
15-494/694: Cognitive Robotics

Lecture 4:

Advanced State Machine
Concepts, and
Introduction to Particle
Filters

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Differences From Classical FSMs

1. Multi-State:
– Multiple states can be active

simultaneously (fork), and their
completions can by synchronized (join).

2. Hierarchical:
– State machines can nest.

3. Message Passing:
– One state can send a message to another

as part of a transition firing.

3

More On Hierarchy

● A nested state machine is started
automatically when its parent node
starts.

● The nested machine can cause its parent
to signal completion by:

– Transitioning to a ParentCompletes node

– Calling self.parent.post_completion()
from inside one of its nodes.

● Similarly for signaling parent success or
failure.

4

dd1

Nested State Machines

P

dd2

P

bridge
C C

5

Nested State Machines

class Nested(StateMachineProgram):
 $setup {
 dd1: DingDong() =C=>
 bridge: Say('once again') =C=>
 dd2: DingDong()
 }

Will be triggered
by dd1's nested
ParentCompletes

node

6

Nested State Machines

class DingDong(StateNode):
 $setup {
 ding: Say('ding') =C=>
 dong: Say('dong') =C=>
 ParentCompletes()

 }

7

Message Passing

● Nodes can signal “data events” that data
transitions look for:
 self.post_data(5)

● Transitions can match the data item:
 foo =D(5)=> draw_pentagram
 foo =D(6)=> draw_hexagram

● Transitions can also do wildcard match:
 foo =D=> draw_stuff

8

Message Passing (cont.)

● When a transition activates a node, the
node's start method is passed the event
that triggered the transition.

● If this was a DataEvent, the start method
can extract the data item and process it.

9

Sending Data

class Sender(StateNode):

 def start(self, event=None):
 super().start(event)
 value = random.random()
 self.post_data(value)

10

Receiving Data

class Receiver(StateNode):

 def start(self, event=None):
 super().start(event)
 if isinstance(event, DataEvent):
 value = event.data
 print('Received:', value)

11

Sending and Receiving

class SendRecv(StateMachineProgram):

 $setup{

 Sender() =D=> Receiver()

 }

C> runfsm('SendRecv')
Value received: 0.380313711

12

Iteration

class IterDemo(StateMachineProgram):

 $setup{

 loop: Iterate(4)

 loop =D=> Print() =Next=> loop

 loop =C=> Print('Done!')

 }

Use =CNext=> to wait for completion.

13

Default Transitions

For data events and text message events,
value matches take priority over defaults.

 foo =TM('cat')=> Say('meow')

 foo =TM('dog')=> Say('woof')

 foo =TM=> Say('wackawacka')

How does this work? Default (wildcard)
transitions have a slight time delay to allow
any matching value transition to fire first.

14

Tap Events

● The SDK generates tap events when
someone taps on a cube.

● We turn these into cozmo_fsm TapEvents
that can be matched by a =Tap=>
transition:
 =Tap(cube2)=>
 =Tap=>

● We need to check the tap intensity to
reject false positives.

15

Face Events

● The SDK generates face events whenever
a face is detected in the camera image.

● We turn these into cozmo_fsm FaceEvents
that can be matched by a =Face=>
transition:
 =Face('Dave')=>
 =Face=>

● Should probably provide separate cases
for FaceAppeared and FacePresent.

16

The Event Loop

● While the SDK is connected to the robot
and simple_cli is running, the value of
asyncio.get_current_event_loop() is
available in robot.loop.

● From simple_cli, in order to run a node we
have to schedule it via this event loop.

● This is what the now() method does:
 Forward(50).now()

17

Do It “Now”

class StateNode(EventListener):
 ...

 def now(self):
 self.robot.loop.call_soon(
 self.start
)

18

EventListener

● Parent class of both StateNode and
Transition.

● Includes a polling feature: an instance
can request that its poll() method be
called every t seconds.

● Polling begins when the instance's start()
method is called and ends when stop() is
called.

19

Uses of Polling

● DriveForward and DriveTurn use polling to
check the robot's progress and decide
when to stop.

● TimerTrans uses the polling interval to
know when to fire.

● ArucoTrans uses polling to check if a
marker has appeared in the camera
image.

20

Animation and Trigger Nodes

● Animation nodes take an animation name
as a string argument. There are over 900
to choose from.

 AnimationNode('anim_bored_01')

● AnimationTriggerNodes take an
_AnimTrigger object as an argument.
 AnimationTriggerNode(
 cozmo.anim.Triggers.
 CubePouncePounceNormal
)

21

Named Transitions

● A complex state machine may have a lot
of CompletionTrans, SuccessTrans, and
TimerTrans transitions.

● This makes the trace confusing: what is
completiontrans5 doing?

● Solution: assign meaningful names to
your transitions.

 try_grab =grabbed:C=> open_it
 try_grab =fumbled:F=> reposition

22

Writing Your Own Transitions

● Rarely necessary, unless you're
developing new robot functionality.

● How to do it:
• __init__() to store constructor parameters.
• start() to subscribe to events if needed.
• handle_event() to examine the events and

call self.fire(event) if needed.
• poll() if polling is needed.

23

SeeBoth Transition

class SeeBoth(Transition):
 def __init__(self,thing1,thing2):
 super().__init__()
 self.thing1 = thing1
 self.thing2 = thing2
 self.set_polling_interval(0.1)

 def poll(self):
 if self.thing1.is_visible and
 self.thing2.is_visible:
 self.fire()

24

See12.fsm

class See12(StateMachineProgram):

 $setup {

 StateNode()
 =SeeBoth(cube1,cube2)=>
 Say('I saw both')

 }

25

simple_cli 'show' commands

● show active
– Shows the currently active nodes and

transitions.

● show viewer
– Shows the camera viewer

● show worldmap_viewer
– Shows the worldmap viewer

26

Intro to Particle Filters

● Odometry is unreliable.
– Still useful for short trajectories.
– But error accumulates quickly.

● Solution: use visual landmarks to correct
for odometry error.

● But vision is unreliable too!
– Landmark pose estimation is noisy.
– Landmarks aren't always available.

27

Probabilistic Robotics

● Probabilistic robotics is based on the idea
that we should embrace the noisiness.

● Instead of discrete values, think in terms
of probability distributions.

● Robot's location is not (x,y), but a
distribution of possible locations, some
more likely than others.

28

Modeling Location Distributions

● Particle filters are a way to model
distributions.

● Think of each particle as a “guess”
(hypothesis) about the robot's location.

● Assume we have a map with landmarks.

● Each guess predicts how the landmarks
should look from that location.

29

Modeling Location Distributions

● Particles representing good guesses will
accurately predict the landmark locations.

– Good predictions earn a high weight.

● Bad guesses lead to poor predictions.
– Poor predictions result in a low weight.

● As we accumulate sensor data, we can
figure out which particles are the good
guesses.

30

Particle Filter Demos

● A simple particle_filter_demo is linked
from the class schedule.

● pfdemo.py is in the class “demos”
directory.

31

Resampling

● Bad guesses are a waste of resources.
● When we've accumulated enough data,

we can generate a new set of particles to
try to concentrate resources in the region
of good guesses.

● Particles with high scores are chosen to
spawn new particles, with slight random
perturbations.

● Low-scoring particles are unlikely to
spawn.

32

Motion Model

● So far we have a robot that is standing
still, receiving sensor data, and trying to
figure out its location on the map.

● But the robot needs to move.
– Stationary robots aren't useful.
– Motion allows the robot to see more

landmarks.

33

Motion Model (cont.)

● How can we accommodate motion?
● Solution:

– As the robot moves, drag the particles
along with it.

● But odometry is noisy!
– Add noise (via a motion model) to the

particle locations because we know that
motion is unreliable.

34

SLAM

● What if we don't have a world map?

● SLAM: Simultaneous Localization And
Mapping.

● Now each particle represents a slightly
different map of the world, plus the
robot's estimated location on that map.

● We will look at this in the next lecture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

