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1 Introduction:

Current research in processor technology and
computer architecture is motivated primar-
ily by the need for greater performance. In
this context, it is well understood that the
performance gain from improving the mem-
ory system alone is limited, and using system
Level Integration (such as supporting graph-
ics/sound on chip) can only lead to marginal
performance benefits. The most significant
gain can be achieved by increasing parallelism
in execution.

There exist two kinds of parallelism in
typical programming workloads, Instruction
Level Parallelism (ILP) and Thread Level
Parallelism (TLP). Modern superscalar archi-
tectures are designed to capture ILP in pro-
grams, while multithreaded and multiproces-
sor systems are designed to capture TLP or
parallelism across threads/processes.

The better solution then would be to ex-
ploit both ILP and TLP ; TLP from either
multithreaded parallel programs or from mul-
tiprogramming workload, and the ILP from
each thread.

Neither superscalar nor multiprocessor
(MP) can capture ILP and TLP in its en-

tirety and these are inherently incapable of
adapting to dynamic levels of ILP and TLP.

This is the primary motivation for a new
architecture of processors called Simultane-
ous Multithreading (SMT).

2 SMT

In this section we identify some of the key
characteristics of an SMT architecture and
some of the design requirements that can fa-
cilitate the implementation of an SMT over
a conventional superscalar architecture. The
characteristics of SMT processors are
1. inherited from superscalar: issue multiple
instructions per cycle
2. from multithreaded: maintain hardware
state for multiple threads
In Fig 1 we can see that there is a significant
amount of wastage of issue slots in the super-
scalar and the multithreaded system. There
are essentially two kinds of waste: vertical
waste (an entire cycle is unused) and horizon-
tal waste ( within a cycle issue slots are un-
used). Superscalar processors look at multi-
ple instructions from same process, and have
both horizontal waste (as a result of insuffi-
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Figure 1: Horizontal and Vertical Wastage

cient ILP) and vertical waste (due to data de-
pendencies and long latency operations). The
MT system minimizes vertical waste as it can
look at multiple threads to fetch from in each
cycle and thus it can tolerate long latency
operations within each thread.

3 SMT Model

1. Consider a superscalar that fetches 8 in-
structions from the IC

2. SMT h/w modifications required over a
conventional superscalar
1. state for h/w contexts for threads
2. per-thread exception/retirement
mechanisms

3. Most h/w resources are available unlike
in static resource allocation This implies
that a non-parallelizable program will
still run efficiently in SMT.

4. Fetch Mechanism:
a. 2.8 scheme: select 2 threads . fetch 8
from each thread
(2.4 scheme?) out of these choose a
subset to match h/w decoding b/w b.
h/w cost:additional port on IC (2.8
better than 2.4)
c. icount technique: selecting the
thread, higher priority to those threads
that have least number of instructions in
the decode,rename and queue pipeline
stages: even distribution, prevents star-
vation etc. Other options are misscount,
bcount etc.

5. Caveat: Hardware register file is larger:
2-clock latency to access register needs
2-cycle read/write.

3.1 SMT Disadvantages

• There is greater register pressure and
greater per thread latency due to the
longer pipeline.

• On a multiprogrammed workload there
is greater stress on shared structures
such as BPB, cache, TLB etc.

• A Parallel Workload tends to stress the
functional units more.
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4 Results and Observa-

tions

It has been observed that superscalars ap-
proximately give an IPC of about 1-2. But
the results shown indicate that SMT can
reach an IPC of upto 6.7 (for a 8-issue ar-
chitecture). Even though the SMT pipeline
is longer implying a longer latency for a single
thread it is observed to not have a significant
performance effect. The reason for the non-
degraded performance in the presence of con-
flicts and a longer pipeline is essentially the
systems’ ability to absorbs additional con-
flicts i.e., the ability to hide latency by using
multiple issues from multiple threads. The
multiprocessor architectures MP2 and MP4
were observed to be hindered by static re-
source partitioning, while SMT on the other
hand dynamically partitions resources among
threads. Also a comparison between MP2
vs MP4 shows that MP2 can better adapt
to ILP, while MP4 is better suited for uti-
lizing TLP, which is quite intuitive as there
are more functional units per processor avail-
able in the MP2, while there are more paral-
lel units in the MP4. SMT can also lead to
increased cache misses/conflicts and greater
stress on the branching hardware. However
the impact on overall program performance
is not significant as SMT, efficient hardware
design, and compiler optimizations can hide
latencies and conflicts significantly. The key
insight is that SMT achieves a better perfor-
mance gain than Superscalar, multithreaded,
and multiprocessor architectures due to the
ability to ignore the distinction between ILP

and TLP which implies that resources are not
statically partitioned.

4.1 Discussion of Issues in

SMTs

• Cost vs Performance: It is necessary to
quantify the architecture that can best
use the chip area and can provide en-
hanced performance with minimal hard-
ware overhead.

• Quantitative Comparisons: It is difficult
to quantify in absolute terms the perfor-
mance gain that the SMT processor can
deliver. Often this depends a lot on de-
sign cycle time, the actual hardware im-
plementation etc that are hard to predict
given the technology trends.

• Compilers: One of the earlier claims was
that SMT is easier for compilers and pro-
grammers, as the hardware can dynami-
cally repartition resources. But the gen-
eral feeling is that in order to assure
a performance no worse than the com-
peting architectures and to ensure maxi-
mum processor utilization, one does need
compiler support for identifying sources
of parallelism and help in static schedul-
ing.

• OS: It is important to consider OS issues
such as thread scheduling, thread prior-
ity etc. that will be necessary in a realis-
tic implementation of an SMT, and the
interaction between the thread priority
and the fetch/issue logic is an interest-
ing issue.
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• Another observation is that more than
static partitioning of resources in multi-
processors the communication overhead
is a significant reason why SMTs perform
better than MPs.

• The question also arises whether SMT
needs a branch prediction mechanism at
all? The answer is yes, which is again
consistent with the design philosophy
that a non-parallelizable program still
needs to get a good performance.

• Is the performance gain adequate with
the additional resource cost? It has
been shown that an SMT outperforms
an equally resource-equipped multipro-
cessor running at maximum number of
supported threads, which shows that the
SMT has maximum resource utilization.

What does the future hold for SMTs?
Each processor in an SMP can use SMT -
This is a direct extension of the SMP and
SMT architectures that can create small to
massive parallel systems where each proces-
sor employs SMT to minimize execution time.
It has been observed that next generation ar-
chitectures would be based on design issues
that tend to maximize use of power and chip
area, and this would mean that multiprocess-
ing (MP or MT or SMT) on chip is more ef-
ficient than a wider superscalars.
An interesting observation is that even
though the research on SMT was done in the
mid-late 90s, the actual commercial imple-
mentation of an SMT on a processor has been
delayed until now (the Intel “Hyperthread-
ing” Pentium). This shows that chip-design

in reality is far more complex, and there are
other economic factors that come into play.
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