CS740

Instruction Set Architecture
September 16, 2015

- Topics
- ISA
- x86
+ RISC & CISC



Instruction Set Architecture

e The ISA defines the functional contract
between the software and the hardware

Application
Algorithm

Programming Language
Operating System/Virtual Machine
Instruction Set Architecture (ISA)

Microarchitecture
Gates/Register-Transfer Level (RTL)

Devices

Physics
-2- Co 740 F'15




Abstraction & Your Program

High-level swap(int v[], int k)
language {int temp;
program temp = v[k];

High-level language i i

vlk+l] = temp;
- Level of abstraction closer to

problem domain Coompier)

* Provides for productivity and
pO I""Gb il i?y Assembly swap:

language muli $2, $5.4
program add %2, $4,%7

Assembly language for S 3

* Textual representation of o
instructions (ISA)

Hardware representation

}

° [ ] [ ]
B"‘ary r'epr'ese.11.a.r|orll of Binary machine  00000000101000010000000000011000
: : language 00000000000110000001100000100001
'ns.rr'UC?lons (ISA) program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Y

-3- [ Microarchitecture




Instruction Set Architecture

e The ISA defines the functional contract
between the software and the hardware

* The ISA is an abstraction that hides details of
the implementation from the software

* It is a functional abstraction of the processor
* What operations can be preformed
* How to name storage locations
* The format (bit pattern) of the instructions

e It does NOT define

» Timing of the operations
* Power used by operations

* How operations/storage are implemented
_4- CS 740 F'15



ISA Goals

 Ease of Programming

* Ease of Implementation
* Good Performance

- Compatibility

-5- CS 740 F'15



Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient
programs.

* Who is creating the programs?
* Early Days: Humans. Why?

-6- CS 740 F'15



Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient

programs.
* Who is creating the programs?
* Early Days: Humans.
-No real compilers

-Resources very limited

-What does that mean for the ISA designer?
Probably want high-level operations

-7- CS 740 F'15



Ease of Programming

* The ISA should make it easy to express
programs and make it easy to create efficient

programs.
* Who is creating the programs?
* Early Days: Humans.
* Modern days (~1980 and beyond): Compilers

-Today's optimizing compiler do a much better job
than most humans could possibly do

-Leads to change in type of instructions towards
more fine-grained low-level instructions

-8- CS 740 F'15



Ease of Implementation

« ISA shouldn't get in the way of
optimizing implementation

» Examples:
* Variable length instructions
* Varying instruction formats

* Implied registers

- Complex addressing modes

* Precise interrupts

- Appearance of atomic execution

-9- CS 740 F'15



ISA & Performance

* First, lets define performance

_10- CS 740 F'15



Performance
* Response time:
* AKA latency
* How long does a task take?
e ThroughputElEtiee RN
+ AKA bandwi
* How much

station w
the highway."

Tanenbaum, Computer Networks

-1 CS 740 F'15



Performance
* Response time:
* AKA latency
* How long does a task take?
* Throughput:
- AKA bandwidth
* How much work can you do per unit time?

* Lets examine response time

* Elapsed time
Total time from start to finish including everything

* CPU time
Only time spent on CPU

-12 - CS 740 F'15



CPU Time

CPU Time = CPU clock cycles % clock cycle time
» CPU Clock Cycles

* Number of clock cycles to execute program
- Two components:

-# of instructions &

~-cycles per instruction

* Clock Cycle Time
* 1/Clock Frequency

, instructions cycles seconds
CPU Time = X - — X
program instruction cycle

-13 - CS 740 F'15




CPU Time

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

« Instr/program = instruction count (IC)
* Determined by program, compiler, & ISA
* This is the dynamic count of instructions executed

* Cycles/instr = cycles per instruction (CPI)
* Determined by program, compiler, ISA, & parch

« Seconds/cycle = clock period = 1/freq
* Determined by parch & technology

-14 - CS 740 F'15




CPI

I Ccls

_ clock cycles _on
CPI = — 2Cl$=1 CPI_ s X 7

instruction count

e Different instruction classes take different
numbers of cycles

e (In fact, even the same instruction can take a
different number of cycles, E.g.?)

* When we say CPI, we really mean
Weighted CPI

-15- CS 740 F'15



CPU Time

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

* Improve performance by
* Reducing instruction count
* Reducing cycles taken by each instruction
* Reducing clock period

e There is a tension between these

- 16 - CS 740 F'15




CPI Example

« Computer A: Cycle Time = 250ps, CPT = 2.0
» Computer B: Cycle Time = 500ps, CPT = 1.2
* Same ISA

« Which is faster, and by how much?

-17 - CS 740 F'15



ISA & Performance

, instructions cycles seconds
CPU Time =

X - — X
program instruction cycle

« CISC ISA:

» Complex instructions, I.e.,, lots of work/instr
+ - fewer instructions/program

* But, > more CPI & longer clock period

* (However, modern parch gets around this)

* RISC ISA:
» Simple instructions, I.e., less work/instr
* - more instructions/program
» But, > fewer CPI & shorter clock period
* Heavy reliance on compiler to do the right.thing




Other measures of “performance”

* Performance is not just CPU time
* Or, even elapsed time
*Eg.,?

-19 - CS 740 F'15



Other measures of “performance”

* Performance is not just CPU time
* Or, even elapsed time
e Power

-20- CS 740 F'15



CMOS & POWER

- 120

+ 100

(syem) Jemod

o o o
(o] ©O <
I I I
T T T

o
oV}

o

3600 2667

2000

L
(9)]

Power

Clock Rate o

25

12.5

29.1

(£002)
playsiuay|
2 910D
(¥002)
Nno0osald

¥ wnnuad

(L002)
aNowWe||IM

¥ wnnuad

(2661) 01d
wniuad

(c661)
wniuad

(6861)
98108

(5861)
98£08

(2861)
98208

10000 —+

|

T
o
—

1000 +
100 +

(ZHW) ey X000

In CMOS IC technology

CS 740 F'15

-21-



Compatibility

« ISA separates interface from implementation

« Thus, many different implementations possible

- IBM 360 first to do this and introduce 7 different
machines all with same ISA

- Intel from 4004 - core i7 > ?
- ARM ISA

e Protects software investment

* Important to decide what should be exposed
and what should be kept hidden.

* E.g., MIPS delay slots

-22 - CS 740 F'15



What Goes Into an ISA?

» Operands
* How many?
* What kind?
* Addressing mechanisms
* Operations
* What kind?
* How many?
* Format/Encoding
* Length(s) of bit pattern
* Which bits mean what

-23-

CS 740 F'15



Operands ¢<> Machine Model

» Three basic types of machine
» Stack
» Accumulator
- Register
* Two types of register machines
* Register-memory

-Most operands in most instructions can be either a
register or a memory address

- Load-store

-Instructions are either load/store or register-
based

-24 - CS 740 F'15



Operands Per Instruction
Depends on underlying model of machine:

e Stack
O address add

« Accumulator
1 address add A
* Register-Memory

2 address add R1, A
3 address add R1,R2, A
e Load-Store
3 address add R1, R2, R3
load R1, R2
Store R1, R2

-25-

mem[sp] < mem[sp] + mem[sp+1]

Acc & Acc + mem[A]

R1 < R1 + mem[EA(A)]
R1 < R2 + mem[EA(A)]

R1 ¢« R2 + R3
R1 < mem[R2]

mem[R1] < R2
CS 740 F'15



Examples
e Code for: A=X*Y - B*C

SP——

> O [ K X
+
(0's)

Stack

push 8(SP)
push 16(SP)
mult

push 4(sp)
push 12(sp)
mult

sub

st 20(sp)

POP _,,. CS 740 F'15




Examples

e Code for: A=X*Y - B*C

SP——

Stack

push 8(SP)
push 16(SP)
mult

push 4(sp)
push 12(sp)
mult

sub

st 20(sp)

POP ;7.

Accumulator

id 8(SP)
mult 12(SP)
st 20(SP)
iId 4(SP)
mult O(SP)
sub 20(sp)
st 16(sp)

> O [ K X
+
(0's)

CS 740 F'15



Examples

SP —— X

* Code for: A=X*Y - B*C Y +4
B +8
C +12
A +16

Stack Accumulator reg-mem

push 8(SP) Id 8(SP)

push 16(SP) mult 12(SP)

mult st 20(SP) |mult R1,8(SP),12(SP)

push 4(sp) Id 4(SP)

push 12(sp)

mult mult O(SP) |mult R2,0(SP),4(SP)

sub sub 20(sp)

st 20(sp) |st 16(sp) |[sub 16(sp).R2,R1

POP 25

CS 740 F'15




Examples

SP—— X

e Code for: A=X*Y - B*C Y +4

B | +8

C +12

A +16

Accumulator reg-mem |d/st

Id 8(SP) Id r1,8(SP)
mult 12(SP) Id r2,12(SP)
st 20(sP) |mult R1,8(SP),12(SP) 1d r3,4(SP)
Id  4(SP) Id  r4,0(SP)
mult r5,rl1,r2

mult o(sP) |mult R2,0(SP),4(SP) | mult r6,r3,r4
sub 20(sp) sub r7,r6,r5
st 16(sp) |[sub 16(sp),R2,R1 st 16(SP),r7

-29 -

CS 740 F'15




Model Trade-offs

» Stack and Accumulator:
* Each instruction encoding is short
* IC is high
* Very simple exposed architecture
* Register-Memory:
* Instruction encoding is much longer
* More work per instruction
+IC is low
* Architectural state more complex

e Load/Store:

* medium encoding length (EA longer than reg spec)
* less work per instruction

* IC is high

- Architectural state more complex €S 740 F12



Common Operand Types

e Register

e Immediate

* Memory
- direct
* register indirect
- displacement
* indexed
* indexed+displacement
» scaled+displacement
* memory indirect
- autoincrement
- autodecrement

add rl,r2 r3
add rl,r2

add r1 #7

add r1,[0x1000]

add r1,(r2)

add r1,100(r2)

add r1,(r2+r3)

add r1,100(r2+r3)

add r1,100(r2+r3*s)
add r1,([0x1000])

add rl,(r2)+

add r1,(r2)- €S 740 F15



Memory Operands

* Memory addressing modes, i.e.,

u
. H
. H

. b

ow to specify an effective address
ow many?

ow complex?

ow much memory can be addressed?

* Trade-offs?
* How useful is the addressing mode?
* What is the impact on CPI? IC? Freq?
* How many bits needed to encode in instruction?

-32- CS 740 F'15



Frequency of Addressing Modes

o TeX | 1%
memory indirect spice 6%
2CC 1 1%

TeX 0%
SCG'ed !-IpiLT : lf!-r."f’i:
gec s
TeXx 24%

register indirect spice 3% |
J gec [N 1%

direct g 17% | ,
ecc T, 07
. TeX 32%
displacement _. 55%
gec 40%
0% 10% 20% 30% 40% 50% 60%

Frequencv of the addressing mode
Another question: How big a displacement?
-33- CS 740 F'15



How many registers?

* More registers means:
* longer instruction encoding
* Each register access is slower and/or
* More power per access

* More state is exposed
(more saves/restores per func call, context switch, ...)

* Fewer registers means:
* Harder for the compiler
» Think of registers as cache level-0
» small instructions
* more instructions

» Trend tfowards more registers. Why?

- 34 - CS 740 F'15



Operations

e Arithmetic

e Logical

* Data transfer

* Control flow

* OS support

* Parallelism support

-35- CS 740 F'15



Control Flow

 Types:
- Jump
* Conditional Branch
* Indirect Jump
~-call
-return
* Trap
* Destination Specified
* Register
» Displacement
 Condition Codes
- set as side-effect?
- setiexplicitly? €5 740 F15



Instruction Encoding
* Length

* How long?
- Fixed or Variable?

* Format
- consistent? Specialized?

e Trade-offs:

- 37 - CS 740 F'15



Instruction Encoding
* Length

* How long?
- Fixed or Variable?

* Format
- consistent? Specialized?

« Trade-offs:
- fixed length
-simple fetch/decode/next
-not efficient use of instruction memory
* Variable length
-complex fetch/decode/next

-improved code density
- 38 - CS 740 F'15



Intel x86 Processors

 Totally dominate laptop/desktop/server market

* Evolutionary design
* Backwards compatible up until 8086, introduced in 1978
* Added more features as time goes on

« Complex instruction set computer (CISC)
* Many different instructions with many different formats
-But, only small subset encountered with Linux programs

* Hard to match performance of Reduced Instruction Set
Computers (RISC)

* But, Intel has done just that!

-In terms of speed. Less so for low power.
-39 - CS 740 F'15



Intel x86 Evolution: Milestones

Name Date Transistors MHz

» 8086 1978 29K 5-10
- First 16-bit Intel processor. Basis for IBM PC & DOS
- IMB address space

« 386 1985 275K 16-33

* First 32 bit Intel processor , referred to as TA32
* Added "flat addressing”, capable of running Unix

 Pentium 4F 2004 125M 2800-3800
- First 64-bit Intel processor, referred to as x86-64

* Core 2 2006 291IM 1060-3500
* First multi-core Intel processor

* Core i/ 2008 731M 1700-3900

* Four cores (our shark machines)
- 40 - CS 740 F'15



Intel x86 Processors, cont.

* Machine Evolution
- 386 1985
* Pentium 1993
* Pentium/MMX 1997
* PentiumPro 1995
* Pentium ITTI 1999
* Pentium 4 2001
+ Core 2 Duo 2006
« Core i/ 2008

 Added Features

0.3M Integi‘atedﬂﬂgﬁmrf E&ﬁimlleni-?aa_th DDR3:

3.1IM
45M
6.5M
8.2M
42M o)
291M I Shared L3 Cache

731m L

Core 0. Core 1 Core2 Core3 -

» Instructions to support multimedia operations
» Instructions to enable more efficient conditional operations
* Transition from 32 bits to 64 bits

« More cores

-41-

CS 740 F'15



x86 Clones: (AMD)

 Historically
* AMD has followed just behind Intel
* A little bit slower, a lot cheaper

e Then

» Recruited top circuit designers from Digital
Equipment Corp. and other downward trending
companies

* Built Opteron: tough competitor to Pentium 4
* Developed x86-64, their own extension to 64 bits

-42 - CS 740 F'15



Intel's 64-Bit

« Intel Attempted Radical Shift from IA32 to TA64

» Totally different architecture (Itanium)
* Executes IA32 code only as legacy
* Performance disappointing

 AMD Stepped in with Evolutionary Solution
+ x86-64 (now called "AMD64")

* Intel Felt Obligated to Focus on IA64
* Hard to admit mistake or that AMD is better

e 2004: Intel Announces EM64T extension to IA32

- Extended Memory 64-bit Technology
- Almost identical to x86-64!

* All but low-end x86 processors support x86-64
- But, lots of code still runs in 32-bit mode

-43 - CS 740 F'15



Assembly Programmer’s View

CPU Memory
Addresses
- >
Registers i Coda
PC < ata >
"Condition _ Data
Instructions
Codes < Stack

Programmer-Visible State

- PC: Program counter * Memory
- Address of next instruction - Byte addressable array
- Called “EIP" (TA32) or "RIP" (x86-64) - Code and user data
- Stack to support

* Register file
- Heavily used program data
- Condition codes

- Store status information about most
recent arithmetic operation

- Used for conditional branching CS 740 F'15

procedures



Turning C into Object Code

* Code in files pl.c p2.c

» Compile with command: gcc —01 pl.c p2.c -0 p
- Use basic optimizations (-01)
- Put resulting binary in file p

text

text

binary

binary

- 45 -

C program (pl1.c p2.c)

Compiler (gcc -95)

Asm program

(pl.s p2.s)

y

Object program (pl1.0 p2.0)

v

Linker (gcc or 1d)

Executable

program (p)

Assembler (gcc or as)

Static libraries

(-a)

CS 740 F'15



Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, Int y) sum:
{ pushl %ebp
Int t = xt+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax
popl %ebp
ret

Obtain with command

/usr/local/bin/gcc —01 -S code.c

Produces file code.s

-46 - CS 740 F'15



Assembly Characteristics: Data Types

* "Integer” data of 1, 2, or 4 bytes
* Data values
* Addresses (untyped pointers)

* Floating point data of 4, 8, or 10 bytes

* No aggregate types such as arrays or structures
- Just contiguously allocated bytes in memory

-47 - CS 740 F'15



Assembly Characteristics: Operations

* Perform arithmetic function on register or
memory data

* Transfer data between memory and register
* Load data from memory into register
- Store register data into memory

e Transfer control
* Unconditional jumps to/from procedures
- Conditional branches

-48 - CS 740 F'15



Object Code

Code for sum
e« Assembler

0x401040 <sum>: - Translates .s into .0

O0x55 » Binary encoding of each instruction

0x89 * Nearly-complete image of executable code
oxes * Missing linkages between code in different
Ox8b files

Ox45 » Linker

gigg - Resolves references between files

Ot - Combines with static run-time libraries
008 -E.g., code for malloc, printf

oxsd Total of 11 bytes Some libraries are dynamically linked

Each instruction
Oxc3 1, 2, or 3 bytes

Starts at address
0x401040

- Linking occurs when program begins
execution

- 49 - CS 740 F'15



Machine Instruction Example

int t = xty;

addl 8(%ebp) ,%eax

Similar to expression:
X += Yy

More precisely:

Int eax;

int *ebp;

eax += ebp[2]

0x80483ca: 03 45 08

- K0 -

e C Code

- Add two signed integers
» Assembly
- Add two 4-byte integers

- "Long" words in GCC parlance

- Same instruction whether
signed or unsigned

- Operands:
X: Register %eax
y: Memory  M[%ebp+8]
t: Register %eax
» Return function value in %eax

* Object Code

- 3-byte instruction
- Stored at address 0x80483ca

CS 740 F'15



Disassembling Object Code

Disassembled

080483c4 <sum>:
80483c4: 55 push  %ebp
80483c5: 89 e5 mov %esp,%ebp
80483c7: 8b 45 Oc mov Oxc (%ebp) ,%eax
80483ca: 03 45 08 add Ox8 (%ebp) , %eax
80483cd: b&d pop %ebp
80483ce: c3 ret

 Disassembler
objdump -d p
» Useful tool for examining object code
- Analyzes bit pattern of series of instructions
* Produces approximate rendition of assembly code
* Can be run on either a.out (complete executable) or .o file

-5l - CS 740 F'15



Alternate Disassembly
Disassembled
Dump of assembler code for function sum:

Object

0x401040:
0x55
Ox89
Oxe5
Ox8b
0x45
0Ox0c
0Ox03
0x45
0x08
Ox5d
Oxc3

0x080483c4 <sum+0>:
0x080483c5 <sum+1>:
0x080483c7 <sum+3>:
0x080483ca <sum+6>:
0x080483cd <sum+9>:
0x080483ce <sum+10>:

push
mov
mov
add
pPop
ret

%ebp

%esp ,%ebp
Oxc(%ebp) , %eax
Ox8 (%ebp) , %eax
%ebp

-52 -

« Within gdb Debugger

gdb p
disassemble sum

* Disassemble procedure

X/11xb sum

* Examine the 11 bytes starting at sum

CS 740 F'15




What Can be Disassembled?

% objdump -d WINWORD.EXE

WINWORD . EXE: file format peil-1386

No symbols 1n ""WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: ©6a ff push  $OXFFFFFFFT

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push  $0x304cdc9l

Anything that can be interpreted as executable code

Disassembler examines bytes and reconstructs assembly
sourceg _ CS 740 F'15




Integer Registers (IA32)

Origin
(mostly obsolete)

general purpose

%eax Y%ax %ah %al accumulate
%ecXx %CX %ch %cl counter
%edx %dx %dh %d | data
%ebx %bx %bh %b base
%esi %S source
%edi %d ?Ezgnaﬁon
stack
0 %s
hesp oF pointer
base
%ebp s pointer
\ )
Y

16-bit virtual registers
" o4 (backwards compatibilityfS 740 F'15



Moving Data: TA32

* Moving Data
movl Source, Dest:

* Operand Types
- Immediate: Constant integer data
- Example: $0x400, $-533
- Like C constant, but prefixed with “$”
- Encoded with 1, 2, or 4 bytes
* Register: One of 8 integer registers
- Example: %eax, %edx

%eax

%ecXx

Yedx

%ebx

%esi

Wedr

%esp

%ebp

- But %esp and %ebp reserved for special use
- Others have special uses for particular instructions

* Memory: 4 consecutive bytes of memory at address given by

register
- Simplest example: (%eax)
- Vanigus other "address modes”

CS 740 F'15




Moving Data: TA32 heax

* Moving Data hecx
mo aurce, Dest: %edx
» Operand Types hebx

-/ Immediate: Constant integer data Y%esi

- Example: $0x400, $-533 %edi

- Like C constant, but prefixed with “$”

0
-Encoded with 1, 2, or 4 bytes pesp

* Register: One of 8 integer registers %ebp

- Example: %eax, %edx
Byt %esp and %ebp reserved for special use
- Othexs have special uses for particular instructions

. Memary:nsecu’rive bytes of memory at address given by
register

- Simplest example: (%eax)
- Varigus other "address modes” S 740 F'15




movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p = -147;
0 0 — ;
movl < Reg Reg movl %eax,%edx temp2 templ;
Mem movl %eax, (%edx) *p = temp;

L Mem Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a
- single instruction o 740 P15



Simple Memory Addressing Modes
* Normal (R) Mem[Reg[R]]

* Register R specifies memory address
» Ahal Pointer dereferencing in C

movl (%ecx) ,%eax

* Displacement D(R) Mem[Reg[R]+D]
* Register R specifies start of memory region
» Constant displacement D specifies offset
- D is an arbitrary integer constrained to fit in 1-4
bytes

movl 8(%ebp) ,%edx

- 58 - CS 740 F'15



Using Simple Addressing Modes

swap:

void swap(int *xp, Int *yp) pushl %ebp . Set
{ movl %esp,%ebp

_ 0 J Up

int t0 = *xp; pushl %ebx N

int tl = *yp;

*xXp = tl; movl 8((%ebp), %edx

*yp = t0; movl 12(%ebp), %ecx > Body
+ movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx) o
Finish

popl %ebx
popl %ebp

59 - ret CS 740 F'15



Using Simple Addressing Modes

swap:
void swap(int *xp, Int *yp) pushl %ebp L Set
{ movl %esp,%ebp
~ Up
- 0
int t0 = *xp; pushl %ebx N
int tl = *yp;
*xXp = tl; movl 8(%ebp), %edx
*yp = t0; movl 12(%ebp), %ecx > Body
+ movl (%edx), %ebx
movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx) o
Finish

popl %ebx
popl %ebp

- 60 - ret CS 740 F'15



Understanding Swap

void swap(int *xp, int *yp)
{
int t0 = *xp;
int tl = *yp;
*Xp = ti;
*yp = t0;
+
Register Value moVvl
%edx Xp moVl
%ecx YP movV I
%eax tl movl
movl

-61-

o Stack
Offset : (in memory)

12 yp

8 Xp

4 | Rtn adr

O |Old %ebpjf—— %ebp

-4 |Old %ebx[—— %esp
8(%ebp), %edx # edx = xp
12(%ebp), %ecx # ecx = yp
(%edx), %ebx # ebx = *xp (t0)
(%ecx), %eax # eax = *yp (tl)
%eax, (%edx) # *xXp = tl
%ebx, (%ecx) # §§’94O:F'1g0



Understanding Swap

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x104

-62 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF H K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax

%edx

0x124

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x104

-63 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF H K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax

Y%edx

0x124

%ecx

0x120

%ebx

%esi

%edi

%esp

%ebp

0x104

- 64 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 6bH -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH HF OH K H

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 66 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

123

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0

CS 740 F'15



Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

_67_

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

456

456

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0
CS 740 F'15



Understanding Swap

%eax 456
%edx| Ox124
%ecx| 0x120
%ebx 123
Y%esi
Y%ed
%esp
%ebp| Ox104

- 68 -

movl
movl
movl
movl
movl
movl

Offset
yp 12
Xp 8
4
%ebp — 0
-4

8(%ebp) , %edx
12(%ebp), %ecx
(%edx), %ebx
(%ecx), %eax
%eax, (Y%edx)
%ebx, (%ecx)

H OH OH OH OB

456

123

0x120

0Ox124

Rtn adr

edx = xp
ecx = yp

Address
0x124

0x120
Ox11c
0x118
0x114
0x110
Ox10c
0x108
0x104
0x100

ebx = *xp (t0)
eax = *yp (tl)

*p = tl
*yp = t0

CS 740 F'15



Complete Memory Addressing Modes

* Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
- D:  Constant "displacement” 1, 2, or 4 bytes
* Rb: Base register: Any of 8 integer registers

* Ri: Index register: Any, except for %esp
- Unlikely you'd use %ebp, either

+S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
69(Rb,Ri,S») Mem[Reg[Rb]+S*Reg[Ri]]

CS 740 F'15



Data Representations: IA32 + x86-64

 Sizes of C Objects (in Bytes)
C Data Type Generic 32-bit Intel IA32 Xx86-64

-unsigned £ 4 4
-int 4 4 4
~-long int 4 4 8
-char 1 1 1
-short 2 2 2
-float £ 4 4
-double 8 8 8
-long double 8 10/12 10/16
-char * 4 4 8

» Orany other pointer

-70- CS 740 F'15



x86-64 Integer Registers

%rax Yheax
%rbx %ebx
%rcx Y%hecx
%rdx Y%edx
%rsi Y%esi
%rdi %edi
%rsp Y%esp
%rbop %ebp

Wr8 %r8d

Wro %r9od

%rio %r10d
%ril %rild
%ril2 %ri2d
%ril3 %r13d
%rild %ril4d
%ril5s %r15d

- Extend existing registers. Add 8 new ones.

* Make %ebp/%rbp general purpose

CS 740 F'15




Instructions
» Long word 1 (4 Bytes) — Quad word g (8 Bytes)

* New instructions:
emovl = movq
addl = addq
esall = salq
- etc.

» 32-bit instructions that generate 32-bit results
» Set higher order bits of destination register to o
* Example: addl

-72- CS 740 F'15



32-bit code for swap

void swap(int *xp,
{
iInt t0 = *xp;
int tl = *yp;
*Xp = ti;
*yp = 10;
+

int *yp)

-73-

swap:
0
pushl %ebp | Set
movl %esp,%ebp
- Up
pushl %ebx N
movl 8((%ebp), %edx
movl 12(%ebp), %ecx > Body
movl (%edx), %ebx
movl (%ecx), %eax
movl %eax, (%edx)
movl  %ebx, (%ecx) o
Finish
popl %ebx
popl %ebp
ret

CS 740 F'15



64-bit code for swap

void swap(int *xp,
{
iInt t0 = *xp;
int tl = *yp;
*xXp = ti1;
*yp = 10;
+

int *yp)

swap:

movl
movl
movl
movl

} Set
Up
Chrdi), %edx )

(%rsi), %eax > Body
%eax, (%rdi)
%edx, (%rsi)

J
:>'Fhﬁsh

» Operands passed in registergtwhy useful?)
* First (xp) in %rdi, second (yp) in %rsi

- 64-bit pointers

* No stack operations required

e 32-bit data

* Data held in registers %eax and %edx

. m%/l operation

CS 740 F'15



64-bit code for long int swap

void swap(int *xp,
{
int t0 = *xp;
int tl = *yp;
*xXp = ti1;
*yp = 10;
}

int *yp)

e 64-bit data

swap_ 1I:

mov(q
movq
movq
movq

ret

:}_ Set
Up
%rdi), %rdx )

(wrsi), %rax > Body
%rax, (%rdrn) )

%rdx, (%rsi)
:>'Fhﬁsh

* Data held in registers %rax and %rdx
* movq operation

w_n

-"q" stands for quad-word

-7H -

CS 740 F'15



CISC v. RISC

* RISC: Reduced Instruction Set Computer
* Introduced Early 80's
* RISC-T (berkeley), MIPS (stanford), IBM 801
* Today: ARM

« CISC: Complex Instruction Set Computer
* What everything was before RISC
- Vax, x86, 68000
» Today: x86

* Outcome:
* RISC in academy (and in technology)
* CISC in commercial space, buft ...
. RI7566 in Embedded (and under the covers)

CS 740 F'15



Basic Comparison

« CISC
- variable length instructions: 1-321 bytes
* GP registers+special purpose registers+PC+SP+conditions
* Data: bytes to strings
* memory-memory instructions
- special instructions: e.qg., crc, polyf, ...

« RISC

- fixed length instructions: 4 bytes
* GP registers + PC
* load/store with few addressing modes

-77 - CS 740 F'15



ADD—Add

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
04 ib ADD AL, imm& | Valid Valid Add imm8& to AL.
05 iw ADD AX, imm16 | Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 | Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 | Valid N.E. Add imm3¢2 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8&, imm& M Valid Valid Add imm8& to r/m8.
REX + 80 /0 ib ADD r/m§& , imm8 M Walid MN.E. Add sign-extended imm8& to r/mG4.
81/0 iw ADD r/m16, imm16 M Valid Valid Add imm16 to /m16.
81 /0 id ADD r/m3Z, imm32 M Valid Valid Add imm3¢& to /m32.
REX.W +81 /0 id ADD r/m64, imm32 M Valid N.E. Add imm32 sign-extended to 64-bits to
r/mb4.
83 /0 ib ADD r/m16, imm#& Ml Walid Valid Add sign-extended imm& to r/m16.
83/0ib ADD r/fm32, imm8& Mi Valid Valid Add sign-extended imm8& to r/m32.
REX.W +B3 /0 ib ADD r/fmb&4, imm8& Mi Valid N.E. Add sign-extended imm8& to r/mb4.
00 /r ADD r/m8&, r8 MR  Valid Valid Add r8to /m8.
REX + 00 /r ADD r/m&, 8 MR  Valid N.E. Add r8to /m8.
01 /r ADD r/m16, r16 MR  Valid Valid Add r16to r/m16.
01 /r ADD r/m32, r32 MR  Valid Valid Add r32 to r/m32.
REXW + 01 /r ADD r/mb&4, ro4 MR  Valid N.E. Add rb4 to r/m&4.
02 fr ADD r§, r/m8 EM  Valid Valid Add /mBto 8.
REX + 02 /r ADD 8, #m8 RM  Valid N.E. Add /mBto 8.
03/r ADD r16, /m16 RM  Valid Valid Add /m16 to rie6.
03 /r ADD r32, r/m32 RM  \alid Valid Add r/m32 to r32.
REXW +03 /r ADD r64, r/mb4 RM  Valid N.E. Add r/mb4 to rb4.
NOTES:

*In 64-bit mode, r/mB can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.




Technology Trends

* Pre-1980

* lots of hand written assembly
» Compiler technology in its RISC Goals:
- multi-chip implementation:- enable single-chip CPU
* memory speed and CPU sp.- Rely on compiler
* Early 80's - Aim for high frequency &
- VLST makes single chip pri~ low CPT
(But only if very simple)
» Compiler technology improving

e Late 90's

* CPU speed vastly faster than memory speed

* More transistors makes pops possible
-79 - CS 740 F'15



MIPS v. VAX

Performance Ratio

Ratio of

MIPS
fo

VAX

2% more instr
1.0 6x lower CPI
2-4% higher perf

G_E_ ................................................................................................................................................

——— o
ﬂ-fé@#a;“;é;a&a
K & F @‘fb & &0

-- H&P, Appendix J, from Bhandarkar and Clark, 1991

- 80 - CS 740 F'15



The RISC Design Tenets

» Single-cycle execution
- CISC: many multicycle operations

* Hardwired (simple) control

* CISC: microcode for multi-cycle operations
« Load/store architecture

* CISC: register-memory and memory-memory
* Few memory addressing modes

- CISC: many modes
* Fixed-length instruction format

* CISC: many formats and lengths

* Reliance on compiler optimizations
» CISC: hand assemble to get good performance

* Many registers (compilers can use them effectively)
- CISC: few registers CS 740 F'15



RISC vs CISC Performance Argument

, instructions cycles seconds
CPU Time =

X = — X
program instruction cycle

« CISC (Complex Instruction Set Computing)
* Reduce "instructions/program” with "complex” instructions
-But tends to increase "cycles/instruction” or clock period
* Easy for assembly-level programmers, good code density

e RISC (Reduced Instruction Set Computing)
* Improve "cycles/instruction” with many 1-cycle instructions
* Increases “instruction/program”, but hopefully not as much
-Help from smart compiler
* Perhaps improve clock cycle time (seconds/cycle)

-via aggressive implementation allowed by simgler' insn
- 82= CS 740 F'15




The Debate
* RISC argument

» CISC is fundamentally handicapped

* For a given technology, RISC implementation will be faster
-Current technology enables single-chip RISC
-When it enables single-chip CISC, RISC will be pipelined
-When it enables pipelined CISC, RISC will have caches
-When it enables CISC with caches, RISC will have ...

o CISC rebutta
- CISC flaws not fundamental, can be fixed with more Ts
* Moore's Law will narrow the RISC/CISC gap (true)
-Good pipeline: RISC = 100K transistors, CISC = 300K
-By 1995: 2M+ transistors had evened playing field
* Software costs dominate, compatibility is Pgramount




Intel's x86 Trick: RISC Inside

o F1>993: Intel wanted "out-of-order execution” in Pentium
ro

* Hard to do with a coarse grain ISA like x86
* Solution? Translate x86 to RISC micro-ops (nops) in
hardwr
push $eax - store $eax, -4($esp)
addi $esp,besp,-4
+Processor maintains x86 ISA externally for compatibility
+ But executes RISC puISA internally for implementability
» Given translator, x86 almost as easy to implement as RISC
-Intel implemented “out-of-order” before any RISC company
-"000" also helps x86 more (because ISA limits compiler)
» Also used by other x86 implementations (AMD)
Different pops for different designs
- Not part of the ISA specification

-84 - 84740 F15



Potential Micro-op Scheme

* Most instructions are a single micro-op

- Add, xor, compare, branch, etc.

* Loads example: mov -4(%rax), %ebx

- Stores example: mov %ebx, -4(%rax)
« Each memory access adds a micro-op

- “addl -4(%rax), %ebx" is two micro-ops (load, add)

- “addl %ebx, -4(%rax)" is three micro-ops (load, add, store)
 Function call (CALL) - 4 uops

* Get program counter, store program counter to stack,
adjust stack pointer, unconditional jump to function start

« Return from function (RET) - 3 uops
- Adjust stack pointer, load return address from stack, jump register

 Again, just a basic idea, micro-ops are specific to each chip

- 85 - 85740 F15



More About Micro-ops

« Two forms of pops "cracking”
* Hard-coded logic: fast, but complex (for insn in few pops)

* Table: slow, but "off to the side”, doesn't complicate rest
of machine

-Handles the really complicated instructions
« X86 code is becoming more "RISC-like"

* In 32-bit to 64-bit transition, x86 made two key changes:
-2x number of registers, better function conventions
-More registers, fewer pushes/pops

* Result? Fewer complicated instructions
-Smaller number of pops per x86 insn

- 86 - CS 740 F'15



Winner for Desktop PCs: CISC

» x86 was first mainstream 16-bit microprocessor by ~2 years
+ IBM put it into its PCs...
- Rest is historical inertia, Moore's law, and "financial feedback"
- x86 is most difficult ISA to implement and do it fast but...
- Because Intel sells the most non-embedded processors...
- It hires more and better engineers...
- Which help it maintain competitive performance ...
- And given competitive performance, compatibility wins...
- So Intel sells the most non-embedded processors...
- AMD as a competitor keeps pressure on x86 performance

* Moore's Law has helped Intel in a big way
* Most engineering problems can be solved with more transistors

-87 - CS 740 F'15



Winner for Embedded: RISC

« ARM (Acorn RISC Machine — Advanced RISC Machine)
* First ARM chip in mid-1980s (from Acorn Computer Ltd).
» 3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)
* Low-power and embedded devices (phones, for example)
- Significance of embedded? ISA Compatibility less powerful force

» 32-bit RISC ISA

* 16 registers, PC is one of them
- Rich addressing modes, e.g., auto increment
- Condition codes, each instruction can be conditional

* ARM does not sell chips; it licenses its ISA & core designs

* ARM chips from many vendors

* Qualcomm, Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

- 88 - CS 740 F'15



Redux: Are ISAs Important?

* Does "quality” of ISA actually matter?
* Not for performance (mostly)
- Mostly comes as a design complexity issue
- Insn/program: everything is compiled, compilers are good
- Cycles/insn and seconds/cycle: nISA, many other tricks
* What about power efficiency? Maybe

- ARMs are most power efficient today...
» ..but Intel is moving x86 that way (e.g, Intel's Atom)

- Open question: can x86 be as power efficient as ARM?

* Does "nastiness” of ISA matter?
* Mostly no, only compiler writers and hardware designers see it

« Even compatibility is not what it used to be

- Software emulation, cloud services
- Open question: will "ARM compatibility” be the next x86?
-89 - CS 740 F'15



	Instruction Set Architecture�September 16, 2015
	Instruction Set Architecture
	Abstraction & Your Program
	Instruction Set Architecture
	ISA Goals
	Ease of Programming
	Ease of Programming
	Ease of Programming
	Ease of Implementation
	ISA & Performance
	Performance
	Performance
	CPU Time
	CPU Time
	CPI
	CPU Time
	CPI Example
	ISA & Performance
	Other measures of “performance”
	Other measures of “performance”
	CMOS & POWER
	Compatibility
	What Goes Into an ISA?
	Operands ↔ Machine Model
	Operands Per Instruction
	Examples
	Examples
	Examples
	Examples
	Model Trade-offs
	Common Operand Types
	Memory Operands
	Frequency of Addressing Modes
	How many registers?
	Operations
	Control Flow
	Instruction Encoding
	Instruction Encoding
	Intel x86 Processors
	Intel x86 Evolution: Milestones
	Intel x86 Processors, cont.
	x86 Clones: (AMD)
	Intel’s 64-Bit
	Assembly Programmer’s View
	Turning C into Object Code
	Compiling Into Assembly
	Assembly Characteristics: Data Types
	Assembly Characteristics: Operations
	Object Code
	Machine Instruction Example
	Disassembling Object Code
	Alternate Disassembly
	What Can be Disassembled?
	Integer Registers (IA32)
	Moving Data: IA32
	Moving Data: IA32
	movl Operand Combinations
	Simple Memory Addressing Modes
	Using Simple Addressing Modes
	Using Simple Addressing Modes
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Complete Memory Addressing Modes
	Data Representations: IA32 + x86-64
	x86-64 Integer Registers
	Instructions
	32-bit code for swap
	64-bit code for swap
	64-bit code for long int swap
	CISC v. RISC
	Basic Comparison
	Slide Number 78
	Technology Trends
	MIPS v. VAX
	The RISC Design Tenets
	RISC vs CISC Performance Argument
	The Debate
	Intel’s x86 Trick: RISC Inside
	Potential Micro-op Scheme
	More About Micro-ops
	Winner for Desktop PCs: CISC
	Winner for Embedded: RISC
	Redux: Are ISAs Important?

