CS 740, Fall 2015
Homework Assignment 1

Assigned: Friday, September 11
Due: Friday, September 25, 9:00AM

The purpose of this assignment is to develop techniques for measuring code performance, to
practice reasoning about low-level code optimization, and to develop your own performance
analysis tool using binary instrumentation.

Policy

You will work in groups of two or three people in solving the problems for this assignment. Turn
in a single writeup per group, indicating all group members as indicated below.

Logistics

Any clarifications and revisions to the assignment will be posted on the class “assignments” web
page.

To get started, download assignmentl-handout.tar from Autolab (https://autolab.cs.
cmu.edu) to a directory accessible only to your team. We recommend using AFS space and
the cluster machines ghcO1.ghc.andrew.cmu.edu — ghc50.ghc.andrew.cmu.edu (you can log
in with your Andrew credentials). In the following, ASSTDIR refers to the directory that is
unpacked with tar xvf assignmentl-handout.tar .

When you are ready to hand in your solution, upload it to Autolab. Your submission should be
a .tar file consisting of the following:

1. writeup.txt, your writeup in plain text format.

2. func_time.c for Problem 3

3. cachemiss.c for the Cache Misses portion of Problem 5

4. strcat-x64-annotated.dis for Problem 6

5. strcat_opt.c for Problem 8

6. a folder called pintool, your cache profiling tool for Problem 9

To make your submission, do a make submit.

Please hand in your assignment using Autolab. You may submit as many times as you would
like.

Using Interval Timers

Measuring performance is fundamental to the study of computer systems. When comparing
machines, or when optimizing code, it is often useful to measure the amount of time that it

I+A+

| OoP

Ts Tf

< observed = 11~ Ts -

Figure 1: Time Measurement with an Interval Timer

takes (preferably at the resolution of processor clock cycles) to execute a particular operation
or procedure. Some machines have special facilities to assist in measuring performance. Even
without such facilities, almost all machines provide interval timers—a relatively crude method
of computing elapsed times. In this assignment, you will investigate how to reason about and
control the accuracy of timing information that can be gathered using interval timers. One of
the goals is to develop a function timer which accurately measures the execution time of any
function on any machine.

The overall operation of an interval timer is illustrated in Figure 1. The system maintains a
(user-settable) counter value which is updated periodically. That is, once every A time units, the
counter is incremented by A. Using the Unix library routine getitimer, the user can poll the
value of this counter. Thus, to measure the elapsed time of some operation Op, the user can poll
the counter to get a starting value T, perform the operation, and poll the counter to get a final
value Ty. The elapsed time for the operation can be approzimated as Typserved = T —Ts. As the
figure illustrates, however, the actual elapsed time Ty c4,q; may differ from Tppserveq significantly,
due to the coarseness of the timer resolution. Since the value of A is around 10 milliseconds for
most systems, this error can be very significant.

We have encapsulated the Unix interval timer routines for you in a as part of a package called
ASSTDIR/perf.c. You should use this package for the measurements in the assignment. One
notable feature is that it converts the measurements to units of seconds, expressed as a C long
double. The procedure for timing operation Op is then:

init_etime();

Ts = get_etime();

Op;

Tf = get_etime()
T_observed = Tf - Ts;

See ASSTDIR/example.c for a simple example of how to use the interval timer. Note: This
code has been tested to work on the general purpose Linux machines (1inux.andrew.cmu.edu
and linux.gp.cs.cmu.edu) using GCC.

Problem 1: Bounded Measurement Error

Consider a processor with a 2 GHz clock rate where precisely one addition operation can be
performed every clock cycle, and where the value of A for the interval timer is 10 milliseconds.
You would like to time a section of code (0Op) consisting purely of a sequence of back-to-back
additions.

If your code sequence consists of 10° additions, what will the relative measurement error of
Topserved With respect to Theruar be? How about for 10?2 additions? As always, show all of your
work.

Problem 2: Measuring A for Your Timer

Write a C procedure that uses measurements to estimate (as accurately as possible) the value of
A on any UNIX machine. Provide a listing of your code along with a brief description of your
scheme.

We can improve the accuracy of the measurements by making sure that the activity we measure
has sufficient duration to overcome the imprecision of interval timers. That is, we can accurately
measure the time required by Op by executing it n times for a sufficiently large value of n:

init_etime();
Ts = get_etime();
for (i=0; i<n; i++) {
Op;
b
Tf = get_etime()
T_aggregate = Tf - Ts;
T_average = T_aggregate/n;

How do we choose a large enough value of n? The idea is that n must be large enough such that
Taggregate is larger than the minimum value (Ty4reshold) Which guarantees a relative measurement
error less than the desired upper bound of E. The value of Tijeshoid can be computed based on
A and E. However, since the elapsed time for Op is unknown, we cannot compute the minimum
value of n ahead of time.

One approach is to start with n = 1, and continue doubling it until the observed Ti44rcgate 1S
large enough to guarantee sufficient accuracy (i.e. it is larger than Tipreshold)-

Problem 3: Implementing a Function Timer

Implement a function timer in C that uses the doubling scheme outlined above to accurately
measure the running time of any function on any system. Your function timer should have the
following interface

typdef void (*test_funct) (void);
double func_time(test_funct P, double E);

where P is the function to be timed and FE is the maximum relative measurement error. These
prototypes are already defined for you in ASSTDIR/func_time.h. Implement your func_time ()
function in a separate file called func_time.c.

Your function timer should: (1) determine the timer period A using the scheme from the previous
problem; (2) calculate Tipreshoia as a function of A and E; and then (3) repeatedly double n

until Tyggregate = Tinreshold- It should work for any function on any system, regardless of the
running time of the function or the timer period of the system.

Problem 4: Testing Your Function Timer

Test your function timer using the program ASSTDIR/freq.c, which uses func_time() to
estimate the clock frequency of your machine. This routine assumes that your machine executes
an integer addition in one clock cycle. This is a safe assumption for most modern processors.

Turn in the output string from freq.c and the type of system you ran it on.

Problem 5: Using Hardware Counters

Modern CPUs provide a variety of counters that enable us to get more data when measuring
performance. Here we will experiment with timing and cache miss instrumentation.

Time

Another way to improve the accuracy of our measurements is to use a more precise timer. In
addition to the interval timer (get_etime()), ASSTDIR/perf.c provides a similar hardware-
based timer: get_etime hw().

Modify your func_time.c to include a function
double func_time_hw(test_funct P, double E);

that uses get_etime hw(). Since the hardware counter resolution is smaller, you may find it
helpful to measure kA and divide by k for k > 1 to obtain a useful A.

Cache Misses
We saw in class that cache interactions can influence performance. ASSTDIR/perf .c contains
functions start_cachemiss_count and get_cachemiss_count that can be used as follows:

start_cachemiss_count();
Ops;
misses = get_cachemiss_count();

Write two blocks of code that perform the same number of loads and stores, but that produce
different numbers of cache misses. Explain why you think they will behave differently, and mea-
sure cache misses for each with start_cachemiss_count and get_cachemiss_count, reporting
the mean for each over 10 runs.

Optimizing the strcat() Routine

The purpose of these next problems is to get hands-on experience with machine-level program-
ming. Our interest is in being able to understand, measure, and optimize the machine code
generated by a compiler. This is a far more useful skill than being able to churn out pages of
assembly code by hand. Parts of this assignment involve compiling, disassembling, and running
x86 code. In the next several problems, we will be focusing on the performance of the strcat ()

routine, which is part of the C library. The following paraphrased excerpts from the strcat ()
man page describe its interface and behavior:

char *strcat(char *dest, const char *src);

e The strcat() function appends the src string to the dest string, overwriting the ‘\0’
character at the end of dest. A pointer to the resulting string, dest, is returned.

e The src and dest strings must not overlap, and the dest string must have enough space
for the result.

e If you pass an out of bounds or NULL pointer to strcat, the function generates a segmen-
tation violation.

e There are no return values reserved to indicate an error.

The file ASSTDIR/strcat naive.c contains a straightforward (but naive, from a perfor-
mance perspective) implementation of strcat() in C called “my strcat()”. The file AS-
STDIR/strcat naive.s contains the x86 assembly code generated using the command:
gcc -0 -S strcat_naive.c

The file ASSTDIR/strcat-x64.dis contains a disassembled version of the strcat() routine
taken from the Unix library /1ib64/1libc.so.6 on an x64 machine. (This was disassembled
with objdump.)

Problem 6: Understanding the strcat() Assembly Code

Generate an “annotated” version of both ASSTDIR/strcat_naive.s and ASST-
DIR/strcat-x64.dis using the following conventions:

e Put comments at the top of a code segment describing register usage and initial conditions.

e Put comments along the right hand side describing what each instruction does.

NOTE: Comments of the form:

The following 2 instructions use registers eax, ecx, edx.
add Yhecx, %edx # edx = edx + ecx
mov (%heax), %hecx # ecx = Mem[eax]

are useless and will receive little (if any) credit. Instead, we would like to see comments
like the following;:

Throughout the loop: eax holds i, ecx holds n
At the beginning of the loop: edx = &v[0]

add $1, Yeax #i=1i+1

mov (%edx, %heax, 4), hecx # n = v[i]

In other words, your comments should convey semantic information from the source code,
and not simply reiterate what would be obvious to anyone who can read x86 assembly
code.

Hint: the constant Oxfefefefefefefeff is a magic value used in conjunction with a few bitwise
operations to find zero bytes in an eight-byte register.

Problem 7: Measuring the Performance of the strcat() Routines

Use the performance code you have written above to instrument both the my_strcat () routine in
ASSTDIR/strcat naive.c and C library implementation of strcat () on the various strcat ()
calls contained in ASSTDIR/strcat_test.c. For each call, produce the following:

1. Time as measured by your interval timer code
2. Time as measured by the hardware timer code

3. Cache misses

Note that you should produce separate timing numbers for each of these individual calls to
strcat (), and be sure to call the initialization routine in this file before you start timing things
to ensure that the cache is warm.

Discuss the relative performance differences between the two versions of the routine, and whether
they make sense given your analysis of the assembly code.

Problem 8: Implementing a Better Version of strcat() in C

Write your own version of strcat () in C. Your code must behave correctly, but at the same time
it should be as efficient as possible. You should create a version of your code which only uses
C constructs (i.e. no explicit assembly code). In addition, you may optionally create a second
version of your code which uses the GCC assembly code directives (i.e. “ASM”) if it further
enhances performance. For further information on how to use assembly code directives in gcc,
see the “info” pages on gce (under “C extensions”). These info pages are reproduced on the
Assignment and exam information class web page under Assignment 1. Use a minimal number
of ASM statements—do not simply reproduce large amounts of hand-coded assembly in your C
code. Be sure to compile your code using the “-0” optimization flag.

Measure the performance of your C-only code and your assembly-augmented code (if appli-
cable). If your assembly-augmented code achieves better performance than your C-only code,
discuss why you are not able to achieve comparable performance using only normal C constructs.
Also, compare your code with both the naive and UNIX library versions of strcat (). If your
performance falls short of the UNIX library version, explain why.

Problem 9: Writing Your Own Performance Analysis Tool using Pin

Dynamic binary instrumentation (DBI) is a powerful technique for writing program analysis
tools. DBI works by rewriting an executable on-the-fly to insert instrumentation code. DBI
infrastructures also provide an interface for specifying user code (i.e. a tool) to be invoked as
the program executes, as well exactly where and when this code should be invoked.

In this assignment, you will be using Pin (a DBI infrastructure for x86) to write your own tool
for analyzing cache performance. Pin is a publicly available tool (developed by Intel), which
you can access at the following web site: http://www.pintool.org. There is a nice tutorial on
how to use Pin on the web site, and there are a number of example tools in the Pin distribution.

Your goal is to develop (and use) your own tool to analyze cache performance. The goal of this
tool is not simply to report overall cache misses, but to help identify which memory references
(and which dynamic instances of those instructions) are responsible for causing the most cache
misses.

While the Pin distribution already includes a cache analysis tool, that tool is overkill for our
purposes in terms of the sophistication of its cache model, and it is also lacking some key
functionality that we would like for you to implement for the sake of understanding when cache
misses occur. Hence we would like you to write your own tool from scratch. (You are free to
look at the existing tool, but you are better off starting with a clean slate, given how little of
that code you will want to reuse.)

Regarding your cache model, we would like you to implement the following:

e Single-level “split” (i.e. separate) instruction and data caches, such that all instruction
references go to the instruction cache, and all data references go to the data cache. (Note
that a realistic cache hierarchy would have multiple levels of cache, but we are only asking
you to model a single level in this assignment.)

e The cache size, line size, cache miss penalty and associativity should be parameters to your
simulator. Assume that the configuration of both the instruction and data caches is the
same. These are the only cache parameters that you need to support. It is safe to assume
that cache size and line size are powers of two.

e For the associativity parameter, you only need to support direct-mapped and 2-way set
associative. If a cache is 2-way set associative configuration, you should implement a
least-recently-used (LRU) replacement policy within each set.

e Assume the following regarding the time that it takes the processor to execute each in-
struction. Ignoring cache misses, the normal execution of each instruction takes 1 cycle. In
addition, if a given instruction suffers either an instruction cache miss or a data cache miss
(it is possible for one instruction to suffer either or both of these types of cache misses),
then the processor suffers an additional M cycles per cache miss. Hence an instruction
that suffers no cache misses executes in 1 cycle, an instruction that suffers an instruction
cache miss but not a data cache miss (or vice versa) executes in 1 + M cycles, and an
instruction that suffers both instruction and data cache misses executes in 1 4+ 2M cycles.
Assume that the processor executes only one instruction at a time, and that none of these
times are overlapped with the execution times of other instructions.

e An instruction may have multiple memory reads and/or a memory write. Write your
simulator to service the first read, then the second read, and then the write (of course,
omitting the operations of this sequence that do not occur).

You will be recording not only the total cache misses for the instruction and data caches, but
also a profile of the cache behavior for individual instructions and data references. Regarding
the output of your tool, you should present summary statistics for each cache as well as a
rank ordering of the most significant data references and instruction references according to
their contribution to absolute misses for that particular cache. At minimum, your tools should
present the information illustrated in Figure 2 for each entry in this rank-ordered table, including
the program counter (PC) value of the given instruction. Given the rank-ordered cache miss
profile illustrated in Figure 2, you could look up the PC values in disassembled code to match
these behaviors back to the application source code.

Overall Performance Breakdown:

Instruction Execution: 2724M cycles (4.2%)
Data Cache Stalls: 40700M cycles (63.5%)
Instruction Cache Stalls: 20700M cycles (32.3%)

Total Execution Time: 64124M cycles (100.0%)

Data Cache:

Configuration: size = 64KB, line size = 32B, associativity = 2-way,
miss latency = 100 cycles

Overall Performance: 1324M References, 407M Misses, Miss Rate = 30.7%,
Data Cache Stalls = 40700M cycles

Rank ordering of data references by absolute miss cycles:
Total Contribution
Miss Miss to Total Data

PC Type References Misses Rate Cycles Miss Cycles
1. 0x47601208 Load 201.7M 53.1M 26.3% 5310M 13.0%
2. 0x4769148c Store 349.2M 46.5M 13.3), 4650M 11.4%
3. 0x476327c0 Load 71.0M 39.2M b55.2), 3920M 9.6%
4. 0x47842074 Load 101.2M 32.8M 32.4), 3280M 8.1%
20. 0x47832148 Store 68.2M 5.3M 7.8% 530M 1.3%

Instruction Cache:

Configuration: size = 64KB, line size = 32B, associativity = 2-way
miss latency = 100 cycles

Overall Performance: 2724M References, 207M Misses, Miss Rate = 7.6%,
Inst Cache Stalls = 20700M cycles

Rank ordering of instruction references by absolute miss cycles:
Total Contribution
Miss Miss to Total Imst
PC References Misses Rate Cycles Miss Cycles
1. 0x41621378 171.7M 88.1M 51.3% 8810M 42.6}
2. 0x41486910 43.2M 31.7M 73.4% 3170M 15.3%

Figure 2: Example of output from the initial cache miss profiling tool.

There are a number of machines available with Pin installed for building and running this portion
of the assignment: log in to any of ghcO1.ghc.andrew.cmu.edu — ghc50.ghc.andrew.cnu.edu
with your Andrew credentials. To build a Pintool, include ASSTDIR/Makefile.pin-include
from within your Makefile and set TOOL_ROOTS to the name of your source file. To run your
Pintool, you can use /usr/local/lib/pin-2.11/pin -t pintool -- binary. To make it
easier to run pin, you can add /usr/local/lib/pin-2.11 to your path environment variable.

Your mission is the following:

Part 1: Build a Pin-based cache profiling tool (from scratch) that can generate output as
illustrated in Figure 2. Using micro-benchmarks (i.e. small pathological programs that you
write yourself), start_cachemiss_count/get_cachemiss _count, and possibly the output
from other cache simulators, verify that it is working correctly. Describe the process that
you went through to do this, and show your micro-benchmarks along with your analysis
of their behavior on your cache profiling tool.

Part 2: Run your Pin-based cache profiling tool on the test programs in the directory ASST-
DIR/cache_test using the four configurations shown in Table 1. Show the results of your
tool for each of these four configurations. Discuss how the differences between successive
configurations affect performance, and whether there are any surprises regarding how the
profile of important cache misses changes, etc.

Table 1: Configurations to use when profiling the test programs.

Parameter Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4

Cache size 8 KB 8 KB 8 KB 32 KB

Line size 64 B 64 B 128 B 128 B
Cache Miss penalty 100 cycles 100 cycles 100 cycles 100 cycles

Associativity

Direct-Mapped

2-way Set Assoc.

2-way Set Assoc.

2-way Set Assoc.

