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Differences From Classical FSMs

1. Multi-State:
– Multiple states can be active 

simultaneously (fork), and their 
completions can by synchronized (join).

2. Hierarchical:
– State machines can nest.

3. Message Passing:
– One state can send a message to another 

as part of a transition firing.
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More On Hierarchy

● A nested state machine is started 
automatically when its parent node 
starts.

● The nested machine can cause its parent 
to signal completion by:

– Transitioning to a ParentCompletes node

– Calling self.parent.post_completion()  
from inside one of its nodes.

● Similarly for signaling parent success or 
failure.
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Nested State Machines

class Nested(StateMachineProgram):
  $setup {
    dd1: DingDong() =C=>
      bridge: Say('once again') =C=>
        dd2: DingDong()
  }

Will be triggered
by dd1's nested
ParentCompletes

node
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Nested State Machines

class DingDong(StateNode):
  $setup {
    ding: Say('ding') =C=>
      dong: Say('dong') =C=>
        ParentCompletes()

  }



7

Message Passing

● Nodes can signal “data events” that data 
transitions look for:
    self.post_data(5)

● Transitions can match the data item:
    foo =D(5)=> draw_pentagram
    foo =D(6)=> draw_hexagram

● Transitions can also do wildcard match:
    foo =D=> draw_stuff



8

Message Passing (cont.)

● When a transition activates a node, the 
node's start method is passed the event 
that triggered the transition.

● If this was a DataEvent, the start method 
can extract the data item and process it.
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Sending Data

class Sender(StateNode):

  def start(self, event=None):
    super().start(event)
    value = random.random()
    self.post_data(value)
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Receiving Data

class Receiver(StateNode):

  def start(self, event=None):
    super().start(event)
    if isinstance(event, DataEvent):
      value = event.data
      print('Received:', value)
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Sending and Receiving

class SendRecv(StateMachineProgram):

  $setup{

    Sender() =D=> Receiver()

  }

C> runfsm('SendRecv')
Value received: 0.380313711
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Iteration

class IterDemo(StateMachineProgram):

  $setup{

    loop: Iterate(4)

    loop =D=> Print() =Next=> loop

    loop =C=> Print('Done!')

  }

Use =CNext=> to wait for completion.
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Default Transitions

For data events and text message events, 
value matches take priority over defaults.

    foo =TM('cat')=> Say('meow')

    foo =TM('dog')=> Say('woof')

    foo =TM=> Say('wackawacka')

How does this work? Default (wildcard) 
transitions have a slight time delay to allow 
any matching value transition to fire first.
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Tap Events

● The SDK generates tap events when 
someone taps on a cube.

● We turn these into cozmo_fsm TapEvents 
that can be matched by a =Tap=> 
transition:
    =Tap(cube2)=>
    =Tap=>

● We need to check the tap intensity to 
reject false positives.
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Face Events

● The SDK generates face events whenever 
a face is detected in the camera image.

● We turn these into cozmo_fsm FaceEvents 
that can be matched by a =Face=> 
transition:
  =Face('Dave')=>
  =Face=>

● Should probably provide separate cases 
for FaceAppeared and FacePresent. 
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The Event Loop

● While the SDK is connected to the robot 
and simple_cli is running, the value of 
asyncio.get_current_event_loop() is 
available in robot.loop.

● From simple_cli, in order to run a node we 
have to schedule it via this event loop.

● This is what the now() method does:
    Forward(50).now()
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Do It “Now”

class StateNode(EventListener):
  ...

  def now(self):
    self.robot.loop.call_soon(
                         self.start
                              )
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EventListener

● Parent class of both StateNode and 
Transition.

● Includes a polling feature: an instance 
can request that its poll() method be 
called every t seconds.

● Polling begins when the instance's start() 
method is called and ends when stop() is 
called.
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Uses of Polling

● DriveForward and DriveTurn use polling to 
check the robot's progress and decide 
when to stop.

● TimerTrans uses the polling interval to 
know when to fire.

● ArucoTrans uses polling to check if a 
marker has appeared in the camera 
image.
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Animation and Trigger Nodes

● Animation nodes take an animation name 
as a string argument. There are over 900 
to choose from.

    AnimationNode('anim_bored_01')

● AnimationTriggerNodes take an 
_AnimTrigger object as an argument.
  AnimationTriggerNode(
      cozmo.anim.Triggers.
         CubePouncePounceNormal
                     )
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Named Transitions

● A complex state machine may have a lot 
of CompletionTrans, SuccessTrans, and 
TimerTrans transitions.

● This makes the trace confusing: what is 
completiontrans5 doing?

● Solution: assign meaningful names to 
your transitions.

  try_grab =grabbed:C=> open_it
  try_grab =fumbled:F=> reposition
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Writing Your Own Transitions

● Rarely necessary, unless you're 
developing new robot functionality.

● How to do it:
• __init__() to store constructor parameters.
• start() to subscribe to events if needed.
• handle_event() to examine the events and 

call self.fire(event) if needed.
• poll() if polling is needed.
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SeeBoth Transition

class SeeBoth(Transition):
  def __init__(self,thing1,thing2):
    super().__init__()
    self.thing1 = thing1
    self.thing2 = thing2
    self.set_polling_interval(0.1)

  def poll(self):
    if self.thing1.is_visible and
         self.thing2.is_visible:
      self.fire()
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See12.fsm

class See12(StateMachineProgram):

  $setup {

    StateNode()
      =SeeBoth(cube1,cube2)=>
         Say('I saw both')

  }
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simple_cli 'show' commands

● show active
– Shows the currently active nodes and 

transitions.

● show viewer
– Shows the camera viewer

● show worldmap_viewer
– Shows the worldmap viewer
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Intro to Particle Filters

● Odometry is unreliable.
– Still useful for short trajectories.
– But error accumulates quickly.

● Solution: use visual landmarks to correct 
for odometry error.

● But vision is unreliable too!
– Landmark pose estimation is noisy.
– Landmarks aren't always available.
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Probabilistic Robotics

● Probabilistic robotics is based on the idea 
that we should embrace the noisiness.

● Instead of discrete values, think in terms 
of probability distributions.

● Robot's location is not (x,y), but a 
distribution of possible locations, some 
more likely than others.
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Modeling Location Distributions

● Particle filters are a way to model 
distributions.

● Think of each particle as a “guess” 
(hypothesis) about the robot's location.

● Assume we have a map with landmarks.

● Each guess predicts how the landmarks 
should look from that location.
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Modeling Location Distributions

● Particles representing good guesses will 
accurately predict the landmark locations.

– Good predictions earn a high weight.

● Bad guesses lead to poor predictions.
– Poor predictions result in a low weight.

● As we accumulate sensor data, we can  
figure out which particles are the good 
guesses.
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Particle Filter Demos

● A simple particle_filter_demo is linked 
from the class schedule.

● pfdemo.py is in the class “demos” 
directory.
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Resampling

● Bad guesses are a waste of resources.
● When we've accumulated enough data, 

we can generate a new set of particles to 
try to concentrate resources in the region 
of good guesses.

● Particles with high scores are chosen to 
spawn new particles, with slight random 
perturbations.

● Low-scoring particles are unlikely to 
spawn.
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Motion Model

● So far we have a robot that is standing 
still, receiving sensor data, and trying to 
figure out its location on the map.

● But the robot needs to move.
– Stationary robots aren't useful.
– Motion allows the robot to see more 

landmarks.
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Motion Model (cont.)

● How can we accommodate motion?
● Solution:

– As the robot moves, drag the particles 
along with it.

● But odometry is noisy!
– Add noise (via a motion model) to the 

particle locations because we know that 
motion is unreliable.
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SLAM

● What if we don't have a world map?

● SLAM: Simultaneous Localization And 
Mapping.

● Now each particle represents a slightly 
different map of the world, plus the 
robot's estimated location on that map.

● We will look at this in the next lecture.
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