 
  movl  (%edx), %ebx 
  movl  (%ecx), %eax 
  movl  %eax, (%edx) 
  movl  %ebx, (%ecx) 
 
  popl  %ebx 
  popl  %ebp 
  ret 



CS 740 F’15 – 60 – 

Using Simple Addressing Modes 
swap: 

 pushl %ebp 

 movl  %esp,%ebp 

 pushl %ebx 

  
 movl 8(%ebp), %edx 
 movl 12(%ebp), %ecx 
 movl (%edx), %ebx 
 movl (%ecx), %eax 
 movl %eax, (%edx) 
 movl %ebx, (%ecx) 

 
 popl %ebx 
 popl %ebp 
 ret 

Body 

Set 
Up 

Finish 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 
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Understanding Swap 

Stack 
(in memory) 

Register Value 
%edx xp 
%ecx yp 
%ebx t0 
%eax t1 

yp 

xp 

Rtn adr 

Old %ebp %ebp  0  

 4  

 8  

12  

Offset 

• 
• 
• 

Old %ebx -4  %esp 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 
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Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

123 

456 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 0x104 
 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

123 

456 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

0x124 

0x104 

0x120 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 



CS 740 F’15 – 64 – 

Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

123 

456 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

0x120 

0x104 

0x124 

0x124 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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456 

Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

123 

456 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

0x124 

0x120 

123 

0x104 
 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

123 

456 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

456 

0x124 

0x120 

0x104 

123 

123 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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456 

456 

Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

456 456 

0x124 

0x120 

123 

0x104 

123 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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Understanding Swap 

0x120 

0x124 

Rtn adr 

%ebp  0  

 4  

 8  

12  

Offset 

-4  

456 

123 

Address 
0x124  

0x120  

0x11c  

0x118  

0x114  

0x110  

0x10c 

0x108  

0x104  

0x100  

yp 

xp 

%eax 

%edx 

%ecx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

456 

0x124 

0x120 

0x104 

123 123 

 movl 8(%ebp), %edx # edx = xp 
 movl 12(%ebp), %ecx # ecx = yp 
 movl (%edx), %ebx # ebx = *xp (t0) 
 movl (%ecx), %eax # eax = *yp (t1) 
 movl %eax, (%edx) # *xp = t1 
 movl %ebx, (%ecx) # *yp = t0 
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Complete Memory Addressing Modes 
• Most General Form 
  D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D] 

• D:  Constant “displacement” 1, 2, or 4 bytes 
• Rb:  Base register: Any of 8 integer registers 
• Ri: Index register: Any, except for %esp 

– Unlikely you’d use %ebp, either 
• S:  Scale: 1, 2, 4, or 8 (why these numbers?) 

 
• Special Cases 
  (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] 
  D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] 
  (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]] 
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• Sizes of C Objects (in Bytes) 
           C Data Type Generic 32-bit Intel IA32 x86-64 

–unsigned 4 4 4 
–int 4 4 4 
–long int 4 4 8 
–char 1 1 1 
–short 2 2 2 
–float 4 4 4 
–double 8 8 8 
–long double 8                   10/12  10/16 
–char * 4 4 8 

» Or any other pointer 

Data Representations: IA32 + x86-64 
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%rsp 

x86-64 Integer Registers 

• Extend existing registers.  Add 8 new ones. 
• Make %ebp/%rbp general purpose 

%eax 

%ebx 

%ecx 

%edx 

%esi 

%edi 

%esp 

%ebp 

%r8d 

%r9d 

%r10d 

%r11d 

%r12d 

%r13d 

%r14d 

%r15d 

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 

%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rbp 
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Instructions 
• Long word l (4 Bytes) ↔ Quad word q (8 Bytes) 

 

• New instructions: 
•movl ➙ movq 
•addl ➙ addq 
•sall ➙ salq 
• etc. 

 

• 32-bit instructions that generate 32-bit results 
• Set higher order bits of destination register to 0 

• Example: addl 
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32-bit code for swap 

Body 

Set 
Up 

Finish 

swap: 

 pushl %ebp 

 movl  %esp,%ebp 

 pushl %ebx 

 
 movl 8(%ebp), %edx 
 movl 12(%ebp), %ecx 
 movl (%edx), %ebx 
 movl (%ecx), %eax 
 movl %eax, (%edx) 
 movl %ebx, (%ecx) 
 
 popl %ebx 
 popl %ebp 
 ret 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 
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64-bit code for swap 

• Operands passed in registers (why useful?) 
• First (xp) in %rdi, second (yp) in %rsi 
• 64-bit pointers 

• No stack operations required 
• 32-bit data 

• Data held in registers %eax and %edx 
•  movl operation 

 

Body 

Set 
Up 

Finish 

swap: 
  
 
 movl (%rdi), %edx 
 movl (%rsi), %eax 
 movl %eax, (%rdi) 
 movl %edx, (%rsi) 
  
 ret 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 
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64-bit code for long int swap 

• 64-bit data 
• Data held in registers %rax and %rdx 
•  movq operation 

–“q” stands for quad-word 

Body 

Set 
Up 

Finish 

swap_l: 
  
 
 movq    (%rdi), %rdx 
 movq    (%rsi), %rax 
 movq    %rax, (%rdi) 
 movq    %rdx, (%rsi) 
 
 ret 

void swap(int *xp, int *yp)  

{ 

  int t0 = *xp; 

  int t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 
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CISC v. RISC 
• RISC: Reduced Instruction Set Computer 

• Introduced Early 80’s 
• RISC-I (berkeley), MIPS (stanford), IBM 801 
• Today: ARM 

• CISC: Complex Instruction Set Computer 
• What everything was before RISC 
• Vax, x86, 68000 
• Today: x86 

• Outcome: 
• RISC in academy (and in technology) 
• CISC in commercial space, but … 
• RISC in Embedded (and under the covers) 
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Basic Comparison 
• CISC 

• variable length instructions: 1-321 bytes 
• GP registers+special purpose registers+PC+SP+conditions 
• Data: bytes to strings 
• memory-memory instructions 
• special instructions: e.g., crc, polyf, … 

• RISC 
• fixed length instructions: 4 bytes 
• GP registers + PC 
• load/store with few addressing modes 
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Technology Trends 
• Pre-1980 

• lots of hand written assembly 
• Compiler technology in its infancy 
• multi-chip implementations 
• memory speed and CPU speed similar 

• Early 80’s 
• VLSI makes single chip processor possible 
(But only if very simple) 

• Compiler technology improving 
• Late 90’s 

• CPU speed vastly faster than memory speed 
• More transistors makes µops possible 

RISC Goals: 
- enable single-chip CPU 
- Rely on compiler 
- Aim for high frequency & 
- low CPI 
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MIPS v. VAX 
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The RISC Design Tenets 
• Single-cycle execution 

• CISC: many multicycle operations 
• Hardwired (simple) control 

• CISC: microcode for multi-cycle operations 
• Load/store architecture 

• CISC: register-memory and memory-memory 
• Few memory addressing modes 

• CISC: many modes 
• Fixed-length instruction format 

• CISC: many formats and lengths 
• Reliance on compiler optimizations 

• CISC: hand assemble to get good performance 
• Many registers (compilers can use them effectively) 

• CISC: few registers 
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RISC vs CISC Performance Argument 

• CISC (Complex Instruction Set Computing) 
• Reduce “instructions/program” with “complex” instructions 
–But tends to increase “cycles/instruction” or clock period 

• Easy for assembly-level programmers, good code density 
• RISC (Reduced Instruction Set Computing) 

• Improve “cycles/instruction” with many 1-cycle instructions 
• Increases “instruction/program”, but hopefully not as much 
–Help from smart compiler 

• Perhaps improve clock cycle time (seconds/cycle)  
–via aggressive implementation allowed by simpler insn 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =  
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The Debate 
• RISC argument 

• CISC is fundamentally handicapped 
• For a given technology, RISC implementation will be faster 
–Current technology enables single-chip RISC 
–When it enables single-chip CISC, RISC will be pipelined 
–When it enables pipelined CISC, RISC will have caches 
–When it enables CISC with caches, RISC will have ... 

• CISC rebuttal  
• CISC flaws not fundamental, can be fixed with more Ts 
• Moore’s Law will narrow the RISC/CISC gap (true) 
–Good pipeline: RISC = 100K transistors, CISC = 300K 
–By 1995: 2M+ transistors had evened playing field 

• Software costs dominate, compatibility is paramount 
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Intel’s x86 Trick: RISC Inside 
• 1993: Intel wanted “out-of-order execution” in Pentium 

Pro 
• Hard to do with a coarse grain ISA like x86 

• Solution? Translate x86 to RISC micro-ops (µops) in 
hardwr 
push $eax → store $eax, -4($esp)  
  addi $esp,$esp,-4 

+ Processor maintains x86 ISA externally for compatibility 
+ But executes RISC µISA internally for implementability 
• Given translator, x86 almost as easy to implement as RISC 

–Intel implemented “out-of-order” before any RISC company 
– “OoO” also helps x86 more (because ISA limits compiler) 

• Also used by other x86 implementations (AMD) 
• Different µops for different designs 

– Not part of the ISA specification 
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Potential Micro-op Scheme 
• Most instructions are a single micro-op 

• Add, xor, compare, branch, etc. 
• Loads   example:    mov -4(%rax), %ebx 
• Stores   example:   mov %ebx, -4(%rax) 

• Each memory access adds a micro-op 
• “addl -4(%rax), %ebx” is two micro-ops (load, add) 
• “addl %ebx, -4(%rax)” is three micro-ops (load, add, store) 

• Function call (CALL) – 4 uops 
• Get program counter, store program counter to stack,  

adjust stack pointer, unconditional jump to function start  
• Return from function (RET) – 3 uops  

• Adjust stack pointer, load return address from stack, jump register 
• Again, just a basic idea, micro-ops are specific to each chip 

 
 

 
 

85 
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More About Micro-ops 
• Two forms of µops “cracking” 

• Hard-coded logic: fast, but complex (for insn in few µops)  
• Table: slow, but “off to the side”, doesn’t complicate rest 
of machine 
–Handles the really complicated instructions 

• x86 code is becoming more “RISC-like” 
• In 32-bit to 64-bit transition, x86 made two key changes: 
–2x number of registers, better function conventions 
–More registers, fewer pushes/pops 

• Result?  Fewer complicated instructions 
–Smaller number of µops per x86 insn 
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Winner for Desktop PCs: CISC 
• x86 was first mainstream 16-bit microprocessor by ~2 years 

• IBM put it into its PCs… 
• Rest is historical inertia, Moore’s law, and “financial feedback” 

– x86 is most difficult ISA to implement and do it fast but… 
– Because Intel sells the most non-embedded processors… 
– It hires more and better engineers… 
– Which help it maintain competitive performance … 
– And given competitive performance, compatibility wins… 
– So Intel sells the most non-embedded processors… 

• AMD as a competitor keeps pressure on x86 performance 
 

• Moore’s Law has helped Intel in a big way 
• Most engineering problems can be solved with more transistors 
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Winner for Embedded: RISC 
• ARM (Acorn RISC Machine → Advanced RISC Machine) 

• First ARM chip in mid-1980s (from Acorn Computer Ltd). 
• 3 billion units sold in 2009 (>60% of all 32/64-bit CPUs) 
• Low-power and embedded devices (phones, for example) 

– Significance of embedded? ISA Compatibility less powerful force 
• 32-bit RISC ISA 

• 16 registers, PC is one of them 
• Rich addressing modes, e.g., auto increment 
• Condition codes, each instruction can be conditional 

• ARM does not sell chips; it licenses its ISA & core designs 
• ARM chips from many vendors 

• Qualcomm, Freescale (was Motorola), Texas Instruments, 
STMicroelectronics, Samsung, Sharp, Philips, etc. 
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Redux: Are ISAs Important? 
• Does “quality” of ISA actually matter? 

• Not for performance (mostly) 
– Mostly comes as a design complexity issue 
– Insn/program: everything is compiled, compilers are good  
– Cycles/insn and seconds/cycle: µISA, many other tricks 

• What about power efficiency?  Maybe 
– ARMs are most power efficient today… 

» …but Intel is moving x86 that way (e.g, Intel’s Atom) 
– Open question: can x86 be as power efficient as ARM?  

• Does “nastiness” of ISA matter? 
• Mostly no, only compiler writers and hardware designers see it 

• Even compatibility is not what it used to be 
• Software emulation, cloud services 
• Open question: will “ARM compatibility” be the next x86? 
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