

Problem

Given a large collection of records,
find similar/interesting things,
i.e., allow fast, approximate queries

Indexing

a primary key indexing

- B-trees and variants
\square (static) hashing
- extendible hashing
- secondary key indexing
- spatial access methods
- text

ㅁ..
an:

Primary Key Indexing

a find employee with ssn=123

B-trees

Most successful family of index schemes

- B-trees
- B^{+}trees
- B*-trees
- Can be used for
a primary/secondary, or a clustering/non-clustering index.
- Balanced "n-way" search trees

B-trees: Example

Here is a B -tree of order 3 :

B-tree Properties (cont.)

- "block aware" nodes: each node -> disk page
- O($\log (N))$ for everything! (ins/del/search)
- typically, if $m=50-100$, then $2-3$ levels
- utilization $>=50 \%$, guaranteed; on average 69%
ant

Range Queries

E.g., 5<salary<8

In

B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B - tree properties

B-trees: Insertion (cont.)

Tree T0; insert ' 8 '

\#\#

B-trees: Insertion (cont.)

Hardest case: Tree T0; insert ' 2 '

ant:

B-trees: Insertion (cont.)

Hardest case: Tree T0; insert ' 2 '

B-trees: Insertion (cont.)
Hardest case: Tree T0; insert ' 2 '

B-trees - insertion

\square Q: What if there are two middles? (eg, order 4)
\square A: either one is fine

B-trees: Insertion Sketch

Algorithm:

1. insert in leaf
2. on overflow: push middle up (recursively - 'propagate split')

- Split preserves all B - tree properties (!!)
- Notice how it grows: height increases when root overflows \& splits
- Automatic, incremental re-organization

Algorithm: Insertion of Key 'K'

find the correct leaf node ' L ';
if ('L' overflows) \{
split 'L' by pushing middle key up to parent 'P';
if ('P' overflows) \{
repeat the split recursively;
\} else \{
add key ' K ' in node ' L '; // maintain key order in ' L '
\}
+27:
21

B-trees: Deletion

Rough outline of algorithm:

- Delete key;
- on underflow, may need to merge

In practice, some implementors just allow underflows to happen...

B-trees: Deletion Cases

- Case 1
delete a key at a leaf - no underflow
- Case 2
delete non-leaf key - no underflow
- Case 3
delete leaf-key; underflow, and 'rich sibling'
- Case 4
delete leaf-key; underflow, and 'poor sibling'

B-trees: Deletion Case 1

Case 1: delete a key at a leaf
Easiest case: no underflow (delete 3 from TO)

B-trees: Deletion Case 1 (cont.)

Easiest case: Tree T0; delete ' 3 '

B-trees: Deletion Case 2 (cont.)

- Case2: delete a key at a non-leaf
- no underflow (eg., delete 6 from T0)

B-trees: Deletion Case 2 (cont.)

- Case2: delete a key at a non-leaf - no underflow (eg., delete 6 from T0)

B-trees: Deletion Case 2 (cont.)

- Case2: delete a key at a non-leaf
- no underflow (eg., delete 6 from T0)

B-trees: Deletion Case 2 (cont.)

- Case2: delete a key at a non-leaf - no underflow (eg., delete 6 from T0)
- Q: How to promote?
- A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)
- Observation: every deletion eventually becomes a deletion of a leaf key

B-trees: Deletion Case 3 (cont.)

Case3: underflow \& 'rich sibling' - e.g., delete 7 from T0

Delete \& borrow

ant

B-trees: Deletion Case 3 (cont.)

Case3: underflow \& 'rich sibling' a e.g., delete 7 from T0

Delete \& borrow

B-trees: Deletion Case 3 (cont.)

- Case3: underflow \& 'rich sibling'
- 'rich' = can give a key, without underflowing
a 'borrowing' a key: THROUGH the PARENT!

Case3: underflow \& 'rich sibling' (eg., delete 7 from T0)

B-trees: Deletion Case 3

B-trees: Deletion Case 3 (cont.)

Case3: underflow \& 'rich sibling' - e.g., delete 7 from T0

Delete \& borrow

"

B-trees: Deletion Case 3 (cont.)

Case3: underflow \& 'rich sibling' - e.g., delete 7 from T0

Delete \& borrow
THROUGH the parent

B-trees: Deletion Case 4

Case4: underflow \& 'poor sibling' - eg., delete 13 from T0)

B-trees: Deletion Case 4 (cont.)

Case4: underflow \& 'poor sibling' - eg., delete 13 from T0)

B-trees: Deletion Case 4 (cont.)

```
Case4: underflow & 'poor sibling'
    \square eg., delete 13 from T0)
- Merge, by pulling a key from the parent
a exact reversal from insertion: 'split and push
    up', vs. 'merge and pull down'
a le.:
```

az

B-trees: Deletion Case 4 (cont.)

Case4: underflow \& 'poor sibling' - eg., delete 13 from T0)

B-trees: Deletion Case 4 (cont.)

Case4: underflow \& 'poor sibling' a eg., delete 13 from T0)

FINAL TREE

B-trees: Deletion Case 4 (cont.)

- Case 4: underflow \& 'poor sibling'
- -> 'pull key from parent, and merge'
- Q: What if the parent underflows?
- A: repeat recursively

Algorithm: Deletion of Key 'K'

locate key 'K', in node ' N '
if(' N ' is a non-leaf node) \{
delete ' K ' from ' N ';
find the immediately largest key 'K1';
$/^{*}$ which is guaranteed to be on a leaf node 'L' */ copy ' K 1 ' in the old position of ' K ';
invoke DELETION on ' $K 1$ ' from the leaf node ' L '; else \{
/* ' N ' is a leaf node */
...next slide...

Deletion of Key 'K' (cont.)

if(' N ' underflows) \{
let ' N 1 ' be the sibling of ' N ';
if(' $N 1$ ' is "rich") $/{ }^{\star}$ ie., N1 can lend us a key */ borrow a key from 'N1' THROUGH parent node;
\} else \{ /*N1 is 1 key away from underflowing */ MERGE: pull key from parent ' P ', merge it with keys of ' N ' and ' N 1 ' into new node; if('P' underflows) \{ repeat recursively \}
\}
\}
$=$

B-trees in Practice (cont.)

In practice:

- no empty leaves;
- pointers to records
practice

B-trees in Practice (cont.)

In practice, the formats are:
leaf nodes: (v1, rp1, v2, rp2, ... vn, rpn)
Non-leaf nodes: (p1, v1, rp1, p2, v2, rp2, ...)

B+ trees: Motivation

B-tree - print keys in sorted order:

Solution: B+ - trees

- Facilitate sequential ops
- They string all leaf nodes together

AND

- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level
ant

B+ trees: Insertion
E.g., insert '2'

5

B*-trees: Deferred Split!

Instead of splitting, LEND keys to sibling! (through PARENT, of course!)

Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; defer splits
- All B-tree variants have excellent, $\mathbf{O}(\log \mathbf{N})$ worst-case performance for ins/del/search
- It's the prevailing indexing method

Performance Aspects of B-trees

Two parameters matter:

- Height H (maximum search path)

$$
\left.H=1+\left\lceil\log _{F} \cdot\left(\Gamma N C^{*}\right\rceil\right)\right\rceil
$$

$\square \mathrm{N}$ is the number of tuples
$\square \mathrm{C}^{*}$ is the average number of entries in a leaf node, and
$\square F^{*}$ is the average number of entries in an index node.

- Size S (number of pages tree occupies)

$$
S=\sum_{i}\left(F^{*}\right)^{i-1}, 1 \leq i<H
$$

B*-trees: Advantages

- Tree becomes
- Shorter,
- More packed, \square Faster
- Rare case: improve together
- space utilization
- speed
- BUT: What if sibling has no room for 'lending'? \pm

Increasing the Fanout	
$\begin{aligned} & \text { Compression } \\ & \quad-\text { Prefix - store differences (suffixes) } \\ & \quad \text { Suffix - store prefixes } \end{aligned}$	
- Prefix compression: sequential scan - "anchor" keys	
\#	

Lehman and Yao - CC on B-trees

- "safe" node: node with <2k entries
- "unsafe" node: node with =2k entries
- Simple CC won't do. Why?

Previous B-tree CC algorithms

- Samadi 1976
- lock the whole subtree of affected node
- Bayer \& Schkolnick 1977
- parameters on degree/type of consistency required - writer-exclusion locks (readers may proceed) upper - exclusive locks on modified nodes
- Miller \& Snyder 1978
- pioneer and follower locks
- locked region moves up the tree
- no modifications

Advantages

- Allows for "temporary fix" until all pointers are added correctly
- Link pointers should be used infrequently - because splitting a node is a "special case"
- "Level traversal" comes for free as a side effect

Algorithms	
- Search	
- No locks needed for reads	
- Insertions	
- Well-ordered locks	
- Use stack to remember ancestors	
- Split while preserving links	
- Deletions	
- No underflows, no merging	
ar	
	74

