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Abstract fetch performance. The trend towards exploiting more ILP

In the pursuit of instruction-level parallelism, signifi- in e_:xecuti(_)n core_sworks to place furtherdemands ontherate
cant demands are placed on a processor’s instruction de- of |nstruc_t|on dellve_ry from the fron'F-end. Without comple-
livery mechanism. Delivering the performance necessary to Mentary increases in front-end delivery performance, more
meet future processor execution targets requires that the per-€xploitation of ILP will only decrease functional unit utiliza-
formance of the instruction delivery mechanism scale with tion with little or no increase in overall performance.
the execution core. Attaining these targets is a challenging ~ Unfortunately, scaling the performance of the front-end
task due to I-cache misses, branch mispredictions, and takeriS N0 easy task. Three primary detractors work to make this
branches in the instruction stream. To further complicate & Very challenging endeavor. First, instruction cache misses
matters, a VLSI interconnect scaling trend is materializing Stall instruction delivery until instructions are returned from
that further limits the performance of front-end designs in the next level of the instruction memory hierarchy. Sec-
future generation process technologies. ond, the misprediction of the address or direction of a branch

To counter these challenges, we present a fetch architec-forces a pipeline flush, resulting in wasted fetch bandwidth
ture that permits a faster cycle time than previous designs between the time the branch was mispredicted and the time
and scales better with future process technologies. Our de-the misprediction was detected. Third, in modern front-end
sign, called theFetch Target Bufferis a multi-level fetch designs, resolving the target of a taken branch requires an ac-
block-oriented predictor. We decouple the FTB from the in- C€sS to the branch predictor and branch target buffer (BTB).
struction fetch and decode pipelines to afford it the fastest AS @ result, the rate at which these devices can be cycled
clock possible. Through cycle-based simulation and circuit- times the average basic block size places an upper limit on
level delay analysis, we find that our multi-level FTB design instruction delivery rates.
is capable of delivering instructions 25% faster than the best ~ To further compound the challenge of front-end design,
single-level BTB-based pipeline configuration. Moreover, we & process technology trend is materializing that will make it

show that our design scales better to future process technolo-more difficult to design fast front-endsg., front-ends with
gies than traditional single-level designs. low cycle times. Looking ahead a few process technology

generationsd.g, 0.18:m and 0.1Qum)! it becomes appar-
ent that the performance (latency) of wires is not scaling as
well as the performance of transistors [2, 3]. Wire perfor-
mance may not scale at all and may even deteriorate in a few
process generations. The problem is worse for large memo-
sor and theexecution core The front-end processor is re- rihes, like those typijca;ly_foqu in ;‘ront-en_d designs, because
sponsible for fetching and preparing g, decoding, renam- they are composed of signi |(?anty more interconnect. La.rge
front-end designs may see little improvement and possibly

ing, etc.) instructions for execution. The execution core or- 2 :
. ) . ) even a reduction in theate at which the processor can de-
chestrates the execution of instructions and the retirement. . . .
liver instructions to the execution core.

of their register and memory results to non-speculative stor- As a result of this trend. architects must start concern
age. Typically, these processing engines are connected by §hg themselves less with tha'mount of logidn the critical
buffering stage of some forne.g, instruction fetch queues gth f 2 desi d instead f 9 t of wira
or reservation stations — the front-end acts as a producer, fiII—tphae cgti:al e;%n grésimr?seva\}i th cl)é::ssvc\)/ir;e willu:atzr;\llllresncale
ing the connecting buffers with instructions for consumption path. Lesig : . y Sce

: better because their latency is more a function of transistor
by the execution core. latency which scales with process feature sizescalable

This producer/consumer relationship between the front- y P

end a”q eX_eCUtlon co_re creates a fund_ame_ntal pOt_ﬂeneCk M 17he notation 0.18m indicates a process fabrication technology with a 0.18 mi-
computing,.e., execution performance is strictly limited by  crometer minimum feature size.

1 Introduction

At a high-level, a modern high-performance processor is
composed of two processing engines: ttoat-end proces-
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designis one that can perform well in the face of process iii. interconnect scaling degrades as process feature size

technology trends - ideally we would like to see performance decreases due to increasing parasitic capacitance ef-
increases commencerate with the feature size scaling factor. fects; if current trends continue, wire latency will no
We predict, given the interconnect scaling bottleneck, a scal- longer scale and may increase in future process gener-
able design will be one with minimal wire lengths on the ations.

critical path of the design.

In this paper, we present a new scalable front-end design. ~ 1here has been a significant amount of analytical [16]
Our design decouples the branch predictors and branch targeRnd empirical [2, 18] analyses of this trend in the process
buffers from the I-cache, to allow maximum performance for t€chnology literature. Recently, these analyses have carried
each. We call this new designFetch Target Buffe(FTB). over into the computer architecture I|terature_ where their ef_—
The FTB organization was chosen to (1) maximize the num- fects_ on the exeputlon core have bgen examined [19]. In this
ber of instructions fetched for each prediction, and (2) per- S€ction we provide a brief introduction to the problem, rc_—:‘ad—
form a useful prediction every cycle. Each FTB entry rep- ©rSare referred to [2] or [19] for a more in-depth analysis of
resents a large variable length sequential fetch block up un-this bottleneck. _
til the next taken branch. In an effort to provide fast cycle 10 better understand why on-chip memory performance
times, while allowing sufficient capacity to maintain history SC@les poorly with process feature size, we need to examine

and targets for a large number of branches, the FTB usesmore closely their structure. On-chip memory devices are
a multi-level memory hierarchy. The top-level (L1) FTB is composed of large two-dimensional arrays of memory cells.

able to store its targets and predictor history into a larger COnnecting these memory cells to other parts of the chip is a

second-level (L2) FTB. Through cycle-based simulation and t@pestry of wire that forms two buses. Terdlinebus runs
circuit-level timing analysis, we show that this multi-level the rows of the array, bringing signals to the cells that indi-

design performs better than traditional single-level designs, @t if the cells are being accessed. biténe bus runs the
and is scalable to future process generations. columns of the array, providing access to memory cell con-
The remainder of this paper is organized as follows. In tents. To access the memory, a decoder “turns on” a row of

Section 2 we detail the interconnect scaling bottleneck and _the memory array by asserting a single wordline, this results

its impact on front-end design. In Section 3 we present a new'" t_he contents of every cell in the row peing asserted on the
scalable front-end architecture, and in Section 4 we detail bitline bus. A MUX at the end of the bitlines is used to select
the organization and operation of the fetch target buffer. In the accessed data. : ) .
Section 5 we describe the methodology used to gather our The latency _Of a memory device, to a first order, is the
results. In Section 6 we evaluate the scalability of the new Igtenc_y to exercise the logic in the_decoder, asse_rt_the word-
designs, comparing the performance of single and two-level line wire, read the memory cell logic, assert the bitline wire,

FTB designs with traditional BTB-based designs, both in the and finally exercise the logic in the bitline MUX to select
cycle and time domains. Section 7 presents related work the accessed data. As the process feature size is scaled, the
' h. latency of the transistors is scaled proportional to their size,

Finally, Section 8 provides a summary and concludes wit ) i . :
thus the latency of the logic scales linearly with feature size

future directions.

reductions.
The latency of the wordlines and bitlines, on the other
2 How Poor Interconnect Scaling Affects Front- hand, does not scale as well dugorasitic capacitancef-
End Performance fects that occur between the closely packed wires that form

these buses. As the technology is scaled to smaller feature

The interconnect scaling bottleneck is as follows: As process Sizes, the thickness of the wires does not scalés a re-
technology feature size scales by a factor S, the performancé“ltv the parasitic capacitance formed betwee_n wires remains
(i.e. delay) of transistors scales linearly at roughly a factor fixed in the new process technology (assuming wire length
S. Wire latency, on the other hand, scales at a rate less thar"d Spacing are scaled similarly). Since wire delay is pro-

S due to parasitic capacitance effects. There are three imporPortional to its capacitance, signal propagation delay over
tant results of this trend: the scaled wire remains fixed even as its length and width

are scaled. This effect is what createsititerconnect scal-
ing bottleneck
Recently, some process technologies have begun em-
ploying copper interconnect aridw-k dielectrics as a way
to reduce the impact of poor interconnect scaling [14, 15].

i. memory structures experience the full extent of
this trend because they are composed of significant
amounts of closely packed interconnect,

ii. |arger memory performance scales worse than small 2The reasons behind poor interconnect thickness scaling are numerous and com-

PR plex. Two main reasons include 1) it is difficult to manufacture thinner wires, and 2)
memory because they are Composed of Slgmflcantly keeping wires thick increases their cross-sectional area, which in turn reduces current

more interconnect, and densities and reliability problems associated with metal electromigration.
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mis-predicted branch target (FTQ) is used to bridge the gap between the branch predic-
mis-fetched branch target f .
| tor and the instruction cache. Every cycle, the branch pre-
dictor will produce a fetch target block prediction and store
|+ Decodel— - - - — Executd it in the FTQ, where it will be eventually consumed by the
instruction cache. The FTQ provides the buffering neces-
I sary to permit the branch predictor and I-cache to operate au-
tonomously; the branch predictor can miss and stall while the
I-cache continues fetching blocks. In contrast, the FTQ al-
lows the branch predictor to work ahead of the I-cache when
it is stalled due to a cache miss or a full instruction buffer.
If the I-cache is multi-ported, multiple valid FTQ entries can

[T
L1 I-Cache
(pipreliried)

fetch block target

L callreturn target be consumed in a single cycle (possibly out-of-order) until
v v ports are exhausted.
L2 Recall from Section 2, the interconnect scaling bottle-
L2 FTB o
I-Cache neck only allows low access latency and good scalability for
small memory arrays. As a result, large instruction caches
Figure 1: A Decoupled Multi-level Front-End. will have to be pipelined to accommodate future clock rates.

Fortunately, the decoupled design only exposes this addi-

tional I-cache latency during branch mispredictions. As
These material lower the resistance and capacitance of wiresan added benefit, pipelining the I-cache makes it easier to
respectively, thereby improving signal propagation perfor- increase the cache size or associativity without impacting
mance. However, these techniques only offer a one time front-end critical path lengths.
reprieve for the first process generation that employs them.  To maintain good branch throughput and scalability it is
Poor interconnect scaling trends continue. It has been shownmportant to make the branch predictors and branch target
that splitting long wires with buffers can reduce their prop- puffers as small as possible. At the same time however, a
agation delay [1]. However, this approach cannot be ap- |arge branch predictor is desirable as this will ensure that we
plied to the the densely packed interconnect of memory ar- have sufficient capacity to predict the direction and targets of
rays without significantly increasing their area (due to many most branches, thereby eliminating most branch mispredic-
buffers). tion latencies. To solve this conundrum we turn to the time-

Front-end designs tend to contain a significant amount tested solution of multi-level memory hierarchies, and use

of on-chip memory - in the branch predictors, BTBs, and |- a multi-level branch prediction architecture called Eetch
caches. As a result, future generation front-end designs will Target Buffe(FTB).
scale poorly unless architects strive to limit the amount of To further improve instruction delivery throughput, the
wire on the critical paths of their designs. One effective ap- FTB is crafted to return information about the dynamic in-
proach to reduce wire lengths is to decrease the size of memstryction stream each cycle it is accessed. It does this by
ory structures in the critical path of the front-end design. In predicting the address and size fetch blocks A fetch
the following section, we present a new scalable front-end pjock is a sequence of instructions starting at a branch target,
design that attains this goal while at the same time provid- and ending with a strongly biased taken or unbiased branch.
ing competitive cycle times and prediction rates compared to Branches which are biased and not taken may be embedded

traditional front-end designs. within fetch blocks. This optimization permits fetch block
sizes to increase without cost. Since a strongly biased not
3 A Scalable Front-End Architecture taken branch does not change the flow of control, we can

predict this branch by simply ignoring it. Our predictor al-

In this section we describe our scalable front-end architec- location policy (described later) ensures that strongly biased
ture illustrated in Figure 1. To create a scalable design, we not taken branches are embedded within fetch blocks.
decouple the I-cache from branch predictor, thereby elimi- During operation, the FTB provides branch address and
nating this large and slow memory from the front-end critical target predictions. It is tagged and split into multiple levels.
path. Note that this implies that the instruction cache has its Predictor history and branch target data is demand fetched
own local fetch address to control the cache fetching, and the(or prefetched) from the L2 FTB into the L1 FTB. To mini-
branch predictor has its own local PC to control the branch mize FTB access latency, only the information necessary to
predictions. The PC used for the current cycle’s branch pre- cycle thenext PCcomputation is stored within it. Each cy-
diction, will be used in a subsequent cycle for the cache fetch cle, the FTB produces a starting address for the next fetch
address. block, the address where the fetch block ends, and the pre-

To provide a decoupled front-endFatch Target Queue  dicted target address (fall-through or taken) to be used for
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the prediction in the next cycle. These addresses are storedor all basic blocks. Storing non-taken basic blocks wastes
in an FTQ entry after each prediction, and are consumed inBBTB entries, and decreases the size of fetch blocks, which
subsequent cycles by the instruction cache. requires additional predictions to traverse what could have
been one larger fetch block.

The second change we made to the BBTB design is that
we do not store the full fall-through address in our FTB. In-
stead, we store only the pre-computed lower bits of the fall-
through address along with a carry bit used to calculate the
rest of the fall-through address [6]. This helps reduce the
amount of storage for each BBTB entry, since the typical
distance between the current fetch address and the BBTB's
fall-through address is not large.

Our Fetch Target Buffer (FTB) design is shown in Fig-

Branch Target Buffers (BTB) have been proposed and eval- ure 2. The FTB table iS accessed W|th the start addl‘eSS Of
uated to provide branch and fetch prediction for wide issue @ fetch target block. Each entry in the FTB contains a tag,
architectures. A BTB entry holds the taken target address fortaken address, partial fall-through address, fall-through carry
a branch along with other information, such as the type of the bit, branch type, oversize bit, and conditional branch predic-

branch, conditional branch prediction information, and pos- tion information. The FTB entry represents tsiart of a
sibly the fall-through address of the branch. fetch block. The fall-through address minus 4 represents the

Perleberg and Smith [21] conducted a detailed study into location of a branch that ends the fetch block. The goal is for
BTB design for single issue processors. They even looked fetch blocks to end only with branches that have been taken
at using a multi-level BTB design, where each level contains during execution. If the FTB entry is predicted as taken, the
different amounts of prediction information. Because of the faken address is used as the next cycle’s prediction address.
cycle time, area costs, and branch miss penalties they weredtherwise, the fall-through address is used as the next cy-
considering, they found that the “additional complexity of Cle’s prediction address.

4 Fetch Prediction Architectures

In this section we describe prior branch target buffer archi-
tectures. We then describe our multi-level fetch target buffer
design to provide fetch prediction for our decoupled front-
end.

4.1 Branch Target Buffers

the multi-level BTB is not cost effective” [21]. Technology As described earlier, the fall-through address is not
has changed since their study, and as we show in this paper$tored in its entirety in the FTB entry. Only th€ low
a multi-level branch prediction design is advantageous_ order bits of the faII—through address are stored along with

Yeh and Patt proposed usingasic Block Target Buffer ~ @ carry bit. If the carry bit is not set, the complete fall-
(BBTB) [30, 31]. The BBTB is indexed by the starting ad- through address is calculated by concatenating the upper
dress of the basic block. Each entry contains a tag, type in-address_size — N bits of the current fetch address with the
formation, the taken target address of the basic block, and the/V fall-through address bits stored in the FTB entry. If the
fall-through address of the basic block. If the branch ending carry bit is set, the complete fall-through address is calcu-
the basic block is predicted as taken, the taken address idated by adding one to the uppeddress_size — NN bits of
used for the next cycle’s fetch. If the branch is predicted as the current fetch address, and then concatenating this with
not-taken, the fall-through address is used for the next cycle’sthe IV fall-through address bits stored in the FTB entry. The
fetch. If there is a BBTB miss, then the current fetch address calculation of adding the carry bit to the upper bits of the PC
plus a fixed offset is fetched in the next cycle. In their design, iS done in parallel with the FTB lookup. Then if the branch is
the BBTB is coupled with the instruction cache, so there is Predicted as not-taken, the carry bit chooses between the two
no fetch target queue. If the current fetch basic block spansPossible values for the upper bits of the fall-through address,
several cache blocks, the BBTB will not be used and will sit @nd then performs the concatenation.
idle until the current basic block has finished being fetched. ~ The size of theV partial fall-through bit field determines
In comparison, our decoupled front-end and FTQ allow our the size of the fetch blocks that can be represented in the

FTB predictor to speed ahead of the I-cache, potentially per- fetch target buffer. If the fall-through is farther thafi in-
forming a useful prediction every cycle. structions away from the start address of the fetch block, the

fetch block is broken into chunks of si22', and only the
last chunk is inserted into the FTB. The other chunks will
4.2 Fetch Target Buffer miss in the FTB, predict not-taken, and set the next PC equal
The branch prediction architecture we model in this paper is to the current PC plug”, which is the max fetch distance.

an extension of the BBTB design by Yeh and Patt [30, 31], An oversize bitis used to represent whether or not a fetch
with two changes to their design. The first change is that block spans a cache block [30]. This is used by the instruc-
we do not store basic blocks in our fetch target buffer that tion cache to determine how many predictions to consume
are fall-through basic blocks or basic blocks with branches from the FTQ in a given cycle. We simulated our results
that are seldom taken [6]. The BBTB design stores an entry with two I-cache ports. The oversize bit is used to distinguish
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Figure 2: The Fetch Target Buffer.

whether a prediction is contained within one cache block or For good predictor performance, especially for machines
if its fetch size spans two or more cache blocks. If the over- with deep speculation and large instruction windows, it be-
size bit is set, the predicted fetch block will span two cache comes beneficial to recover branch history in the event the
blocks, and the cache will use its two ports to fetch the first processor detects a mispredicted branch. This is even more
two sequential cache blocks. If the bit is not set, the predic- important in our scalable front-end architecture design, be-
tion only requires a single cache block, so the second portcause the branch predictor can get several predictions ahead
can be used to start fetching the target address of the nexbf the instruction cache fetch. To facilitate the recovery of
FTQ entry. branch history, a smalBpeculative History QueuGHQ)
holds the speculative history of branches. When branches are
predicted their updated local or global history is inserted into
the SHQ. When predictions are made, the SHQ is searched
in parallel with the L1 FTB, if a newer history is detected

in the SHQ, it takes precedence over the history in the L1
FTB. Entries are only allocated in the SHQ when the his-
tory changes; this reduces capacity requirements in the SHQ.
When the branch at the end of a fetch block retires, its spec-
ulative history is written into the FTB. When a misprediction

The branch direction predictor shown in the FTB in Fig-
ure 2 is a hybrid predictor with a meta-predictor that can se-
lect between a local history-based predictor, a global history
predictor, and a bimodal predictor. Other combinations are
possible, as well as non-hybrid predictors. The local history
is composed of the lag{ branch directions for the branch at
the end of the fetch block. The local branch history is used to
index the pattern history table, returning a pattern prediction.

The global hlstqry IS XORed with the fetch_block address is detected, the point in the SHQ of the mispredicted branch
and used as an index into a global pattern history table. Theand later allocated entries are released. The SHQ is kept
meta-prediction is used to select between the various predic-Srnall to keep it off the critical path of the L1 FTB. If the
tions available, depending on the specifics of the design. Thespeculative history queue becomes full, the oldes.t entry is
meta-predictor is typically implemented as a counter 1o se- written into the FTB. Skandroat al indebendently devel-
lect between two predictions or as a per—predictorconfidenceOped a similar apprbach for recov.;ering branch history, and
mechanism to select amongst three or more predictors. Thethey provide detailed analysis of their design in [26] '
final prediction result is used to select either the target ad- '
dress of the branch at the end of the fetch block or the fetch ~ The meta predictor, bimodal, and 2-bit pattern history ta-

block fall-through address. ble values are not updated speculatively. The front-end can
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only assume it made the correct prediction and thus reinforceremove the LRU entry from the corresponding L1 FTB set,
bimodal or pattern history predictions. It has been shown and insert the entry brought in from the L2 FTB. The entry
in [13] that better performance results when the meta predic-removed from the L1 FTB, is then inserted into the L2 FTB
tor and 2-bit PHT updates are delayed until the result of the also using LRU replacement.

branch outcome is knowne., at execute or retirement. L1 ETB Miss and L2 ETB Miss _ If the L2 FTB indicates

tsllanée_:he FTB”ca:n tr;:aketpredl%téons fartbel)(/qfn_(til thedqutr- the requested FTB entry is not in the L2 FTB, the L1 FTB
ren » It can pofiute the return address stack It it predicts oo o5 siate where it continually injects sequential fetch

:glégl\fi? Crilfc‘zg?]irser:]usr?s'rgt'jrgiﬁzssstzz:ykt?oﬁii%‘::gi?g?:sblocks into the machine until a misprediction is detected in

Simply IZeeping track of the top of stack is not sufficient [25] the dggodg or writeback stage of the.processor. Onc.e amis-

as the predictor may encounter several returns or calls do\;vnpredlctlpn 'S det.ected, the. L1 FTB will be updated with the
correct information regarding this new fetch block, and then

a misspeculated path that will affect more than just the top the L1 FTB will once again begin normal operation. By in-
of stack. We use two return address stacks to solve this prob-

. . . jecting fetch blocks sequentially into the machine, it's pos-
Iem_. One |s_speculat|ve (S'R.AS) and is updated by the FTB sible to partially overlap the generation of FTB entries with
during prediction. The other is nonspeculative (N-RAS) and their execution
is updated during writeback. When a misprediction is de- '
tected, the S-RAS will likely be polluted and can be recov- Branch Misprediction Recovery In the decode stage, the
ered from the N-RAS. Then prediction can restart as normal, predicted direction of unconditional branchesg, jumps,
using the S-RAS. This provides accurate return address pre<alls and returns, and the targets of direct branahegs,PC
diction. Additional analysis of our RAS recovery mechanism relative and absolute, are validated. In the writeback stage,

and our SHQ design can be found in [22]. the targets of indirect branches and the direction of condi-
tional branches are validated. Fetch block targets and sizes
4.3 Functionality of the 2-Level FTB are propagated down the pipeline with instructions. During

validation, if a branch target does not match the accompa-
The L1 FTB is accessed each cycle using the predicted fetchnying fetch block, a branch misprediction recovery sequence
block target of the previous cycle. At the same time, the is initiated. The FTB entry is updated with the correct fetch
speculative history queue, the return address stack, and théslock information, misspeculated entries in the speculative
global history prediction table are accessed. If there is an L1 history queue are released, and the pipeline is flushed behind
FTB hit, then the fetch block address, the oversize bit, the the misspeculated branch. In any event, the prediction his-
last address of the fetch block, and the target address of thetory of branches is updated. To facilitate the embedding of
fetch block are inserted into the next free FTQ entry. strongly biased not-taken branches within fetch blocks, not

L1 FTB Miss and L2 FTB Hit  If the L1 FTB misses, the taken branches do not update history or create FTB entries

L2 FTB needs to be probed for the referenced FTB entry. To unless they are alread)_/ _contained in the F.TB and at the tail
speed this operation, the L2 FTB access begins in paraIIeIOf a fetch block. In addition, new FTB entries are only allo-
with the L1 FTB access. If at the end of the L1 FTB access cated when branches are taken.

cycle a hit is detected, the L2 FTB access is ignored. If an

L1 miss is detected, the L2 FTB information will returnin 5 Methodology

N — 1 cycles, whereV is the access latency of the L2 FTB

(in L1 FTB access cycles). On an L1 FTB miss, the predic- The simulators used in this study are derived from the Sim-
tor has the target fetch block address, but doesn’t know thepleScalar/Alpha 3.0 tool set [5], a suite of functional and tim-
size of the fetch block. To make use of the target address, theing simulation tools for the Alpha AXP ISA. The timing sim-
predictor injects fall-through fetch blocks starting at the miss ulator executes only user-level instructions, performing a de-
fetch block address into the FTQ with a predetermined fixed tailed timing simulation of an aggressive 8-way dynamically
length. Once the L2 FTB entry is returned, it is compared scheduled microprocessor with two levels of instruction and
to the speculatively generated fetch blocks: if it is larger, an- data cache memory. Simulation is execution-driven, includ-
other fetch block is generated and injected into the FTQ. If ing execution down any speculative path until the detection
it is smaller, the L1 FTB initiates a pipeline squash at the of a fault, TLB miss, or branch mis-prediction.

end of the fetch block. If the fetch target has not made it To perform our evaluation, we collected results for six of
out of the FTQ, then no penalty occurs. If the fetch target the SPEC95 C benchmarks plus 2 C++ prograBreff is
was being looked up in the instruction cache, those instruc- a text formatting program, andeltablue  is a constraint
tions are just ignored when the lookup finishes. In our mod- solving system. The programs were compiled on a DEC Al-
els, we achieved good performance with L2 FTBs that have pha AXP-21164 processor using the DEC C and C++ com-
shorter latencies than one would use for a first level instruc- pilers under OSF/1 V4.0 operating system using full com-
tion cache, so this was not a problem. The final step is to piler optimization {O4 -ifo ). Table 1 shows the data set
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bus latency to main memory with a 10 cycle bus occupancy

#instr #instr | % br . . .
Program Input | fwd (M) | exec (M) | exe per request. Thereis a 32 entry E_S-vyay associative instruction
compress|| ref 0 93 | 139 TLB and a 32 entry 8-way associative data TLB, each with a
deltablue || ref 0 9 | 17.0 30 cycle miss penalty.
gcc 1cp-decl 400 1041 | 17.3 . . .
groff someman 0 52 | 17.3 For this paper, we used the McFarling gshare predic-
go Sstone2l| 2000 | 32699 | 14.0 tor [17] for our conditional branch predictor. The predic-
ijpeg specmun 2000 34716 | 10.5 . s .
i ref 2000 | 18089 | 19.1 tor has a 2-bit meta-chooser and a 2-bit bimodal predictor,
m88ksim || ref 2000 76271 | 14.8 both stored in the FTB (or BBTB) entry with the branch.
perl scrabbl 2000 | 28243 16.1 In addition, a tagless Gshare predictor is also available, ac-
vortex vortex 2000 90882 | 14.7

cessed in parallel with the L1 FTB. The meta-chooser is in-
cremented/decremented if the bimodal/Gshare predictors are
Table 1: Program statistics for the baseline architecture. correct. The most significant bit of the meta-chooser selects
between the bimodal and Gshare predictions.

we used in gathering results for each program, the number of
instructions executed in the program to completion (in mil-
lions), and the percent of executed branches in each program5.2  Timing Model
Also shown is the number of instructions that were executed
(fast forwarded) before actual simulation. Results are then
reported for simulating each program for up to 100 million
instructions.

We report our results using device timing metrics for four
process technologies gathered using a modified version of
the Cacti cache compiler [29]. Cacti contains a detailed

) ) model of the wire and transistor structure of on-chip memo-
5.1 Baseline Architecture ries. We modifiedCactito model a BBTB, FTB, and tagless
branch predictors, and extended the @80process model

Our baseline simulation configuration models a future gen- t0 include timings for 0.36m, 0.18:m. and 0.1gum pro-

eration out-of-order processor microarchitecture. We've se- ) . |
cesses. The 0.80n process is a previous generation pro-

lected the parameters to capture underlying trends in mi- ; . - )
croarchitecture design. The processor has a large window®€>S W'th 0.80 mlcrton mlnlr?um feature S|zeds£hThﬁeinsz5
of execution; it can fetch up to 8 instructions per cycle and process 1s a current generation process, and the

issue up to 16 instructions per cycle. It has a 128 entry re- 0.1Qum processes represent future generation technologies.

order buffer with a 32 entry load/store buffer. Loads can only ]'cl'he 018;%73] 0(')3;_””1’ and 0.1gm prociess parametetrs darel
execute when all prior store addresses are known. In addi- rom [19]; the 0.1@km process parameters are expected val-

. . . . . ues based on empirical analysis of experimental fabrication
tion, all stores are issued in-order with respect to prior stores. p y P

To compensate for the added complexity of disambiguating processes, taken from [2]. The specifics ofﬂm:nor?-ch[p
loads and stores in a large execution window, we increased e Mo model and process models used are detailed in [22].
the store forward latency to 3 cycles. Table 2 lists the front-end architectures analyzed and
There is an 8 cycle minimum branch mis-prediction their timing parameters for the four process technologies.
penalty. The processor has 8 integer ALU units, 4- The table lists the FTB sizes (in number of entries), and FTB,
load/store units, 2-FP adders, 2-integer MULT/DIV, and 2- branch predictor, and cache latencies (in clock cycles). The
FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 3 latencies are shown for each process technology in the fol-
cycles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult lowing order: 0.8@m, 0.35um, 0.18um, and 0.1@m tech-
4 cycles, and FP DIV 12 cycles. All functional units, except nologies. The latencies for the L2 FTB, I-cache, and D-cache
the divide units, are fully pipelined allowing a new instruc- were selected by dividing the access times for these devices
tion to initiate execution each cycle. by the access latency of the L1 FTB. Since these devices have
The processor we simulated has a 64k 2-way set- a multiple cycle latency, we simulate them as fully pipelined
associative direct-mapped instruction cache and a 64k 4-waymemories. We scaled the branch predictors to the maximum
set-associative data cache. Both caches have block sizes ofize that could be accessed in less time than the L1 FTB. The
32 bytes. The data cache is write-back, write-allocate, andtiming of the devices sometimes changed between process
is non-blocking with 2 ports. The data cache is pipelined technologies due to varied interconnect scaling effects. All
to allow up to 2 new requests each cycle. There is a uni- FTB organizations are 4-way set-associative. L1 FTB access
fied second-level 1 MB 4-way set-associative cache with 64 latencies (in nanoseconds) are listed in the column labeled
byte blocks, with a 10 cycle cache hit latency. If there is ¢, min. The size of L1 FTB entries varies depending on the
a second-level cache miss it takes a total of 120 cycles tosize of the tag used, although most experiments have about 8
make the round trip access to main memory. We model the bytes of data per entry.
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Config L1 FTB/BTB Predictor L2 FTB I-cache | D-cache ter MIN

size | Tatency | size [ Tatency | size [ Tatency | latency | latency (ns)
F64 64 | 1,111 4k | 1,1,1,1| n/a nla| 2,234 2,2,3,4 | 6.05,2.03,1.03,0.76
F256 256 | 1,1,1,1 8k [ 1,1,1,1| n/a nla| 2,2,2,3 2,2,3,3| 6.33,2.21,1.16,0.95
F1k ik | 1,2,2,1( 16k | 1,1,2,1| n/a nla| 2,2,2,2 2,2,2,2 | 7.06,2.55,1.44,1.30
F4k 4k | 1,1,1,1| 16k | 1,1,1,1| n/a nla| 2,2,2,2 2,2,2,2 | 8.30,3.40,2.07,2.03
F8k 8k | 1,1,1,1| 16k | 1,1,1,1| n/a nal| 1,1,1,1 1,1,1,1| 9.16,3.91,2.57,2.68

F64x1k 64 | 1,111 4k | 1111| 1k | 2,222| 2,234| 2,234 6.052.03,1.03,0.7§
F64x4k 64 | 1,111 4k | 1111| 4k | 2223]| 2234| 2234] 6.052.03,1.03,0.7§
F256x1k | 256 | 1,1,1,1| 8k | 1,1,1,1| 1k | 2,222| 2,223| 22,33 6.33,2.21,1.16,0.95
F256x4k | 256 | 1,1,1,1| 8k | 1,1,1,1| 4k | 2,222| 2,223| 2233 6.33,2.21,1.16,0.95

Table 2: Analyzed Configurations. L1 and L2 FTB sizes are listed in terms of total number of entries. I-cache and D-cache sizes
are all 64k bytes. F64x1k stands for a 64 entry L1 FTB with a 1k entry 2nd level FTB. n/a indicates the field is not applicable
to the listed configuration.

6 Results
1 Level FTB 2 Level FTB
: . . 64 ent 64-1K ent
First we present a comparison of the BBTB design and the fetch %igrry Ycor | fetch T Y%cor %};J({r YhCOr

single-level FTB design. Next, we compare our single level | program || size | pred | miss || size | L1 L2 | miss
FTB to a two level FTB, presenting results in Instructions [ compress]| 5.7 [ 704 137 5.7 ] 723 03] 127
Per nanoSecond (IPS). We then investigate how the perfor{ deltablue || 6.6 | 567 49} 59 642] 9.6 32

) cc 77| 353| 103 65| 49.3| 171 | 7.7
mance of th_e FTB tolerates changes in factors such as the go 771 551 | 125! 70| 632| 53| 99
number of bits allocated to the fetch distance and variance| groff 80| 311| 85 6.5| 47.7| 239 6.8
in the size of the FTQ. For all of the FTB results we used | IP€9 75| 846 128) 75| 847\ 00} 128

. . . . . l 62| 627| 36| 55| 704| 91| 20
a fetch distance of size 16 instructions (4 bits for the par- | masksim || 74| saol 791l 65| 856| 00| 37

tial fall-through address), which we found to be sufficient as | perl 85| 187 | 11.3 63| 443| 325| 78
described in Section 6.3. Finally, the scalability of the FTB [Vortex 97] 291 177 83| 499] 199 ] 16.6
across different feature sizes is considered. [average || 7.5] 528] 103[ 66] 632] 118] 83]

6.1 BBTB Comparison Table 3: FTB Performance. Average fetch block size pro-
vided by the FTB, along with the percent of fetch block pre-
dictions that were correct when hitting in the first (L1) or
second (L2) level FTB, and the percent of correct predictions
that occurred when missing in the FTB.

Figure 3 shows IPC results comparing the BBTB design our
single-level FTB configurations. Both architectures were
simulated with a coupled front-end (no FTQ) to provide a fair
comparison with non-pipelined caches. Overall, the FTB de-
signs provide slightly better fetch bandwidth than the BBTB
designs, since the FTB does not need to store every encoun-
tered basic block (branch) - only those that have been taken@ 1K entry second-level FTB (64-1K). The average fetch
in the past. block size is the dynamic size obtained for predictions on the
Figure 3 shows that a small 64 entry FTB can hold the non-speculative path. The correct prediction rates show the
majority of branches executed lspmpress , ijpeg , and percent of time the FTB provided a correct prediction from
m88ksim whereas the rest of the programs benefit from €ach FTB level, and the percent of time predicting a fixed
having a large FTB. For all programs, little performance gain fall-through fetch distance was correct for an FTB hierarchy
is seen when increasing the predictor size beyond 4K entriesMiss. For a miss, a fall-through fetch block of size 16 in-
The results show that the FTB design consistently outper- Structions is predicted. Once an FTB entry has been brought
formed or performed as well as a comparably sized BBTB into the first level from the second level, itis countedas a L1
design. The remainder of the results compare the perfor-correct prediction for all subsequent predictions - until it is

mance of the two-level FTB with the single level FTB. again swapped out of the first level. The average fetch block
size of the single level FTB configuration is higher due to

increased FTB misses. On FTB misses, the large fixed fetch
distance (16 instructions) is predicted which makes the av-
Table 3 shows the average fetch block size in instructions erage fetch block size larger, but also increases the chance
and the percent of correct predictions provided by a 64 entry of including a taken branch. The two-level FTB structure
single-level predictor, and a 64 entry first level FTB with provides a total of 83.3% correct fetch block predictions on

6.2 Two-level FTB Performance
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Figure 3: Instruction Per Cycle for BBTB and single-level FTB configurations.
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Figure 4: Fetch Target Buffer performance for Qui®feature size. Simulation results are shown in terms of the number of
committed instructions per nano-second, which is computed from the IPC and cycle time used to simulate each configuration.

average, with an average fetch size of 6.6 instructions. benchmarks using the 0.46: timing and simulation mod-

To fully assess the tradeoffs between different table sizesels. The results show an average speedup of 25% using a 64
and the multi-level designs, we need to also look at their im- entry L1 FTB with a 1K entry L2 FTBE64x1k ) in compar-
pacts on circuit performance. By combining the IPCs mea- ison to the best performing single level FTB desi§2%6).
sured by the simulator with the front-end cycle time com- The results show that the larger designs have fallen behind in
puted by ourCacti memory models shown in Table 2, we performance. Thelk, F4k, andF8k designs, while having
can compute the instruction delivery rates for each of the very good IPCs, also have long access latencies which works
designs.? We report results in terms of of the number of to reduce their front-end cycle times. The increases in IPC
Instructions Per nanoSecorftPS), which is the number of ~ do not offset the impacts to cycle time and all these designs
instructions committed each nano-second. To calculate thisperform poorly. The two-level FTB designs perform best in
number we divide the IPC by the cycle time of the front end almost all cases. These designs have fast cycle times and at
(FTB). Remember that the second-level FTB, I-cache, and the same time the L2 FTB provides additional resources in
D-cache have additional latency for accessing them sincewhich to store prediction and target information.

::ri]eez :rzgvsrﬂi“?aegéozr these simulations based on the laten- The rgsults fom88ksim show that thé-64 FTB single-
) - ] ) ) level design outperforms the64x1K FTB. This is due to
Figure 4 shows the instruction delivery rates in IPSforall tgych piock fragmentation. If a branch inside a fetch block
3Technically, these rates represent thaximuminstruction fetch rates possible 1S mfrequer-]tly taken, it WI" _Stl” cause that-fetCh block to
with the propoys’ed designs. Aplonger critical path elsewhere in the marz:hine could be broken into two ent_rles in the FTB ThIS effect causes
reduce the front-end cycle time and instruction delivery rate. the fetch block to require two predictions in order to fetch
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it. Since theF64x1K case has more capacity, it holds on . . L . . .
to the fragmented fetch blocks, whereas B2l case may W1bit DO2bits @3bits B4bits E5bits L6 bits
replace the fragmented blocks with other entries. If the entry2 1009

is replaced and then brought back in again, the branch thab . I = LY :- -
caused the fragmentation may not be encountered as také’h ;
again, which will allow larger fetch blocks to be delivered <‘5 80% 1 — 1 [ B
into the FTQ with only one prediction. This is confirmed g :,: 2 Q N
by Table 3, which shows that the single-level FTB has onlyS Py N N "
T . L 2 60% | N ) . . -
a 84% correct prediction rate fan88ksim , which is lower ¢ N o P
than the 85.6% correct prediction rate of L1 FTB hits for © W M P
the two-level design. The additional performance for single-c 2 0% | A || =
level FTB comes from having 7.9% correct predictions from3
missing in the FTB, whereas the two-level FTB only geth
3.7% correct predictions from missing in the FTB. g 20% B
8
6.3 FTB Design Parameters = o%
_ _ g 8 & % & < T 8 5
Figure 5 shows how many bits are used to represent fetch diss ® > & = S g
©

compress
deltablue
m88ksim

tances over all nonspeculative FTB predictions for a giverf-
benchmark. The size of the fetch distance represents the
number of bits needed to represent the partial fall-through
address in Figure 2. The categories are disjoint and re-
sults are shown for the64+1K configuration. For example,
on average, 18.9% of predictions used only 1 bit for their
fetch distance (corresponding to a distance of 1 instruction), W0 0O1 [E2-3 @47 R@8-15 [016--31 H32
23.7% used exactly 2 bits (corresponding to a distance of 2-4, 100%
instructions), and 91.2% of all predictions could have beenf’:_,’
covered with 4 bits (a maximum distance of 16 instructions).(§
This demonstrates that increasing the number of bits alloQ 80% 7|
cated to fetch distance in a FTB entry beyond 4 or 5 bits
will not result in improvement. To test this, we simulated re- 7
sults with larger branch distance fields in the FTB entry. Ours
confirmed that fetch distances past 16 instructions do not apg
preciably improve either performance or prediction accuracyZ 40% -
for the programs examined. ;
Figure 6 shows the percent of cycles in which there weregp
a given number of occupied FTQ entries. These results shovg
how far the predictor was able to run ahead of the fetch unit©
On average, the FTQ is empty 21.1% of the time, and it |s°
completely full 10.7% of the time. Some programs, such8
asijpeg , fill up the FTQ a lot faster than they consume g
entries, which indicates that instruction cache stalls and re™
source contentioni.€. a full reorder/instruction buffer) are
preventing the fetch unit from consuming FTQ entries as
rapidly. m88ksim has an empty FTQ a larger proportion of
the time than other programs, which indicates that the FTB
is not keeping up with the speed of the fetch unit. Again, this
can be traced back to the fragmentation of fetch blocks in the that it will deliver good performance in a particular imple-

Figure 5: Percent of FTB predictions requiring a given num-
ber of bits to represent the fall-through fetch distance.

60% -

| T e D T T T

gce
go

groff
peg
m88ksim
average
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o 3
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Figure 6: Percent of cycles with a given number of occupied
FTQ entries during execution.

FTB for m88ksim . mentation, and scalable, so that the investment in designing
the initial implementation and later improving it can be car-
6.4 Scalability ried forward into future process generations. Figure 7 shows

the performance of the analyzed workload in IPS across four
When designing a high-performance front-end architecture, process technologies shown in Table 2. Each data point rep-
the ideal design is one that is both fast and scalable. Fast, saesents average performance across the entire benchmark set.
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and block-structured ISAs [11].

- & - -F64
— e—F256 Starket. al, [27] proposed an out-of-order fetch mecha-
— & — F1024 nism that features a decoupled branch target buffer that can
go] —e—F409 continue cycling independent of instruction cache misses, to
S 2 7= %= -F8102 provide non-blocking I-cache fetch addresses. Their idea is
8 —o6—F64x1024 similar to our decoupled front-end design, except there is no
n - = - -F64x4096 FTQ to allow the predictor to run ahead of the fetch unit.
e 15 | |7 T Fasexi024 Several architectures have been examined for efficientin-
g ' —6—F256x4096 struction throughput including the two-block ahead predic-
— tor [24], the collapsing buffer [9], and the trace cache [23].
S_’ Sezneet. al, [24] proposed a high-bandwidth design based
n 1 on two-block ahead prediction. By predicting not the target
S of a branch but rather the target of the basic block the branch
5 will enter permits pipelining of the criticaiext PCcompu-
2 tation. Conteet. al, [9] proposed the collapsing buffer as
E 0.5 7 a mechanism to fetch two basic blocks simultaneously. The
- 4 design features a multiported instruction cache and instruc-
tion alignment network capable of replicating and aligning
instructions for the processor core. Rotenbetgal, [23]
0 proposed the use of a trace cache to improve instruction fetch

.8um .35um .18um 1um throughput. The trace cache holds traces of possibly non-
contiguous basic blocks within a single trace cache line. A
Figure 7: Impact of Process Technology on Performance. start trace address plus multiple branch predictions are used
to access the trace cache. If the trace cache holds the trace
] ) o . of instructions, all instructions are delivered aligned to the
The graph is drawn on a linear scale _to highlight the scal|r_1g processor core in a single access. Pettedl, [20] extended
effects, if a device’s latency scales with process feature sizéihe grganization of the trace cache to include associativity,

it will be drawn as a straight line with unit slope; less steep narial matching of trace cache lines, and path associativity.
lines indicate poorer scaling properties.

Figure 7 shows that the multi-level FTB designs, espe-
cially the F64x1k andF64x4k , scale across the process
generations. ThE64 andF256 designs also scale well, but
lack the IPC gains afforded by the L2 FTBs, making their de-
sign less attractive. THe1K, F4K, andF8K designs do not
scale as well as the64 based design due to larger on-chip
prediction memories and thus more interconnect in the crit-
ical paths of these designs. TRék andF8k designs have
significantly larger memories on the front-end critical path,
thus they scale poorly in the future generation processes. Th
F8k design even experiences a slight reduction in perfor-
mance in the 0.16m process technology.

8 Conclusions

A scalable front-end architecture was presented and evalu-
ated. The design features the fetch target buffer (FTB), a
multi-level fetch block-oriented target predictor. Simulation-
based evaluations indicate the design is more capable than
traditional BTB designs and single-level FTB designs.
Circuit-level analyses show that the design also features a
é1igher instruction delivery rate, measured in instructions per
nano-second (IPS). For a 0,0 technology, a two-level
FTB design with a 64-entry first level and a 1k-entry second
level provides a 25% improvement in IPS over the best per-
forming single-level designs. When the performance of the
7 Related Fetch Bandwidth Research various designs is examined across multiple process gener-
ations, the multi-level FTB designs exhibit the best perfor-
Much work has been put into the front-end architecture in an mance and scalability of all the designs investigated.
effort to improve the rate of instruction delivery to the execu- We feel our approach is quite promising since it focuses
tion core. Techniques to reduce the impact of I-cache misseson simplicity and raw speed. Unlike techniques that work
include multi-level instruction memory hierarchies [12] and to increase the number of instruction delivered per cycle, we
instruction prefetch [28]. Techniques to reduce the impact were able to gain marked increases in performance while be-
of branch mispredictions include hybrid [17] and indirect [8] ing able to sidestep the very difficult problems of multiple
branch predictors, and recovery miss caches to reduce misbranch and target prediction.
prediction latencies [4]. A number of compiler-based tech- We are currently extending this research in several direc-
nigues work to improve instruction delivery performance. tions. First, we are examining other FTB designs that may
They include branch alignment [7], trace scheduling [10], provide increased fetch block sizes. Second, we are evaluat-
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ing using the FTQ to provide streaming of data from second- [13] S. Jourdan, T. Hsing, J. Stark, and Y. Patt. The effects of mispredicted-
level cache to the first level. If the FTQ is full, because of
I-cache misses or a backed up pipeline, the FTQ entries can

be used to stream in cache blocks from the L2 cache into

a stream buffer, eliminating L1 I-cache misses. Third, we
are extending the multi-level FTB design to provide multiple |15
branch prediction, which will produce multiple FTQ entries
per cycle. Finally, we are comparing the performance of the [16]
FTB to other promising high-fetch bandwidth architectures
like the trace cache. A complete evaluation of some of the [17]

above ideas along with a more detailed description of the

Cacti timing models used in this paper can be found in [22].
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