
 

  

Version 3.2 

8/23/2010 
 

OpenCL Programming 
for the CUDA 
Architecture 

 

   

  

 



 

 

 

2  OpenCL Programming for the CUDA Architecture 
 

  

In general, there are multiple ways of implementing a given algorithm in OpenCL and these 
multiple implementations can have vastly different performance characteristics for a given 
compute device architecture. This whitepaper is a summary of the main guidelines for 
choosing the best implementation on NVIDIA GPUs. More details are provided in the 
NVIDIA OpenCL Programming Guide [ 1 ] and NVIDIA OpenCL Best Practices 
Guide [ 2 ]. 

Heterogeneous Computing 

An OpenCL application executes across a collection of heterogeneous processors: typically, 
a host CPU and one or more GPUs. 

Applications should take advantage of such a configuration by making sure that all 
processors are busy most of the time and by assigning to each processor the type of work it 
does best. The next section goes over the key differences between the CPU and GPU 
architectures and what type of workload is best suited to each. 

Data must be transferred between processors (in the case of discrete GPUs) and for some 
applications these data transfers can represent a significant fraction of the overall execution 
time. Applications must therefore strive to either minimize them or hide them by 
overlapping them with kernel execution. Data transfers can overlap with kernel execution 
only for data allocated with the CL_MEM_ALLOC_HOST_PTR flag as detailed in the 
Programming and Best Practices Guides. Data allocated this way also usually transfer at a 
higher throughput across the PCIe bus. Hence, it is recommended that OpenCL applications 
allocate data with this flag. 

GPU Computing 

In order to distribute a workload appropriately between the CPU and the GPU, it is 
important to understand the differences between the two architectures. 

Highly Multithreaded 

One key difference is in how the two architectures address the issue of accessing off-chip 
memory, a very expensive operation with hundreds clock cycles of latency. CPUs devote a 
lot of transitors to on-chip caches in order to reduce as much as possible the overall latency 
caused by off-chip memory accesses. For applications with no or very little parallelism, this 
latency reduction is the best strategy. For applications with a high number of parallel 
computations, another strategy is to ensure that the processor is always busy with some 
computations while other computations are waiting on memory accesses or at 
synchronization points. In other words, latency is “hidden” rather than reduced. This latency 



 

 

 

OpenCL Programming for the CUDA Architecture 3 
 

hiding strategy adopted by GPUs is schematized in Figure 1. Latency hiding requires the 
ability to quickly switch from one computation to another. A GPU multiprocessor (i.e. a 
compute unit in OpenCL terminology) is therefore designed to support hundreds of active 
threads at once and unlike CPUs, the cost of switching from one thread to another is 
insignificant. 

Hence, OpenCL applications must launch kernels with a large number of work-items or they 
will suffer severe performance penalties. 

High Arithmetic Throughput 

Because off-chip memory latency is assumed to be hidden by running many work-items, 
GPUs devote many more transistors to arithmetic units than to memory cache, thereby 
achieving much higher arithmetic throughput than CPUs. 

SIMT Execution Model 

To increase arithmetic density even further, each GPU multiprocessor has a single 
instruction unit for multiple arithmetic units. The threads running on a multiprocessor are 
partitioned into groups in which all threads execute the same instruction simultaneously. On 
the CUDA architecture, these groups are called warps, each warp has 32 threads, and this 
execution model is referred to as SIMT (Single Instruction Multiple Threads) (see [ 3 ] for 
more details on the SIMT architecture and how it differs from SIMD vector organizations). 

The SIMT execution model is not exposed in OpenCL, but for some kernels, it must be 
taken into consideration to achieve best performance. 

High Memory Bandwidth 

To achieve high arithmetic throughput, applications need high memory throughput as well. 
For this reason, GPUs offer higher memory bandwidth than CPUs – typically an order of 
magnitude higher – and several specialized memory types that OpenCL applications may 
leverage in order to maximize memory throughput. Maximizing memory throughput is even 
more critical going forward, given that memory bandwidth will increase at a slower rate than 
arithmetic throughput in future processor architectures. 

On the CUDA architecture, memory accesses are performed per warp. If addressing by the 
threads of a warp meets specific requirements, the accesses for an entire warp may result in 
only a few memory transactions. This coalescing is crucial for performance, so it is usually the 
first optimization to consider. 



 

 

 

4  OpenCL Programming for the CUDA Architecture 
 

                

 

Figure 1. For workload with a lot of parallel computations, GPUs 
achieve better performance than CPUs by hiding latency 
with data processing instead of reducing latency with 
cache. 

CPU 
core 

T1 

 

 

 

 

 

T2 

 

 

 

 

 

T3 

 

 

 

 

 

 

T4 

 

 

 

 

Tn 

 

 

 Processed 

Waiting for data 

Ready to get processed 

Computation Thread 

GPU multiprocessor 

(i.e. compute unit in OpenCL terminology) 

T1 

 

 

 

 

 

 

 

 

 

 

 T2 

 

 

 

 

 

 

 

 T3 

 

 

 

 

 

 

 

 

 

 T4 

 

 

 

 

 

 

 



 

 

 

OpenCL Programming for the CUDA Architecture 5 
 

Data-Parallel Programming 

Data parallelism is a common type of parallelism in which concurrency is expressed by 
applying instructions from a single program to many data elements. It typically generates 
highly parallel workloads. Not surprisingly, GPUs excel at data-parallel computation; hence a 
data parallel programming model drives the design of OpenCL. 

Current GPUs can only execute one kernel at a time, so they do not support task parallelism 
as defined in Section 3.4.2 of the OpenCL specification. GPUs do support task parallelism 
within a kernel however, since nothing prevents work-items within the same NDRange (see 
Section 3.2 of OpenCL specification) to follow different execution paths. 

To get maximum benefit from OpenCL, each of the most time-consuming parts of an 
application should therefore be expressed in a data-parallel way. In other words, each of 
them should be implemented as an OpenCL kernel that maps each work-item to a portion 
of the input data as opposed to a specific task. For example, the regular C function of 
Listing 1 that computes the product W of a width x height matrix M by a vector V can be 
implemented in OpenCL by the kernel of Listing 2, invoked using 
clEnqueueNDRangeKernel() (see Section 5.6 of OpenCL specification) on a one-
dimensional NDRange of height work-items. 

 

void MatrixVectorMul(const float* M, 

                     uint width, uint height, 

                     const float* V, 

                     float* W) 

{ 

   for (uint y = 0; y < height; ++y) { 

      const float* row = M + y * width; 

      float dotProduct = 0; 

      for (uint x = 0; x < width; ++x) 

         dotProduct += row[x] * V[x]; 

      W[y] = dotProduct; 

   } 

} 

 

  

Listing 1. A function that computes the product W of a 

width x height matrix M by a vector V. 



 

 

 

6  OpenCL Programming for the CUDA Architecture 
 

__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W) 

{ 

   // Each work-item computes one element of W 

   uint y = get_global_id(0); 

   const __global float* row = M + y * width; 

   float dotProduct = 0; 

   for (uint x = 0; x < width; ++x) 

      dotProduct += row[x] * V[x]; 

   W[y] = dotProduct; 

} 

 

 

In the kernel of Listing 2, each work-item computes one element of W. In some cases, giving 
more work to each work-item and lowering the number of work-items accordingly yields 
better performance as it amortizes startup overhead better. For this example, it means 
adding a loop to have each work-item compute multiple elements of W as in Listing 3. 

 
__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W) 

{ 

   // Each work-item computes multiple elements of W 

   for (uint y = get_global_id(0); y < height; y += get_global_size(0)) { 

      const __global float* row = M + y * width; 

      float dotProduct = 0; 

      for (uint x = 0; x < width; ++x) 

         dotProduct += row[x] * V[x]; 

      W[y] = dotProduct; 

   } 

} 

 

 

The number of elements computed by each work-item is then equal to height divided by 
the total number of work-items (plus one more for some work-items if height is not a 
multiple of the number of work-items). 

An advantage of this last formulation is that it allows us to decouple the NDRange from the 
input data size. In other words, the number of work-items can now be arbitrarily set, usually 
to maximize performance. 

Listing 3. Alternative implementation of the kernel of Listing 2. 

Listing 2. OpenCL implementation of the function of Listing 1. 



 

 

 

OpenCL Programming for the CUDA Architecture 7 
 

NDRange Optimization 

The GPU is made up of multiple multiprocessors. For maximum utilization of the GPU, a 
kernel must therefore be executed over a number of work-items that is at least equal to the 
number of multiprocessors. However one work-item per multiprocessor is insufficient for 
latency hiding. In general, hundreds of work-items should be launched per multiprocessor, 
and the number of work-items should be a multiple of the warp size (i.e. 32), as detailed in 
the Programming and Best Practices Guides. 

Choosing the best NDRange depends on the kernel as well (in particular, the number of 
registers it uses) and ultimately requires some experimentation. For this reason, applications 
should not rely on the OpenCL implementation to determine the right work-group size (by 
setting local_work_size to NULL in clEnqueueNDRangeKernel()). 

Memory Optimizations 

Assuming that global memory latency is hidden by running enough work-items per 
multiprocessor, the next optimization to focus on is maximizing the kernel’s overall memory 
throughput. This is done by maximizing the use of high bandwidth memory (OpenCL local 
and constant memory, Section 3.3 of OpenCL specification) and by using the proper 
memory access pattern for each memory type to achieve maximum throughput. 

Global Memory Coalescing 

Ensuring that global memory accesses are coalesced as often as possible is one of the most 
important optimizations for the CUDA architecture, because it can affect performance by 
up to an order of magnitude. The Programming and Best Practices Guides give a detailed 
description of the criteria required for a global memory access to be coalesced and the 
performance costs if one or several of these criteria are not met. It suffices to say here that 
the more local and regular the memory accesses by a warp are, the fewer memory 
transactions result; ideally they should be fully coalesced, i.e. translate into a single memory 
transaction. 

In the kernel of Listing 3, each warp reads M in a non-coalesced way since the elements read 
by a warp are not contiguous in memory as illustrated in Figure 2. 



 

 

 

8  OpenCL Programming for the CUDA Architecture 
 

  

 

  

Figure 2. A work-item computes multiple elements of W (one 
every Nwg x Nwi elements). Global memory accesses are 
non-coalesced. 

W 

M M 

 
0 

1 

Nwg-1 

…
 

0 

1 

…
 

V 
 

 

 

M 

  

Elements read 
by a warp in one 
non-coalesced 
memory access 

Nwg: Number of work-groups 

Nwi: Number of work-items per work-group 
group_id 

local_id 

V 

0 
1 

Nwi-1 

…
 

31 

2 

…
 



 

 

 

OpenCL Programming for the CUDA Architecture 9 
 

To fix this, the kernel must be rewritten to have each work-group, as opposed to each work-
item, compute elements of W as shown in Listing 4. 

 

__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W, 

                              __local float* partialDotProduct) 

{ 

   // Each work-group computes multiple elements of W 

   for (uint y = get_group_id(0); y < height; y += get_num_groups(0)) { 

      const __global float* row = M + y * width; 

 

      // Each work-item accumulates as many products as necessary 

      // into local variable "sum" 

      float sum = 0; 

      for (uint x = get_local_id(0); x < width; x += get_local_size(0)) 

         sum += row[x] * V[x]; 

 

      // Each partial dot product is stored in shared memory 

      partialDotProduct[get_local_id(0)] = sum; 

 

      // Synchronize to make sure each work-item is done updating 

      // shared memory; this is necessary because in the next step, 

      // the first work-item in the work-group needs to read from 

      // shared memory the partial dot products written by the other 

      // work-items 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      // The first work-item in the work-group adds all partial 

      // dot products together and writes the result to global memory 

      if (get_local_id(0) == 0) { 

         float dotProduct = 0; 

         for (uint t = 0; t < get_local_size(0); ++t) 

            dotProduct += partialDotProduct[t]; 

         W[y] = dotProduct; 

      } 

 

      // Synchronize to make sure the first work-item is done reading 

      // partialDotProduct 

      barrier(CLK_LOCAL_MEM_FENCE); 

   } 

} 

 

 

Each work-item is now responsible for calculating part of the dot product of V and a row of 
M and storing it to OpenCL local memory. The first work-item in the work-group does the 
final sum to compute the dot product. A work-group barrier function call is necessary to 
prevent the first work-item from reading OpenCL local memory before the other work-
items are done writing to it. 

Listing 4. Alternative implementation of the kernel of Listing 3. 



 

 

 

10  OpenCL Programming for the CUDA Architecture 
 

As illustrated in Figure 3, each warp now reads M in a coalesced way and performance is 
significantly improved as shown in Table 1 at the bottom of the paper. 

 

 

  

Figure 3. A work-group computes multiple elements of W (one 
every Nwg elements). Global memory accesses are 
coalesced. 

W 

M M 

 

0 
1 

Nwg-1 

…
 

0 
1 

Nwg-1 

…
 

 

 

…
 

0 
1 

V 

 

 

 

 

M 

 

Nwi-1 

 

31 1 2 … … 

Nwi-1 

 

31 0 1 

 

2 … … … 0 1 2 

 

Elements read 
by a warp in one 

coalesced 
memory access 

Nwg: Number of work-groups 

Nwi: Number of work-items per work-group 
group_id 

local_id 

0 



 

 

 

OpenCL Programming for the CUDA Architecture 11 
 

Using OpenCL Local Memory 

OpenCL local memory corresponds to on-chip memory in the CUDA architecture and is 
therefore much faster than global memory. 

The Programming and Best Practices Guides give examples of how to use OpenCL local 
memory to enable coalesced accesses to global memory (as in the kernel of Listing 4) or to 
reduce low-bandwidth memory accesses. 

OpenCL local memory is also used to enable cooperation among the work-items of a work-
group. In the kernel of Listing 4, for example, the last part where the first work-item of a 
work-group serially accumulates the partial dot products can be advantageously replaced 
with a parallel reduction. 

Parallel reduction – reducing an array of values to a single value in parallel (sum of all values, 
maximum of all values, etc.) – is a fundamental parallel algorithm. It decreases time 
complexity without performing more operations than a sequential reduction. 

There are several possible implementations of parallel reduction. The implementation 
illustrated in Figure 4  and used in the kernel of Listing 5 generates shared memory bank 
conflicts as illustrated in Figure 5 (see Programming and Best Practices Guides for a detailed 
description of shared memory bank conflicts). It nonetheless significantly improves 
performance over the implementation of Listing 4 as shown in Table 1. 

  



 

 

 

12  OpenCL Programming for the CUDA Architecture 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. Parallel reduction with shared memory bank conflicts as 
illustrated in Figure 5. 

Step 1 

Stride 1 

Indices 

Values 

local_ids 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 

0 

Values 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 

1 2 3 4 5 6 7 

Step 2 

Stride 2 
local_ids 0 

Values 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 

1 2 3 

Step 3 

Stride 4 
local_ids 0 

Values 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 

1 

Step 4 

Stride 8 
local_ids 0 

Values 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 



 

 

 

OpenCL Programming for the CUDA Architecture 13 
 

__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W, 

                              __local float* partialDotProduct) 

{ 

   // Each work-group computes multiple elements of W 

   for (uint y = get_group_id(0); y < height; y += get_num_groups(0)) { 

      const __global float* row = M + y * width; 

 

      // Each work-item accumulates as many products as necessary 

      // into local variable "sum" 

      float sum = 0; 

      for (uint x = get_local_id(0); x < width; x += get_local_size(0)) 

         sum += row[x] * V[x]; 

 

      // Each partial dot product is stored in shared memory 

      partialDotProduct[get_local_id(0)] = sum; 

 

      // Perform parallel reduction to add each work-item's 

      // partial dot product together 

      for (uint stride = 1; stride < get_local_size(0); stride *= 2) { 

 

         // Synchronize to make sure each work-item is done updating 

         // shared memory; this is necessary because work-items read 

         // results written by other work-items during each parallel 

         // reduction step 

         barrier(CLK_LOCAL_MEM_FENCE); 

          

         // Index into the "partialDotProduct" array where 

         // the work-item will write during this step 

         uint index = 2 * stride * get_local_id(0); 

          

         // Check for valid indices 

         if (index < get_local_size(0)) { 

          

            // Add two elements from the "partialDotProduct" array 

            // and store the result in partialDotProduct[index] 

            partialDotProduct[index] += 

                                      partialDotProduct[index + stride]; 

         } 

      } 

 

      // Write the result of the reduction to global memory 

      if (get_local_id(0) == 0) 

         W[y] = partialDotProduct[0]; 

 

      // Synchronize to make sure the first work-item is done reading 

      // partialDotProduct 

      barrier(CLK_LOCAL_MEM_FENCE); 

   } 

} 

  

Listing 5. Alternative implementation of the kernel of Listing 4, 
using parallel reduction. 



 

 

 

14  OpenCL Programming for the CUDA Architecture 
 

 

 

  

Figure 5. partialDotProduct[index] and 

partialDotProduct[index + stride] from kernel of Listing 5 
exhibit 2-way bank conflicts (showed for Step 1 in this 
figure). 

Step 1 

Stride 1 
0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 … 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 … 

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 … 

8 9 10 

Indices 

Values 

local_ids 

Banks 

Step 1 

Stride 1 
0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 … 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 … 

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 … 

8 9 10 

Indices 

Values 

local_ids 

Banks 

partialDotProduct[index] 

partialDotProduct[index + stride] 

Threads 0 and 8 access the same bank 

Threads 1 and 9 access the same bank 

Threads 2 and 10 access the same bank, etc. 

Threads 0 and 8 access the same bank 

Threads 1 and 9 access the same bank 

Threads 2 and 10 access the same bank, etc. 



 

 

 

OpenCL Programming for the CUDA Architecture 15 
 

A high degree of bank conflicts can affect performance, so OpenCL local memory accesses 
should be organized to minimize these conflicts as much as possible. In this particular case, 
the kernel is not significantly affected by bank conflicts because they are only 2-way bank 
conflicts and the loop has few iterations. A conflict-free implementation of parallel reduction 
exists however as illustrated in Figure 6 and used in the kernel of Listing 6. Table 1 shows 
some performance improvements. 

 

 

 

 

  

Figure 6. Parallel reduction without shared memory bank conflicts. 

Step 1 

Stride 8 

Indices 

Values 

local_ids 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 

0 

Values 8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2 

1 2 3 4 5 6 7 

Step 2 

Stride 4 
local_ids 0 

Values 8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 

1 2 3 

Step 3 

Stride 2 
local_ids 0 

Values 21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 

1 

Step 4 

Stride 1 
local_ids 0 

Values 41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 



 

 

 

16  OpenCL Programming for the CUDA Architecture 
 

__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W, 

                              __local float* partialDotProduct) 

{ 

   // Each work-group computes multiple elements of W 

   for (uint y = get_group_id(0); y < height  y += get_num_groups(0)) { 

      const __global float* row = M + y * width; 

 

      // Each work-item accumulates as many products as necessary 

      // into local variable "sum" 

      float sum = 0; 

      for (uint x = get_local_id(0); x < width; x += get_local_size(0)) 

         sum += row[x] * V[x]; 

 

      // Each partial dot product is stored in shared memory 

      partialDotProduct[get_local_id(0)] = sum; 

 

      // Perform parallel reduction to add each work-item's 

      // partial dot product together 

      for (uint stride = get_local_size(0)/2; stride > 0; stride /= 2) { 

 

         // Synchronize to make sure each work-item is done updating 

         // shared memory; this is necessary because work-items read 

         // results written by other work-items during each parallel 

         // reduction step 

         barrier(CLK_LOCAL_MEM_FENCE); 

          

         // Only the first work-items in the work-group add elements 

         // together 

         if (get_local_id(0) < stride) { 

          

            // Add two elements from the "partialDotProduct" array 

            // and store the result in partialDotProduct[index] 

            partialDotProduct[get_local_id(0)] += 

                            partialDotProduct[get_local_id(0) + stride]; 

         } 

      } 

 

      // Write the result of the reduction to global memory 

      if (get_local_id(0) == 0) 

         W[y] = partialDotProduct[0]; 

 

      // Synchronize to make sure the first work-item is done reading 

      // partialDotProduct 

      barrier(CLK_LOCAL_MEM_FENCE); 

   } 

} 

 

  

Listing 6. Alternative implementation of the kernel of Listing 5, 
using parallel reduction without shared memory bank 
conflicts. 



 

 

 

OpenCL Programming for the CUDA Architecture 17 
 

Using Constant Memory 

Constant memory is fast when all threads of a warp access the same address. A typical use 
case for constant memory is for storing data common to all work-items of a work-group. 

Instruction Optimizations 

Scalar Architecture 

The CUDA architecture is a scalar architecture. Therefore, there is no performance benefit 
from using vector types and instructions. These should only be used for convenience. It is 
also in general better to have more work-items than fewer using large vectors. 

Trading Precision for Speed 

The CUDA architecture offers ways to trade precision for speed: 

- native_* and half_* mathematical functions have lower precision than their 
counterparts, but can be orders of magnitude faster. 

- The -cl-mad-enable build option can provide large performance gains for kernels 
with many multiply-add operations. 

Avoiding Low-Throughput Instructions 

OpenCL applications should minimize use of low-throughput instructions as documented in 
the Programming Guide. Integer division and modulo, in particular, are expensive 
instructions that should be avoided or replaced with bitwise operations whenever possible. 

Control Flow 

Because of the SIMT execution model, threads within the same warp should follow the same 
execution path as much as possible. Otherwise, the different execution paths are serialized 
increasing overall execution time accordingly. Too many divergent warps during a kernel 
launch can drastically affect performance. 

Note that threads in different warps are free to diverge without performance penalties. 

Warp Synchronization 

Since threads within a warp are inherently synchronized, synchronization at work-group level 
via a work-group barrier function call is only needed if there is communication between 
threads from different warps. 

A trivial case is when only one warp is active like in the last loop iterations of the parallel 
reduction code of Listing 6, for example. The kernel could be rewritten by unrolling the loop 
and removing the barrier function call for the last iterations. It could also be rewritten to 
take advantage of warp synchronization as illustrated in Figure 7 and Listing 7. In a first step, 
each warp reduces its own 64-element portion of the array independendtly of each other, so 
there is no need to synchronize. The size of the array is equal to the size of the work-group, 
which is less or equal to 512 on NVIDIA GPUs. So, after the first step, a maximum of 8 
elements remain to be reduced, which is done by a single warp. The performance gain 
shown in Table 1 is modest, but we expect it to increase as our OpenCL implementation 
improves. 

 



 

 

 

18  OpenCL Programming for the CUDA Architecture 
 

 

 

  Figure 7. Warp-based parallel reduction. 

… 1 

Indices 

Values 

local_ids 0 

Values 

1 31 32 33 63 

Values 

local_ids 0 

Values 3 …       29 …       

32 

local_ids 0 

Values 

… … 

… … 

32 

local_ids 0 

Values 

11 0 … -1 1 -1 … 2 21 27 … -4 0 20 … -7 6 -4 … 

64 65 

 

6 -3 …      40 -11 …      17 3 … 

… 

20 …  

64 

32 11 19 …                

64 

… 

… 

… 

2 

3 29 20 …                

Values 

local_ids 0 

Values 25 …               

… 

17 8 …                 

   

… … 

10 1 … -3 1 -1 … 2 1 7 … 3 0 20 … -7 -3 5 … 

0 1 … 31 32 33 … 63 64 65 … 95 96 97 … 127 128 129 … 



 

 

 

OpenCL Programming for the CUDA Architecture 19 
 

#define WARP_SIZE 32 

 

__kernel void MatrixVectorMul(const __global float* M, 

                              uint width, uint height, 

                              const __global float* V, 

                              __global float* W, 

                              __local float* partialDotProduct) 

{ 

   // Each work-group computes multiple elements of W 

   for (uint y = get_group_id(0); y < height; y += get_num_groups(0)) { 

      const __global float* row = M + y * width; 

 

      // Each work-item accumulates as many products as necessary 

      // into local variable "sum" 

      float sum = 0; 

      for (uint x = get_local_id(0); x < width; x += get_local_size(0)) 

         sum += row[x] * V[x]; 

 

      // Each partial dot product is stored in shared memory 

      partialDotProduct[get_local_id(0)] = sum; 

 

      // Perform parallel reduction to add each work-item's 

      // partial dot product together 

 

      // Synchronize to make sure each work-item is done writing to 

      // partialDotProduct 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      // Thread local ID within a warp 

      uint id = get_local_id(0) & (WARP_SIZE - 1);  

 

      // Each warp reduces 64 consecutive elements 

      float warpResult = 0; 

      if (get_local_id(0) < get_local_size(0) / 2) { 

          volatile __local float* p = partialDotProduct 

                                      + 2 * get_local_id(0) - id; 

          p[0] += p[32]; 

          p[0] += p[16]; 

          p[0] += p[8]; 

          p[0] += p[4];6 

          p[0] += p[2]; 

          p[0] += p[1]; 

          float warpResult = p[0]; 

      } 

 

      // Synchronize to make sure each warp is done reading 

      // partialDotProduct before it is overwritten in the next step 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      // The first thread of each warp stores the result of the reduction 

      // at the beginning of partialDotProduct 

      if (id == 0) 

         partialDotProduct[get_local_id(0) / WARP_SIZE] = warpResult; 

 

      // Synchronize to make sure each warp is done writing to 

      // partialDotProduct before it is read in the next step 

      barrier(CLK_LOCAL_MEM_FENCE); 



 

 

 

20  OpenCL Programming for the CUDA Architecture 
 

 

      // Number of remaining elements after the first reduction 

      uint size = get_local_size(0) / (2 * WARP_SIZE); 

 

      // get_local_size(0) is less or equal to 512 on NVIDIA GPUs, so 

      // only a single warp is needed for the following last reduction 

      // step 

      if (get_local_id(0) < size / 2) { 

         __local float* p = partialDotProduct + get_local_id(0); 

         if (size >= 8) 

            p[0] += p[4]; 

         if (size >= 4) 

            p[0] += p[2]; 

         if (size >= 2) 

            p[0] += p[1]; 

      } 

 

      // Write the result of the reduction to global memory 

      if (get_local_id(0) == 0) 

         W[y] = partialDotProduct[0]; 

 

      // Synchronize to make sure the first work-item is done reading 

      // partialDotProduct 

      barrier(CLK_LOCAL_MEM_FENCE); 

   } 

} 

 

Example Execution Time 

The table below gives kernel execution times measured on a GTX 285 for a matrix of width 
1100 and height 60989, a work-group size of 256, 239 work groups for the first kernel, and 
60 work-groups for the five last kernels.  

 

MatrixVectorMul Execution times (ms) 

Listing 2 83.2 

Listing 3 82.2 

Listing 4 32.5 

Listing 5 12.1 

Table 1. Kernel execution times for the various implementations of 
MatrixVectorMul. 

Listing 7. Alternative implementation of the kernel of Listing 6, 
using warp-based parallel reduction. 



 

 

 

OpenCL Programming for the CUDA Architecture 21 
 

Listing 6 9.6 

Listing 7 9.2 

Next Step 

This whitepaper provides an introduction to the main guidelines for optimizing OpenCL 
applications on NVIDIA GPUs. As a follow-up we recommend studying the NVIDIA 
OpenCL Programming Guide [ 1 ] and NVIDIA OpenCL Best Practices Guide [ 2 ], as well 
as the multiple code samples from the NVIDIA OpenCL SDK. The example used in this 
whitepaper can be found in the oclMatVecMul sample. 

References 

[ 1 ] NVIDIA OpenCL Programming Guide in NVIDIA OpenCL SDK 

[ 2 ] NVIDIA OpenCL Best Practices Guide in NVIDIA OpenCL SDK 

[ 3 ] Scalable Parallel Programming with CUDA, in ACM Queue, VOL 6, No. 2 
(March/April 2008), © ACM, 2008. http://mags.acm.org/queue/20080304/?u1=texterity" 

http://mags.acm.org/queue/20080304/?u1=texterity




 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, Tesla, and Quadro are trademarks or registered trademarks of NVIDIA 
Corporation. Other company and product names may be trademarks of the respective companies with which 
they are associated.  

Copyright 

© 2007-2010 NVIDIA Corporation. All rights reserved. 

 

 


