15-494/694: Cognitive Robotics

Dave Touretzky

e A5
g W\ 20

Cay,
Tech Troy, \‘fﬁ?

o 4
{\ “ag Electronics COMPUTING
{\z SCIENCE Robots ‘Rﬂﬂnh

&y
PIRR *e Information

Lecture 2:

MACHIMERY

Cozmo Software

. v
Architecture tion ¥ Ry &
d & =
an % > Q
>
Python Control Structure g
S

Image from http://www.futuristgerd.com/2015/09/10

http://www.futuristgerd.com/2015/09/10

Cozmo Software Architecture

« A robot is a complex collection of
interacting hardware/software systems.

« Example: navigation.

- Need vision to find landmarks.
- Head + body motion to point the camera.

e Layers of control:

- Low level: control one actuator

- Middle level: coordinate multiple actuators
(e.g., head and wheels) for one task.

- High level: goal-directed behaviors.

Control Levels in Cozmo (1)

« Actions: basic operations that focus on
one effector but can optionally include
some gratuitous animations.

- drive_forward

- turn_in_place

- set head angle
- move_lift

- Ssay_text

Control Levels iIn Cozmo (2)

« Animations: short behavior sequences
that involve a combination of body
motions, facial expressions, and sound
effects.

 Designed by former Pixar animators.

e |In SDK version 0.10.0 there are 664
animations, organized into groups.

« See robot.conn.anim names for the list.

e Use the Cozmo Animation Explorer tool to
try them out.

664 Animations

Animations Triggers

ANTMATION_TEST

ID_pokedA

ID_pokedB
ID_reactTppl_Surprise
ID_test_shiver

anim_bored_061

anim_bored_02
anim_bored_event_&1
anim_bored_ewvent_02
anim_bored_ewvent_@3
anim_bored_event_@4
anim_bored_getout_©1
anim_bored_getout_02
anim_cozmosays_app_getin
anim_cozmosays_app_getout_ 081
anim_cozmosays_app_getout_02

anim_cozmosays_badword_e1

anim_cozmosays_badword_©1_head_angle_-20

anim_cozmosays_badword_01_head_angle_ 20

Behaviors

return to pose after animation |

© info

A list of animations. Pick an animation
from the list and click the play button to
animate Cozmo.

For copying to clipboard:
A.) use the copy button, OR
B.) select a line of text and press Ctrl-C

bored COZIMOSAYS driving explorer
freeplay gotosleep greeting hiking
keepalive keepaway launch loco
lookinplaceforfaces Mmeetcozmo
memorymatch neutral pause
petdetection pounce pyramid ga
reactioblock reacttocliff reactioface

rtc ripkeepaway ripmemorymatch

sdk sparking speedtap triple
upgrade workout

Control Levels in Cozmo (2.5)

« Animation Triggers: Families of
animations that are variants on a theme.

* Playing a trigger will select one animation
at random from the family.

e In version 0.10 of the SDK there are 316
triggers.

e dir(cozmo.anim.Triggers)

« Both animations and triggers have well-
defined completion points.

316 Animation Triggers

Animations Triggers Behaviors

AcknowledgeFaceInitPause
AcknowledgeFaceNamed
AcknowledgeFaceUnnamed
AcknowledgeObject
AskToBeRightedlLeft
AskToBeRightedRight
BlockReact
BuildPyramidReactToBase
BuildPyramidSuccess
CantHandleTallStack
ConnectWakeUp

Count

CozmoSaysBadWord
CozmoSaysGetIn
CozmoSaysGetOut
CozmoSaysIdle
CozmoSaysSpeakGetInLong
CozmoSaysSpeakGetInMedium
CozmoSaysSpeakGetInshort

return to pose after animation

© info

A list of animation sets. This differs from
the Animation list in that each time you
press the same animation from the list, it
may play out slightly different. This offers
variety: it makes Cozmo seem maore alive
if you use triggers in your own code.

For copying to clipboard:
A.) use the copy button, OR
B.) select a line of text and press Ctrl-C

Control Levels iIn Cozmo (3)

Behaviors: Complex operations that try to
accomplish a goal.

Only six defined so far:

- Vision: FindFaces, LookAroundInPlace

- Manipulation: KnockOverCubes, RollBlock,
StackBlocks

- Human interaction: PounceOnMotion
Behaviors use multiple animations.

Behaviors never complete; they must be
explicitly stopped.

Only 6 Behaviors So Far

/.H
|
.'x___ ot
Animations Triggers Behaviors return to pose after animation
© info
FindFaces A list of behaviors. Behaviors represent a
KnockOverCubes Fask that it ma'_-,r. ”E”“'”_‘ fﬂr. =
indefinite amount of time. Animation
LookAroundInPlace Explorer limits active time to 30 seconds.
" You can abort by pressing the 'stop’
PounceOnMotion N
RollBlock
For copying to clipboard:
StackBlocks sty 5

A.) use the copy button, OR
B.) select a line of text and press Ctrl-C

In the Animation Explorer, behaviors
only run for 30 seconds.

Python Control Concepts

e The Cozmo SDK iIs written in industrial
strength Python 3.5.

e To understand the SDK, you must be
familiar with:

- |terators

- Generators

- Coroutines

- Asyncio tasks, futures, handles, loops

10

lterators

>>> nums = [1,2,3,4]
>>> for X 1n nums: print('x

x=1
X=2
X=3
x=4
>>> [x*x for x in nums]

(1, 4, 9, 16]

11

What Makes an Object Iterable?

Defines an __iter () method that returns an
iterator.

>>> nums. iter

<method-wrapper ' iter ' of list
object at 0x7ffa366baf48>

>>> nums. iter ()

<list iterator object at 0x7ffa34aa3c88>

12

What Is an lterator?

Definesa next () method that returns
the next item in the sequence or raises
Stoplteration if there are no more items.

>>> a = nums. iter ()

>>> a. next ()

13

Stoplteration

>>> a. next ()

4
>>> a. next ()
Traceback: .. StopIteration

14

How a For Loop Works

for X 1n nums: print('x=%s' % X)

it = nums. iter ()
try:
while True:
x = 1t. next ()

print('x=%s' % X)
except StopIteration:
pass

Lots of Things Are lterable

>>> ' i1ter ' in dir([1,2,3])
True

>>> ' 1iter ' 1in dir(range(3,5))
True

>>> ' iter ' in dir({1,2,3})
True

>>> ' i1ter ' 1in dir({'foo' : 3})

True 16

Make Your Own lterable

class MyIterable():

def init (self,vals):

sei?.vals = vals

def iter (self): <

return MyIterator(self.vals)

17

Make Your Own lterator

class MyIterator():

def init (self,vals):
self.vals = vals
self.index = 0

def next (self): <

1f self.index == len(self.vals):
ralse Stoplteration
else:

self.index += 1
return self.vals[self.index-1]

18

Testing Mylterable

>>> a = MyIterable([1l, 2, 3, 4]

)
>>> for x 1n a: print('x=%s' % X)
x=1

X=2
xX=3
x=4

>>> [x**3 for x 1n a]

(1, 8, 27, 64]

19

Generators

 Generators are coroutines that suspend
their state using the yield keyword.

 Generators are represented by
generator objects instead of functions.

 Generators can be used either as
producers (similar to iterators) or as
consumers.

20

Generator As Producer

def myproducer(vals):

print('myproducer called')

index = 0

while index < len(vals):
print('yielding')
yield vals[index] <
index += 1

ralse Stoplteration

Calling myproducer doesn't actually run the
function; it returns a generator object.

21

Generator As Producer

>>> g = myproducer(['foo','bar'])

<generator object myproducer at ..

>>> next(qg)

myproducer called -
yielding

'foo'

>>> next(qg)
yielding
'bar'

>

22

Generator Expressions

Like a list comprehension, but uses
parentheses instead of brackets: lazy.

>>> g = (x**2 for x in [1,2,3,4,5])
<generator object <genexpr> at ..>

>>> next(qg)
1

>>> g. next ()

list() exhausts a generator

>>> g
<generator object <genexpr> at ..>

>>> list(qg)
[9, 16, 25]

24

Generator As Consumer

def myconsumer():
print ('myconsumer called')
try:
while True:
X = yleld <
print('%s squared 1s %s' $%
(X, X**2))
except GeneratorExit:
print('Generator closed.')

A statement 'x=yield' marks a consumer
generator, which must be primed.

25

Generator As Consumer

>>> Cc = myconsumer ()
<generator object myconsumer at ..>

>>> c.send(None)
myconsumer called

>>> for x 1n range(l,5): c.send(Xx)
1 squared 1is 1
2 squared 1s 4

>>> c.close()
Generator closed.

26

Generator Pipeline

Generators can be chained together for
complex processing tasks.

Filter Filter

Producer Consumer
No x=yield —p x=yield - —P x=yield P x=yield
Just c.send c send c send No c.send

Some Bad News

 Python changes every few months.
 This has been going on for years.

 The terminology changes as well.
« Result: Python is confusing as hell.

« Reading tutorials written several years
ago can drive you crazy.

« Coroutines are a prime example.

28

Newbie: “How does X work?”

Expert: “Well, in Python 2.7 it did this,
but then in Python 3.3 it did that, and
now Iin Python 3.5 it does this other thing,
but in Python 3.7 it's going to ...”

Newbie: “Kill me now.”

29

Coroutines

e |In computer science, coroutines are
procedures that repeatedly yield control
to their caller and get it back again.

* In CS terms, Python generators are
coroutines. They use “yield”.

* In Python 3.5 and up, “coroutine” has a
more specific meaning, and generators
are not coroutines.

30

History of Python Coroutines

 You don't want to know.

e Stuff to forget about:
@coroutine decorator

@asyncio.coroutine decorator

“generators are coroutines” - no longer

31

Coroutines in Python 3.5

 The asyncio module provides a kind of
scheduler called an event loop.

« Coroutines are procedures that execute
asynchronously, yielding control to each
other or the event loop that manages
them.

e Coroutines in Python 3.5 are defined with
async def instead of the usual def.

 They use the await keyword to yield
control until the thing they're waiting for
has done its thing. The cannot use yield.;,

Coroutine Example

import asyncio

async def mycor():
for 1 i1n range(l,5):
print('i=', 1, end='")
X = awalt yourcor(1i)
print(' x=', X)

async def yourcor(i):
awalt asyncio.sleep(1l)
return 1**2

33

Testing the Coroutine Example

>>> Cc = mycor()
<coroutine object mycor at ..>

>>> loop = asyncio.get event loop()
< UnixSelectorEventLoop ..>

>>> loop.run until complete(c)
1=1 x=1

|
S W N
"
|
O

1
1
1

34

Tasks and Futures

A Future is an object representing an
asynchronous computation that may not
yet have completed.

« You can attach handlers to futures that
will be notified when the future
completes.

A Task is a kind of Future that is
managed by an event loop.

35

Adding Tasks To the Queue

>>> t = loop.create task(yourcor(5))
<Task pending coro=yourcor() ..>

>>> loop.run until complete(t)
25

36

Scheduling Non-Coroutines

def goof(1i):
print('i=', 1)

>>> loop.call soon(goof, 150)
<Handle goof(150) at ..>

>>> loop.call later(3,goof,250)
<TimerHandle when=..>

>>> loop.run forever()
1=150

1=250

37

Cozmo's Event Loop

« The Cozmo SDK includes an event loop.

« The Cozmo SDK provides its own classes
for representing actions, animations, etc.
as tasks managed by the event loop.

« The wait for completed() method

waits until the event loop has completed
the task.

 The event loop Is accessible at
robot. loop.

38

Cozmo Actions Are Tasks

#!/usr/bin/python3

import asyncio
import cozmo

async def mytalker(robot):

action = robot.say text('hello')
print('act =', action)

coro = action.wait for completed()
print('coro ="', coro)

cozmo.run program(mytalker)

39

Cozmo Actions Are Tasks

S ./mytalker.py

[set up connection to robot ..]

act = <SayText state=action running ..>
coro = <coroutine object
Action.wait for completed ..>

40

Does This Look Like Fun? No???

« Explcitly managing coroutines, tasks, etc.
looks like it could be a real pain.

 Is there a better way?

e« State machines. See next lecture.

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

