
Instruction Set Architecture
September 16, 2015

• Topics
• ISA
• x86
• RISC & CISC

CS740

CS 740 F’15 – 2 –

Instruction Set Architecture
• The ISA defines the functional contract

between the software and the hardware

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)
Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

CS 740 F’15 – 3 –

Abstraction & Your Program
High-level language

• Level of abstraction closer to
problem domain

• Provides for productivity and
portability

Assembly language
• Textual representation of
instructions (ISA)

Hardware representation
• Binary representation of
instructions (ISA)

Microarchitecture
↓

CS 740 F’15 – 4 –

Instruction Set Architecture
• The ISA defines the functional contract

between the software and the hardware
• The ISA is an abstraction that hides details of

the implementation from the software
• It is a functional abstraction of the processor

• What operations can be preformed
• How to name storage locations
• The format (bit pattern) of the instructions

• It does NOT define
• Timing of the operations
• Power used by operations
• How operations/storage are implemented

CS 740 F’15 – 5 –

ISA Goals
• Ease of Programming
• Ease of Implementation
• Good Performance
• Compatibility

CS 740 F’15 – 6 –

Ease of Programming
• The ISA should make it easy to express

programs and make it easy to create efficient
programs.

• Who is creating the programs?
• Early Days: Humans. Why?

CS 740 F’15 – 7 –

Ease of Programming
• The ISA should make it easy to express

programs and make it easy to create efficient
programs.

• Who is creating the programs?
• Early Days: Humans.
–No real compilers
–Resources very limited
–What does that mean for the ISA designer?
Probably want high-level operations

CS 740 F’15 – 8 –

Ease of Programming
• The ISA should make it easy to express

programs and make it easy to create efficient
programs.

• Who is creating the programs?
• Early Days: Humans.
• Modern days (~1980 and beyond): Compilers
–Today’s optimizing compiler do a much better job
than most humans could possibly do

–Leads to change in type of instructions towards
more fine-grained low-level instructions

CS 740 F’15 – 9 –

Ease of Implementation
• ISA shouldn’t get in the way of

optimizing implementation
• Examples:

• Variable length instructions
• Varying instruction formats
• Implied registers
• Complex addressing modes
• Precise interrupts
• Appearance of atomic execution

Fetch
Decode
Read Inputs
Execute
Write Output
Next Insn

CS 740 F’15 – 10 –

ISA & Performance
• First, lets define performance

CS 740 F’15 – 11 –

Performance
• Response time:

• AKA latency
• How long does a task take?

• Throughput:
• AKA bandwidth
• How much work can you do per unit time?

“Never underestimate the bandwidth of a
station wagon full of tapes hurtling down
the highway.”

Tanenbaum, Computer Networks

xkcd

CS 740 F’15 – 12 –

Performance
• Response time:

• AKA latency
• How long does a task take?

• Throughput:
• AKA bandwidth
• How much work can you do per unit time?

• Lets examine response time
• Elapsed time
Total time from start to finish including everything

• CPU time
Only time spent on CPU

CS 740 F’15 – 13 –

CPU Time

• CPU Clock Cycles
• Number of clock cycles to execute program
• Two components:
–# of instructions &
–cycles per instruction

• Clock Cycle Time
• 1/Clock Frequency

CPU Time = 𝑪𝑪𝑪 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄 × 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄 𝒕𝒕𝒕𝒕

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =

CS 740 F’15 – 14 –

CPU Time

• Instr/program = instruction count (IC)
• Determined by program, compiler, & ISA
• This is the dynamic count of instructions executed

• Cycles/instr = cycles per instruction (CPI)
• Determined by program, compiler, ISA, & µarch

• Seconds/cycle = clock period = 1/freq
• Determined by µarch & technology

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =

CS 740 F’15 – 15 –

CPI

• Different instruction classes take different
numbers of cycles

• (In fact, even the same instruction can take a
different number of cycles, E.g.?)

• When we say CPI, we really mean
 Weighted CPI

CPI = 𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒄

 = ∑ 𝑪𝑪𝑪𝒄𝒄𝒄 × 𝑰𝑰𝒄𝒄𝒄
𝑰𝑰

𝒏
𝒄𝒍𝒍=𝟏

CS 740 F’15 – 16 –

CPU Time

• Improve performance by
• Reducing instruction count
• Reducing cycles taken by each instruction
• Reducing clock period

• There is a tension between these

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =

CS 740 F’15 – 17 –

CPI Example
• Computer A: Cycle Time = 250ps, CPI = 2.0
• Computer B: Cycle Time = 500ps, CPI = 1.2
• Same ISA
• Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
×
×

=

×=××=

××=

×=××=

××=

A is faster…

…by this much

CS 740 F’15 – 18 –

ISA & Performance

• CISC ISA:
• Complex instructions, I.e.,, lots of work/instr
• → fewer instructions/program
• But, → more CPI & longer clock period
• (However, modern µarch gets around this)

• RISC ISA:
• Simple instructions, I.e., less work/instr
• → more instructions/program
• But, → fewer CPI & shorter clock period
• Heavy reliance on compiler to do the right thing

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =

CS 740 F’15 – 19 –

Other measures of “performance”
• Performance is not just CPU time
• Or, even elapsed time
• E.g., ?

CS 740 F’15 – 20 –

Other measures of “performance”
• Performance is not just CPU time
• Or, even elapsed time
• Power

CS 740 F’15 – 21 –

CMOS & POWER

In CMOS IC technology

FrequencyVoltageload CapacitivePower 2 ××=

×1000 ×30 5V → 1V

CS 740 F’15 – 22 –

Compatibility
• ISA separates interface from implementation
• Thus, many different implementations possible

• IBM 360 first to do this and introduce 7 different
machines all with same ISA

• Intel from 4004 → core i7 → ?
• ARM ISA

• Protects software investment

• Important to decide what should be exposed
and what should be kept hidden.
• E.g., MIPS delay slots

CS 740 F’15 – 23 –

What Goes Into an ISA?
• Operands

• How many?
• What kind?
• Addressing mechanisms

• Operations
• What kind?
• How many?

• Format/Encoding
• Length(s) of bit pattern
• Which bits mean what

CS 740 F’15 – 24 –

Operands ↔ Machine Model
• Three basic types of machine

• Stack
• Accumulator
• Register

• Two types of register machines
• Register-memory
–Most operands in most instructions can be either a
register or a memory address

• Load-store
–Instructions are either load/store or register-
based

CS 740 F’15 – 25 –

Depends on underlying model of machine:
• Stack

• Accumulator

• Register-Memory

• Load-Store

1 address add A Acc ← Acc + mem[A]

Operands Per Instruction

0 address add mem[sp] ← mem[sp] + mem[sp+1]

2 address add R1, A R1 ← R1 + mem[EA(A)]
3 address add R1, R2, A R1 ← R2 + mem[EA(A)]

3 address add R1, R2, R3 R1 ← R2 + R3
load R1, R2 R1 ← mem[R2]
Store R1, R2 mem[R1] ← R2

CS 740 F’15 – 26 –

Examples
• Code for: A=X*Y – B*C

X
Y
B
C
A

SP
+ 4
+ 8
+12
+16

Stack
push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

CS 740 F’15 – 27 –

• Code for: A=X*Y – B*C

Accumulator
ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)

Examples
X
Y
B
C
A

SP
+ 4
+ 8
+12
+16

Stack
push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

CS 740 F’15 – 28 –

• Code for: A=X*Y – B*C

reg-mem

mult R1,8(SP),12(SP)

mult R2,0(SP),4(SP)

sub 16(sp),R2,R1

Examples
X
Y
B
C
A

SP
+ 4
+ 8
+12
+16

Accumulator
ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)

Stack
push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

CS 740 F’15 – 29 –

• Code for: A=X*Y – B*C

Examples
X
Y
B
C
A

SP
+ 4
+ 8
+12
+16

reg-mem

mult R1,8(SP),12(SP)

mult R2,0(SP),4(SP)

sub 16(sp),R2,R1

Accumulator
ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)

ld/st
ld r1,8(SP)
ld r2,12(SP)
ld r3,4(SP)
ld r4,0(SP)
mult r5,r1,r2
mult r6,r3,r4
sub r7,r6,r5
st 16(SP),r7

CS 740 F’15 – 30 –

Model Trade-offs
• Stack and Accumulator:

• Each instruction encoding is short
• IC is high
• Very simple exposed architecture

• Register-Memory:
• Instruction encoding is much longer
• More work per instruction
• IC is low
• Architectural state more complex

• Load/Store:
• medium encoding length (EA longer than reg spec)
• less work per instruction
• IC is high
• Architectural state more complex

CS 740 F’15 – 31 –

Common Operand Types
• Register add r1,r2,r3

 add r1,r2
• Immediate add r1,#7
• Memory

• direct add r1,[0x1000]
• register indirect add r1,(r2)
• displacement add r1,100(r2)
• indexed add r1,(r2+r3)
• indexed+displacement add r1,100(r2+r3)
• scaled+displacement add r1,100(r2+r3*s)
• memory indirect add r1,([0x1000])
• autoincrement add r1,(r2)+
• autodecrement add r1,(r2)-

CS 740 F’15 – 32 –

Memory Operands
• Memory addressing modes, i.e.,

How to specify an effective address
• How many?
• How complex?
• How much memory can be addressed?
• Trade-offs?

• How useful is the addressing mode?
• What is the impact on CPI? IC? Freq?
• How many bits needed to encode in instruction?

CS 740 F’15 – 33 –

Frequency of Addressing Modes

memory indirect

scaled

register indirect

direct

displacement

Another question: How big a displacement?

CS 740 F’15 – 34 –

How many registers?
• More registers means:

• longer instruction encoding
• Each register access is slower and/or
• More power per access
• More state is exposed
(more saves/restores per func call, context switch, …)

• Fewer registers means:
• Harder for the compiler
• Think of registers as cache level-0
• small instructions
• more instructions

• Trend towards more registers. Why?

CS 740 F’15 – 35 –

Operations
• Arithmetic
• Logical
• Data transfer
• Control flow
• OS support
• Parallelism support

CS 740 F’15 – 36 –

Control Flow
• Types:

• Jump
• Conditional Branch
• Indirect Jump
–call
–return

• Trap
• Destination Specified

• Register
• Displacement

• Condition Codes
• set as side-effect?
• set explicitly?

CS 740 F’15 – 37 –

Instruction Encoding
• Length

• How long?
• Fixed or Variable?

• Format
• consistent? Specialized?

• Trade-offs:

CS 740 F’15 – 38 –

Instruction Encoding
• Length

• How long?
• Fixed or Variable?

• Format
• consistent? Specialized?

• Trade-offs:
• fixed length
–simple fetch/decode/next
–not efficient use of instruction memory

• Variable length
–complex fetch/decode/next
–improved code density

CS 740 F’15 – 39 –

Intel x86 Processors
• Totally dominate laptop/desktop/server market

• Evolutionary design
• Backwards compatible up until 8086, introduced in 1978
• Added more features as time goes on

• Complex instruction set computer (CISC)
• Many different instructions with many different formats
–But, only small subset encountered with Linux programs

• Hard to match performance of Reduced Instruction Set
Computers (RISC)

• But, Intel has done just that!
–In terms of speed. Less so for low power.

CS 740 F’15 – 40 –

Intel x86 Evolution: Milestones
 Name Date Transistors MHz
• 8086 1978 29K 5-10

• First 16-bit Intel processor. Basis for IBM PC & DOS
• 1MB address space

• 386 1985 275K 16-33
• First 32 bit Intel processor , referred to as IA32
• Added “flat addressing”, capable of running Unix

• Pentium 4F 2004 125M 2800-3800
• First 64-bit Intel processor, referred to as x86-64

• Core 2 2006 291M 1060-3500
• First multi-core Intel processor

• Core i7 2008 731M 1700-3900
• Four cores (our shark machines)

CS 740 F’15 – 41 –

Intel x86 Processors, cont.
• Machine Evolution

• 386 1985 0.3M
• Pentium 1993 3.1M
• Pentium/MMX 1997 4.5M
• PentiumPro 1995 6.5M
• Pentium III 1999 8.2M
• Pentium 4 2001 42M
• Core 2 Duo 2006 291M
• Core i7 2008 731M

• Added Features
• Instructions to support multimedia operations
• Instructions to enable more efficient conditional operations
• Transition from 32 bits to 64 bits
• More cores

CS 740 F’15 – 42 –

x86 Clones: (AMD)

• Historically
• AMD has followed just behind Intel
• A little bit slower, a lot cheaper

• Then
• Recruited top circuit designers from Digital
Equipment Corp. and other downward trending
companies

• Built Opteron: tough competitor to Pentium 4
• Developed x86-64, their own extension to 64 bits

CS 740 F’15 – 43 –

Intel’s 64-Bit
• Intel Attempted Radical Shift from IA32 to IA64

• Totally different architecture (Itanium)
• Executes IA32 code only as legacy
• Performance disappointing

• AMD Stepped in with Evolutionary Solution
• x86-64 (now called “AMD64”)

• Intel Felt Obligated to Focus on IA64
• Hard to admit mistake or that AMD is better

• 2004: Intel Announces EM64T extension to IA32
• Extended Memory 64-bit Technology
• Almost identical to x86-64!

• All but low-end x86 processors support x86-64
• But, lots of code still runs in 32-bit mode

CS 740 F’15 – 44 –

CPU

Assembly Programmer’s View

Programmer-Visible State
• PC: Program counter

– Address of next instruction
– Called “EIP” (IA32) or “RIP” (x86-64)

• Register file
– Heavily used program data

• Condition codes
– Store status information about most

recent arithmetic operation
– Used for conditional branching

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

Instructions
Condition

Codes

• Memory
– Byte addressable array
– Code and user data
– Stack to support

procedures

CS 740 F’15 – 45 –

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
• Code in files p1.c p2.c
• Compile with command: gcc –O1 p1.c p2.c -o p

– Use basic optimizations (-O1)
– Put resulting binary in file p

CS 740 F’15 – 46 –

Compiling Into Assembly
C Code
 int sum(int x, int y)
{

 int t = x+y;

 return t;

}

Generated IA32 Assembly
 sum:
 pushl %ebp

 movl %esp,%ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 popl %ebp

 ret

Obtain with command

/usr/local/bin/gcc –O1 -S code.c

Produces file code.s

CS 740 F’15 – 47 –

Assembly Characteristics: Data Types
• “Integer” data of 1, 2, or 4 bytes

• Data values
• Addresses (untyped pointers)

• Floating point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
• Just contiguously allocated bytes in memory

CS 740 F’15 – 48 –

Assembly Characteristics: Operations
• Perform arithmetic function on register or

memory data

• Transfer data between memory and register
• Load data from memory into register
• Store register data into memory

• Transfer control
• Unconditional jumps to/from procedures
• Conditional branches

CS 740 F’15 – 49 –

Code for sum
 0x401040 <sum>:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x5d

 0xc3

Object Code
• Assembler

• Translates .s into .o
• Binary encoding of each instruction
• Nearly-complete image of executable code
• Missing linkages between code in different

files
• Linker

• Resolves references between files
• Combines with static run-time libraries

– E.g., code for malloc, printf
• Some libraries are dynamically linked

– Linking occurs when program begins
execution

• Total of 11 bytes
• Each instruction

1, 2, or 3 bytes
• Starts at address
0x401040

CS 740 F’15 – 50 –

Machine Instruction Example
• C Code

• Add two signed integers
• Assembly

• Add two 4-byte integers
– “Long” words in GCC parlance
– Same instruction whether

signed or unsigned
• Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

»Return function value in %eax

• Object Code
• 3-byte instruction
• Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca: 03 45 08

Similar to expression:

x += y

More precisely:
int eax;

int *ebp;

eax += ebp[2]

CS 740 F’15 – 51 –

Disassembled

Disassembling Object Code

• Disassembler
objdump -d p
• Useful tool for examining object code
• Analyzes bit pattern of series of instructions
• Produces approximate rendition of assembly code
• Can be run on either a.out (complete executable) or .o file

080483c4 <sum>:
 80483c4: 55 push %ebp
 80483c5: 89 e5 mov %esp,%ebp
 80483c7: 8b 45 0c mov 0xc(%ebp),%eax
 80483ca: 03 45 08 add 0x8(%ebp),%eax
 80483cd: 5d pop %ebp
 80483ce: c3 ret

CS 740 F’15 – 52 –

Disassembled
 Dump of assembler code for function sum:

0x080483c4 <sum+0>: push %ebp
0x080483c5 <sum+1>: mov %esp,%ebp
0x080483c7 <sum+3>: mov 0xc(%ebp),%eax
0x080483ca <sum+6>: add 0x8(%ebp),%eax
0x080483cd <sum+9>: pop %ebp
0x080483ce <sum+10>: ret

Alternate Disassembly

• Within gdb Debugger
gdb p
disassemble sum
• Disassemble procedure
x/11xb sum
• Examine the 11 bytes starting at sum

Object
 0x401040:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x5d

 0xc3

CS 740 F’15 – 53 –

What Can be Disassembled?

• Anything that can be interpreted as executable code
• Disassembler examines bytes and reconstructs assembly

source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

CS 740 F’15 – 54 –

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

CS 740 F’15 – 55 –

Moving Data: IA32
• Moving Data
movl Source, Dest:

• Operand Types
• Immediate: Constant integer data

– Example: $0x400, $-533
– Like C constant, but prefixed with ‘$’
– Encoded with 1, 2, or 4 bytes

• Register: One of 8 integer registers
– Example: %eax, %edx
– But %esp and %ebp reserved for special use
– Others have special uses for particular instructions

• Memory: 4 consecutive bytes of memory at address given by
register
– Simplest example: (%eax)
– Various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

CS 740 F’15 – 56 –

Moving Data: IA32
• Moving Data
movl Source, Dest:

• Operand Types
• Immediate: Constant integer data

– Example: $0x400, $-533
– Like C constant, but prefixed with ‘$’
– Encoded with 1, 2, or 4 bytes

• Register: One of 8 integer registers
– Example: %eax, %edx
– But %esp and %ebp reserved for special use
– Others have special uses for particular instructions

• Memory: 4 consecutive bytes of memory at address given by
register
– Simplest example: (%eax)
– Various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

CS 740 F’15 – 57 –

movl Operand Combinations

Cannot do memory-memory transfer with a
single instruction

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src,Dest

CS 740 F’15 – 58 –

Simple Memory Addressing Modes
• Normal (R) Mem[Reg[R]]

• Register R specifies memory address
• Aha! Pointer dereferencing in C

 movl (%ecx),%eax

• Displacement D(R) Mem[Reg[R]+D]
• Register R specifies start of memory region
• Constant displacement D specifies offset

– D is an arbitrary integer constrained to fit in 1-4
bytes

 movl 8(%ebp),%edx

CS 740 F’15 – 59 –

Using Simple Addressing Modes

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

Body

Set
Up

Finish

swap:

 pushl %ebp

 movl %esp,%ebp

 pushl %ebx

 movl 8(%ebp), %edx
 movl 12(%ebp), %ecx
 movl (%edx), %ebx
 movl (%ecx), %eax
 movl %eax, (%edx)
 movl %ebx, (%ecx)

 popl %ebx
 popl %ebp
 ret

CS 740 F’15 – 60 –

Using Simple Addressing Modes
swap:

 pushl %ebp

 movl %esp,%ebp

 pushl %ebx

 movl 8(%ebp), %edx
 movl 12(%ebp), %ecx
 movl (%edx), %ebx
 movl (%ecx), %eax
 movl %eax, (%edx)
 movl %ebx, (%ecx)

 popl %ebx
 popl %ebp
 ret

Body

Set
Up

Finish

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

CS 740 F’15 – 61 –

Understanding Swap

Stack
(in memory)

Register Value
%edx xp
%ecx yp
%ebx t0
%eax t1

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

•
•
•

Old %ebx -4 %esp

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

CS 740 F’15 – 62 –

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 63 –

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104

0x120

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 64 –

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

0x124

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 65 –

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

123

0x104
 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 66 –

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123

123

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 67 –

456

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456 456

0x124

0x120

123

0x104

123

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 68 –

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

456

123

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123 123

 movl 8(%ebp), %edx # edx = xp
 movl 12(%ebp), %ecx # ecx = yp
 movl (%edx), %ebx # ebx = *xp (t0)
 movl (%ecx), %eax # eax = *yp (t1)
 movl %eax, (%edx) # *xp = t1
 movl %ebx, (%ecx) # *yp = t0

CS 740 F’15 – 69 –

Complete Memory Addressing Modes
• Most General Form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

• D: Constant “displacement” 1, 2, or 4 bytes
• Rb: Base register: Any of 8 integer registers
• Ri: Index register: Any, except for %esp

– Unlikely you’d use %ebp, either
• S: Scale: 1, 2, 4, or 8 (why these numbers?)

• Special Cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

CS 740 F’15 – 70 –

• Sizes of C Objects (in Bytes)
 C Data Type Generic 32-bit Intel IA32 x86-64

–unsigned 4 4 4
–int 4 4 4
–long int 4 4 8
–char 1 1 1
–short 2 2 2
–float 4 4 4
–double 8 8 8
–long double 8 10/12 10/16
–char * 4 4 8

» Or any other pointer

Data Representations: IA32 + x86-64

CS 740 F’15 – 71 –

%rsp

x86-64 Integer Registers

• Extend existing registers. Add 8 new ones.
• Make %ebp/%rbp general purpose

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

CS 740 F’15 – 72 –

Instructions
• Long word l (4 Bytes) ↔ Quad word q (8 Bytes)

• New instructions:
•movl ➙ movq
•addl ➙ addq
•sall ➙ salq
• etc.

• 32-bit instructions that generate 32-bit results
• Set higher order bits of destination register to 0

• Example: addl

CS 740 F’15 – 73 –

32-bit code for swap

Body

Set
Up

Finish

swap:

 pushl %ebp

 movl %esp,%ebp

 pushl %ebx

 movl 8(%ebp), %edx
 movl 12(%ebp), %ecx
 movl (%edx), %ebx
 movl (%ecx), %eax
 movl %eax, (%edx)
 movl %ebx, (%ecx)

 popl %ebx
 popl %ebp
 ret

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

CS 740 F’15 – 74 –

64-bit code for swap

• Operands passed in registers (why useful?)
• First (xp) in %rdi, second (yp) in %rsi
• 64-bit pointers

• No stack operations required
• 32-bit data

• Data held in registers %eax and %edx
• movl operation

Body

Set
Up

Finish

swap:

 movl (%rdi), %edx
 movl (%rsi), %eax
 movl %eax, (%rdi)
 movl %edx, (%rsi)

 ret

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

CS 740 F’15 – 75 –

64-bit code for long int swap

• 64-bit data
• Data held in registers %rax and %rdx
• movq operation

–“q” stands for quad-word

Body

Set
Up

Finish

swap_l:

 movq (%rdi), %rdx
 movq (%rsi), %rax
 movq %rax, (%rdi)
 movq %rdx, (%rsi)

 ret

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

CS 740 F’15 – 76 –

CISC v. RISC
• RISC: Reduced Instruction Set Computer

• Introduced Early 80’s
• RISC-I (berkeley), MIPS (stanford), IBM 801
• Today: ARM

• CISC: Complex Instruction Set Computer
• What everything was before RISC
• Vax, x86, 68000
• Today: x86

• Outcome:
• RISC in academy (and in technology)
• CISC in commercial space, but …
• RISC in Embedded (and under the covers)

CS 740 F’15 – 77 –

Basic Comparison
• CISC

• variable length instructions: 1-321 bytes
• GP registers+special purpose registers+PC+SP+conditions
• Data: bytes to strings
• memory-memory instructions
• special instructions: e.g., crc, polyf, …

• RISC
• fixed length instructions: 4 bytes
• GP registers + PC
• load/store with few addressing modes

CS 740 F’15 – 78 –

CS 740 F’15 – 79 –

Technology Trends
• Pre-1980

• lots of hand written assembly
• Compiler technology in its infancy
• multi-chip implementations
• memory speed and CPU speed similar

• Early 80’s
• VLSI makes single chip processor possible
(But only if very simple)

• Compiler technology improving
• Late 90’s

• CPU speed vastly faster than memory speed
• More transistors makes µops possible

RISC Goals:
- enable single-chip CPU
- Rely on compiler
- Aim for high frequency &
- low CPI

CS 740 F’15 – 80 –

MIPS v. VAX

CS 740 F’15 – 81 –

The RISC Design Tenets
• Single-cycle execution

• CISC: many multicycle operations
• Hardwired (simple) control

• CISC: microcode for multi-cycle operations
• Load/store architecture

• CISC: register-memory and memory-memory
• Few memory addressing modes

• CISC: many modes
• Fixed-length instruction format

• CISC: many formats and lengths
• Reliance on compiler optimizations

• CISC: hand assemble to get good performance
• Many registers (compilers can use them effectively)

• CISC: few registers

CS 740 F’15 – 82 –

RISC vs CISC Performance Argument

• CISC (Complex Instruction Set Computing)
• Reduce “instructions/program” with “complex” instructions
–But tends to increase “cycles/instruction” or clock period

• Easy for assembly-level programmers, good code density
• RISC (Reduced Instruction Set Computing)

• Improve “cycles/instruction” with many 1-cycle instructions
• Increases “instruction/program”, but hopefully not as much
–Help from smart compiler

• Perhaps improve clock cycle time (seconds/cycle)
–via aggressive implementation allowed by simpler insn

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒑𝒑𝒑𝒑𝒑𝒑𝒑

×
𝒄𝒄𝒄𝒄𝒄𝒄

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
×
𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒄𝒄𝒄𝒄𝒄

 CPU Time =

CS 740 F’15 – 83 – 83

The Debate
• RISC argument

• CISC is fundamentally handicapped
• For a given technology, RISC implementation will be faster
–Current technology enables single-chip RISC
–When it enables single-chip CISC, RISC will be pipelined
–When it enables pipelined CISC, RISC will have caches
–When it enables CISC with caches, RISC will have ...

• CISC rebuttal
• CISC flaws not fundamental, can be fixed with more Ts
• Moore’s Law will narrow the RISC/CISC gap (true)
–Good pipeline: RISC = 100K transistors, CISC = 300K
–By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is paramount

CS 740 F’15 – 84 – 84

Intel’s x86 Trick: RISC Inside
• 1993: Intel wanted “out-of-order execution” in Pentium

Pro
• Hard to do with a coarse grain ISA like x86

• Solution? Translate x86 to RISC micro-ops (µops) in
hardwr
push $eax → store $eax, -4($esp)
 addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility
+ But executes RISC µISA internally for implementability
• Given translator, x86 almost as easy to implement as RISC

–Intel implemented “out-of-order” before any RISC company
– “OoO” also helps x86 more (because ISA limits compiler)

• Also used by other x86 implementations (AMD)
• Different µops for different designs

– Not part of the ISA specification

CS 740 F’15 – 85 –

Potential Micro-op Scheme
• Most instructions are a single micro-op

• Add, xor, compare, branch, etc.
• Loads example: mov -4(%rax), %ebx
• Stores example: mov %ebx, -4(%rax)

• Each memory access adds a micro-op
• “addl -4(%rax), %ebx” is two micro-ops (load, add)
• “addl %ebx, -4(%rax)” is three micro-ops (load, add, store)

• Function call (CALL) – 4 uops
• Get program counter, store program counter to stack,

adjust stack pointer, unconditional jump to function start
• Return from function (RET) – 3 uops

• Adjust stack pointer, load return address from stack, jump register
• Again, just a basic idea, micro-ops are specific to each chip

85

CS 740 F’15 – 86 –

More About Micro-ops
• Two forms of µops “cracking”

• Hard-coded logic: fast, but complex (for insn in few µops)
• Table: slow, but “off to the side”, doesn’t complicate rest
of machine
–Handles the really complicated instructions

• x86 code is becoming more “RISC-like”
• In 32-bit to 64-bit transition, x86 made two key changes:
–2x number of registers, better function conventions
–More registers, fewer pushes/pops

• Result? Fewer complicated instructions
–Smaller number of µops per x86 insn

CS 740 F’15 – 87 –

Winner for Desktop PCs: CISC
• x86 was first mainstream 16-bit microprocessor by ~2 years

• IBM put it into its PCs…
• Rest is historical inertia, Moore’s law, and “financial feedback”

– x86 is most difficult ISA to implement and do it fast but…
– Because Intel sells the most non-embedded processors…
– It hires more and better engineers…
– Which help it maintain competitive performance …
– And given competitive performance, compatibility wins…
– So Intel sells the most non-embedded processors…

• AMD as a competitor keeps pressure on x86 performance

• Moore’s Law has helped Intel in a big way
• Most engineering problems can be solved with more transistors

CS 740 F’15 – 88 –

Winner for Embedded: RISC
• ARM (Acorn RISC Machine → Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).
• 3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)
• Low-power and embedded devices (phones, for example)

– Significance of embedded? ISA Compatibility less powerful force
• 32-bit RISC ISA

• 16 registers, PC is one of them
• Rich addressing modes, e.g., auto increment
• Condition codes, each instruction can be conditional

• ARM does not sell chips; it licenses its ISA & core designs
• ARM chips from many vendors

• Qualcomm, Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

CS 740 F’15 – 89 –

Redux: Are ISAs Important?
• Does “quality” of ISA actually matter?

• Not for performance (mostly)
– Mostly comes as a design complexity issue
– Insn/program: everything is compiled, compilers are good
– Cycles/insn and seconds/cycle: µISA, many other tricks

• What about power efficiency? Maybe
– ARMs are most power efficient today…

» …but Intel is moving x86 that way (e.g, Intel’s Atom)
– Open question: can x86 be as power efficient as ARM?

• Does “nastiness” of ISA matter?
• Mostly no, only compiler writers and hardware designers see it

• Even compatibility is not what it used to be
• Software emulation, cloud services
• Open question: will “ARM compatibility” be the next x86?

	Instruction Set Architecture�September 16, 2015
	Instruction Set Architecture
	Abstraction & Your Program
	Instruction Set Architecture
	ISA Goals
	Ease of Programming
	Ease of Programming
	Ease of Programming
	Ease of Implementation
	ISA & Performance
	Performance
	Performance
	CPU Time
	CPU Time
	CPI
	CPU Time
	CPI Example
	ISA & Performance
	Other measures of “performance”
	Other measures of “performance”
	CMOS & POWER
	Compatibility
	What Goes Into an ISA?
	Operands ↔ Machine Model
	Operands Per Instruction
	Examples
	Examples
	Examples
	Examples
	Model Trade-offs
	Common Operand Types
	Memory Operands
	Frequency of Addressing Modes
	How many registers?
	Operations
	Control Flow
	Instruction Encoding
	Instruction Encoding
	Intel x86 Processors
	Intel x86 Evolution: Milestones
	Intel x86 Processors, cont.
	x86 Clones: (AMD)
	Intel’s 64-Bit
	Assembly Programmer’s View
	Turning C into Object Code
	Compiling Into Assembly
	Assembly Characteristics: Data Types
	Assembly Characteristics: Operations
	Object Code
	Machine Instruction Example
	Disassembling Object Code
	Alternate Disassembly
	What Can be Disassembled?
	Integer Registers (IA32)
	Moving Data: IA32
	Moving Data: IA32
	movl Operand Combinations
	Simple Memory Addressing Modes
	Using Simple Addressing Modes
	Using Simple Addressing Modes
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Complete Memory Addressing Modes
	Data Representations: IA32 + x86-64
	x86-64 Integer Registers
	Instructions
	32-bit code for swap
	64-bit code for swap
	64-bit code for long int swap
	CISC v. RISC
	Basic Comparison
	Slide Number 78
	Technology Trends
	MIPS v. VAX
	The RISC Design Tenets
	RISC vs CISC Performance Argument
	The Debate
	Intel’s x86 Trick: RISC Inside
	Potential Micro-op Scheme
	More About Micro-ops
	Winner for Desktop PCs: CISC
	Winner for Embedded: RISC
	Redux: Are ISAs Important?

