
1

Indexing with B-trees

Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2001 Anastassia Ailamaki and Christos Faloutsos

Problem

Given a large collection of records,

find similar/interesting things,
i.e.,

allow fast, approximate queries

3© 2001 Anastassia Ailamaki and Christos Faloutsos

Indexing

� primary key indexing
� B-trees and variants
� (static) hashing
� extendible hashing

� secondary key indexing
� spatial access methods
� text
� ...

4© 2001 Anastassia Ailamaki and Christos Faloutsos

Primary Key Indexing

� find employee with ssn=123

sequential scan

SSN=123

R1

R3

R2

R5

R4

R6

table R
SSN a3a2 a5a4

attributes in a record Rn

R1

R3

R2

R5

R4

R6

using an index

B-tree
on SSN

5© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees

� Most successful family of index schemes
� B-trees
� B+-trees
� B*-trees

� Can be used for
� primary/secondary, or
� clustering/non-clustering index.

� Balanced “n-way” search trees

6© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees: Example

Here is a B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9 >9

2

7© 2001 Anastassia Ailamaki and Christos Faloutsos

B-tree Properties

In a B-tree of order n:

� key order preserved

� at most n pointers

� at least n/2 pointers (except root)

� all leaves at the same level

� if number of pointers is k, node has exactly k-1 keys

� (leaves are empty)

v1 v2 … vn-1

p1 pn

8© 2001 Anastassia Ailamaki and Christos Faloutsos

� “block aware” nodes: each node -> disk page

� O(log (N)) for everything! (ins/del/search)

� typically, if m = 50 - 100, then 2 - 3 levels

� utilization >= 50%, guaranteed; on average 69%

B-tree Properties (cont.)

9© 2001 Anastassia Ailamaki and Christos Faloutsos

Exact-Match Queries

E.g., ssn=8

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk
accesses)

10© 2001 Anastassia Ailamaki and Christos Faloutsos

Range Queries

E.g., 5<salary<8

1 3

6

7

9

13

<6

>6 <9 >9

11© 2001 Anastassia Ailamaki and Christos Faloutsos

Proximity Queries

E.g., nearest neighbor searches: salary ~ 8

1 3

6

7

9

13

<6

>6 <9 >9

12© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees: Insertion

� Insert in leaf; on overflow, push middle up (recursively)
� split: preserves B - tree properties

3

13© 2001 Anastassia Ailamaki and Christos Faloutsos

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

B-trees: Insertion (cont.)

14© 2001 Anastassia Ailamaki and Christos Faloutsos

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

8

B-trees: Insertion (cont.)

15© 2001 Anastassia Ailamaki and Christos Faloutsos

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2

B-trees: Insertion (cont.)

16© 2001 Anastassia Ailamaki and Christos Faloutsos

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

133

push middle up

B-trees: Insertion (cont.)

17© 2001 Anastassia Ailamaki and Christos Faloutsos

Hardest case: Tree T0; insert ‘2’

6

7

9

131 3

22Overflow; push middle

B-trees: Insertion (cont.)

18© 2001 Anastassia Ailamaki and Christos Faloutsos

Hardest case: Tree T0; insert ‘2’

7

9

131 3

2

6

Final state

B-trees: Insertion (cont.)

4

19© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees - insertion

� Q: What if there are two middles? (eg, order 4)
� A: either one is fine

20© 2001 Anastassia Ailamaki and Christos Faloutsos

Algorithm:

1. insert in leaf
2. on overflow:

push middle up (recursively – ‘propagate split’)

� Split preserves all B - tree properties (!!)
� Notice how it grows:

height increases when root overflows & splits
� Automatic, incremental re-organization

B-trees: Insertion Sketch

21© 2001 Anastassia Ailamaki and Christos Faloutsos

find the correct leaf node ‘L’;

if (‘L’ overflows) {

split ‘L’ by pushing middle key up to parent ‘P’;

if (‘P’ overflows) {

repeat the split recursively;

} else {

add key ‘K’ in node ‘L’; // maintain key order in ‘L’

}

Algorithm: Insertion of Key ‘K’

22© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees: Deletion

Rough outline of algorithm:
� Delete key;
� on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

23© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case 1
delete a key at a leaf – no underflow

� Case 2
delete non-leaf key – no underflow

� Case 3
delete leaf-key; underflow, and ‘rich sibling’

� Case 4

delete leaf-key; underflow, and ‘poor sibling’

B-trees: Deletion Cases

24© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case 1: delete a key at a leaf
� Easiest case: no underflow (delete 3 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

B-trees: Deletion Case 1

5

25© 2001 Anastassia Ailamaki and Christos Faloutsos

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9 >9

B-trees: Deletion Case 1 (cont.)

26© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case2: delete a key at a non-leaf
� no underflow (eg., delete 6 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

B-trees: Deletion Case 2

27© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case2: delete a key at a non-leaf
� no underflow (eg., delete 6 from T0)

1 3 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

B-trees: Deletion Case 2 (cont.)

28© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case2: delete a key at a non-leaf
� no underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:3

B-trees: Deletion Case 2 (cont.)

29© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case2: delete a key at a non-leaf
� no underflow (eg., delete 6 from T0)

1 7

9

13

<3

>3 <9 >9
3

FINAL TREE

B-trees: Deletion Case 2 (cont.)

30© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case2: delete a key at a non-leaf – no underflow
(eg., delete 6 from T0)

� Q: How to promote?
� A: pick the largest key from the left sub-tree (or

the smallest from the right sub-tree)

� Observation: every deletion eventually becomes
a deletion of a leaf key

B-trees: Deletion Case 2 (cont.)

6

32© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case1: delete a key at a leaf – no underflow
� Case2: delete non-leaf key – no underflow
� Case3: delete leaf-key; underflow, and ‘rich

sibling’
� Case4: delete leaf-key; underflow, and ‘poor

sibling’

B-trees: Deletion Cases (cont.)

33© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case3: underflow & ‘rich sibling’ (eg., delete 7
from T0)

B-trees: Deletion Case 3

1 3

6 9

13

<6

>6 <9 >9

7

34© 2001 Anastassia Ailamaki and Christos Faloutsos

Case3: underflow & ‘rich sibling’
� e.g., delete 7 from T0

1 3

6 9

13

<6

>6 <9 >9Rich sibling

B-trees: Deletion Case 3 (cont.)

Delete & borrow

35© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case3: underflow & ‘rich sibling’

� ‘rich’ = can give a key, without underflowing
� ‘borrowing’ a key: THROUGH the PARENT!

B-trees: Deletion Case 3 (cont.)

36© 2001 Anastassia Ailamaki and Christos Faloutsos

NO!!

B-trees: Deletion Case 3 (cont.)

1 3

6 9

13

<6

>6 <9 >9Rich sibling

Case3: underflow & ‘rich sibling’
� e.g., delete 7 from T0

Delete & borrow

37© 2001 Anastassia Ailamaki and Christos Faloutsos

Case3: underflow & ‘rich sibling’
� e.g., delete 7 from T0

1 3

6 9

13

<6

>6 <9 >9

Delete & borrow

B-trees: Deletion Case 3 (cont.)

7

38© 2001 Anastassia Ailamaki and Christos Faloutsos

61 3

3 9

13

<6

>6 <9 >9

Delete & borrow

Case3: underflow & ‘rich sibling’
� e.g., delete 7 from T0

B-trees: Deletion Case 3 (cont.)

39© 2001 Anastassia Ailamaki and Christos Faloutsos

61 3

3 9

13

<3

>3 <9 >9

Delete & borrow
THROUGH the parent

Case3: underflow & ‘rich sibling’
� e.g., delete 7 from T0

B-trees: Deletion Case 3 (cont.)

40© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case1: delete a key at a leaf – no underflow
� Case2: delete non-leaf key – no underflow
� Case3: delete leaf-key; underflow, and ‘rich

sibling’
� Case4: delete leaf-key; underflow, and ‘poor

sibling’

B-trees: Deletion Cases (cont.)

41© 2001 Anastassia Ailamaki and Christos Faloutsos

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

B-trees: Deletion Case 4

42© 2001 Anastassia Ailamaki and Christos Faloutsos

1 3

6

7

9<6

>6 <9 >9

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

B-trees: Deletion Case 4 (cont.)

43© 2001 Anastassia Ailamaki and Christos Faloutsos

1 3

6

7

9<6

>6 <9 >9

A: merge w/
‘poor’ sibling

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

B-trees: Deletion Case 4 (cont.)

8

44© 2001 Anastassia Ailamaki and Christos Faloutsos

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

� Merge, by pulling a key from the parent
� exact reversal from insertion: ‘split and push

up’, vs. ‘merge and pull down’
� Ie.:

B-trees: Deletion Case 4 (cont.)

45© 2001 Anastassia Ailamaki and Christos Faloutsos

1 3

6

7

<6

>6

A: merge w/
‘poor’ sibling

9

B-trees: Deletion Case 4 (cont.)

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

46© 2001 Anastassia Ailamaki and Christos Faloutsos

1 3

6

7

<6

>6
9

FINAL TREE

B-trees: Deletion Case 4 (cont.)

Case4: underflow & ‘poor sibling’
� eg., delete 13 from T0)

47© 2001 Anastassia Ailamaki and Christos Faloutsos

� Case 4: underflow & ‘poor sibling’
� -> ‘pull key from parent, and merge’
� Q: What if the parent underflows?
� A: repeat recursively

B-trees: Deletion Case 4 (cont.)

48© 2001 Anastassia Ailamaki and Christos Faloutsos

Algorithm: Deletion of Key ‘K’
locate key ‘K’, in node ‘N’

if(‘N’ is a non-leaf node) {
delete ‘K’ from ‘N’;

find the immediately largest key ‘K1’;
/* which is guaranteed to be on a leaf node ‘L’ */

copy ‘K1’ in the old position of ‘K’;
invoke DELETION on ‘K1’ from the leaf node ‘L’;

else {
/* ’N’ is a leaf node */

…next slide…

49© 2001 Anastassia Ailamaki and Christos Faloutsos

Deletion of Key ‘K’ (cont.)
if(’N’ underflows){

let ’N1’ be the sibling of ’N’;
if(’N1’ is "rich"){ /* ie., N1 can lend us a key */

borrow a key from ’N1’ THROUGH parent node;
} else { /* N1 is 1 key away from underflowing */

MERGE: pull key from parent ’P’, merge it
with keys of ’N’ and ’N1’ into new node;

if(’P’ underflows) { repeat recursively }
}

}

9

50© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees in Practice

In practice:
� no empty leaves;
� pointers to records

1 3

6

7

9

13

<6

>6 <9 >9
theory

51© 2001 Anastassia Ailamaki and Christos Faloutsos

B-trees in Practice (cont.)

In practice:
� no empty leaves;
� pointers to records

1 3

6

7

9

13

<6

>6 <9 >9
practice

52© 2001 Anastassia Ailamaki and Christos Faloutsos

In practice:

1 3

6

7

9

13

<6

>6 <9 >9

1

9

6

7

3

……SSN

B-trees in Practice (cont.)

53© 2001 Anastassia Ailamaki and Christos Faloutsos

In practice, the formats are:
- leaf nodes: (v1, rp1, v2, rp2, … vn, rpn)
- Non-leaf nodes: (p1, v1, rp1, p2, v2, rp2, …)

1 3

6

7

9

13

<6

>6 <9 >9

B-trees in Practice (cont.)

54© 2001 Anastassia Ailamaki and Christos Faloutsos

Overview

� B – trees

� B+ - trees, B*-trees

55© 2001 Anastassia Ailamaki and Christos Faloutsos

B+ trees: Motivation

B-tree – print keys in sorted order:

1 3

6

7

9

13

<6

>6 <9 >9

10

56© 2001 Anastassia Ailamaki and Christos Faloutsos

B+ trees: Motivation (cont.)

B-tree needs back-tracking – how to avoid it?

1 3

6

7

9

13

<6

>6 <9 >9

57© 2001 Anastassia Ailamaki and Christos Faloutsos

Solution: B+ - trees

� Facilitate sequential ops
� They string all leaf nodes together

AND

� replicate keys from non-leaf nodes, to make sure
every key appears at the leaf level

58© 2001 Anastassia Ailamaki and Christos Faloutsos

B+ trees

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

59© 2001 Anastassia Ailamaki and Christos Faloutsos

B+ trees: Insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

E.g., insert ‘2’

60© 2001 Anastassia Ailamaki and Christos Faloutsos

B*-trees: Motivation

� Splits drop utilization to 50%

� May increase height

� How to avoid them?

61© 2001 Anastassia Ailamaki and Christos Faloutsos

B*-trees: Deferred Split!

Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2

11

62© 2001 Anastassia Ailamaki and Christos Faloutsos

B*-trees: deferred split!

� Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE

63© 2001 Anastassia Ailamaki and Christos Faloutsos

B*-trees: Advantages

� Tree becomes
� Shorter,

� More packed,
� Faster

� Rare case: improve together
� space utilization
� speed

� BUT: What if sibling has no room for ‘lending’?

64© 2001 Anastassia Ailamaki and Christos Faloutsos

B*-trees: deferred split!

� BUT: What if sibling has no room for ‘lending’?

� 2-to-3 split
1. get the keys from the sibling
2. pool them with ours (and a key from the parent)
3. split in 3

� Details: too messy (and even worse for
deletion)

65© 2001 Anastassia Ailamaki and Christos Faloutsos

Conclusions

� Main ideas: recursive; block-aware; on overflow
-> split; defer splits

� All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

� It’s the prevailing indexing method

66© 2001 Anastassia Ailamaki and Christos Faloutsos

Performance Aspects of B-trees

Two parameters matter:
� Height H (maximum search path)

H = 1+ logF*( N/C* ) 
� N is the number of tuples
� C* is the average number of entries in a leaf node, and
� F* is the average number of entries in an index node.

� Size S (number of pages tree occupies)

S = ∑i (F*)i-1, 1 ≤≤≤≤ i <<<< H

67© 2001 Anastassia Ailamaki and Christos Faloutsos

Reducing the Number of Leafs

� Increase page size (hard)
� Shorten data length (values, tuples, pointers)

� Is it worthwhile to change the tuples to TIDs?

� No – extra page accesses!

From Gray&Reuter: 1.1 ≤≤≤≤ logF*x must hold

i.e., average fan-out really small or tuples > 1K

12

68© 2001 Anastassia Ailamaki and Christos Faloutsos

Increasing the Fanout

� Compression
� Prefix – store differences (suffixes)
� Suffix – store prefixes

� Prefix compression: sequential scan
� “anchor” keys

69© 2001 Anastassia Ailamaki and Christos Faloutsos

Lehman and Yao – CC on B-trees

� “safe” node: node with <2k entries
� “unsafe” node: node with =2k entries
� Simple CC won’t do. Why?

70© 2001 Anastassia Ailamaki and Christos Faloutsos

Example

15

… …
8 10 12 15

… …
8 9 10 12 15

1510

y

y y’

x

x

Transaction 1:

read x;

look for 15;

get ptr to y;

Transaction 2:

read x; read y;

insert 9

split y into y+y’

ERROR!!!

71© 2001 Anastassia Ailamaki and Christos Faloutsos

Previous B-tree CC algorithms

� Samadi 1976
� lock the whole subtree of affected node

� Bayer & Schkolnick 1977
� parameters on degree/type of consistency required
� writer-exclusion locks (readers may proceed) upper
� exclusive locks on modified nodes

� Miller & Snyder 1978
� pioneer and follower locks
� locked region moves up the tree
� no modifications

72© 2001 Anastassia Ailamaki and Christos Faloutsos

Blink-tree

� Node + P2k+1 – pointer to next node at the
same level of tree

� Rightmost node’s B-link is NULL
� IDEA:

� Splitting is implemented as

� legal to have “left twin” and no parent

73© 2001 Anastassia Ailamaki and Christos Faloutsos

Advantages

� Allows for “temporary fix” until all pointers are
added correctly

� Link pointers should be used infrequently
� because splitting a node is a “special case”

� “Level traversal” comes for free as a side effect

13

74© 2001 Anastassia Ailamaki and Christos Faloutsos

Algorithms

� Search
� No locks needed for reads
� Just move right as well as down

� Insertions
� Well-ordered locks
� Use stack to remember ancestors
� Split while preserving links

� Deletions
� No underflows, no merging

