
Seven Big Ideas in Robotics, and How To Teach Them

David S. Touretzky
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

dst@cs.cmu.edu

ABSTRACT

Robotics is widely recognized as an interdisciplinary mixture
of engineering and computer science, but the latter compo-
nent is not well represented at many undergraduate institu-
tions. The sophisticated technologies that underlie percep-
tion, planning, and control mechanisms in modern robots
need to be made accessible to more computer science under-
graduates.

Following the curriculum design principles of Wiggins and
McTighe (Understanding by Design, 2nd Ed.), I present seven
big ideas in robotics that can fit together in a one semester
undergraduate course. Each is introduced with an essen-
tial question, such as “How do robots see the world?” The
answers expose students to deep concepts in computer sci-
ence in a context where they can be immediately demon-
strated. Hands-on labs using the Tekkotsu open source soft-
ware framework and robots costing under $1,000 facilitate
mastery of these important ideas. Courses based on parts
of an early version of this curriculum are being offered at
Carnegie Mellon and several other universities.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education, Curriculum; I.2.9 [Robotics]:
Commercial robots and applications

General Terms

Algorithms, Design

Keywords

computer vision, path planning, kinematics, Tekkotsu

1. INTRODUCTION
Mobile robots provide a compelling context for introduc-

ing students to a wide range of computing topics, including
machine perception, heuristic search, software engineering,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

and geometry and linear algebra [13]. But many computer
science departments still aren’t teaching serious robotics at
the undergraduate level. Those that do offer a robotics elec-
tive are all too often teaching a high school curriculum where
students assemble primitive robots from parts kits and pro-
gram simple-minded reactive controllers. This paper is a
call to action: we can make sophisticated robot technolo-
gies accessible to undergraduates. Doing so will help them
develop into better computer scientists.

In this paper I present seven “big ideas” in robotics that
can fit together in a one semester course for junior or senior
level computer science majors. Following the Understanding
by Design methodology of Wiggins and McTighe [17], each
big idea is introduced with an essential question, such as
“How do robots see the world?” The answers to these ques-
tions involve deep computer science concepts, some of which
can only be fully mastered in graduate classes. But expos-
ing undergraduates to these ideas – at an appropriate level
– can broaden their understanding of computer science and
encourage them to learn more. All of these ideas are imple-
mented in the Tekkotsu software framework [11, 12] and can
be demonstrated on commercially available, fully-assembled
robots costing less than $1,000.

Courses based on parts of an early version of this curricu-
lum are being offered at Carnegie Mellon and several other
universities, including members of the ARTSI Alliance, a
consortium of historically black colleges and universities and
major research universities that is working to become a na-
tional resource for robotics education [2]. Course materials
are available on the web at wiki.Tekkotsu.org.

2. THE TEKKOTSU “CREW”
The guiding principle advocated here is that students should
be exposed to the richness of robotics algorithms and repre-
sentations from the beginning, which precludes their imple-
menting everything themselves from scratch. Instead they
should be provided with a comprehensive software frame-
work on which to build. The Tekkotsu framework includes
a collection of interacting software modules known as the
“Crew” [15] that students use to explore the big ideas to be
described below. The Crew presently has four components:

• The Lookout manages the robot’s sensor package and
controls the“head”if one is present. Typically the head
is a pan/tilt with a video camera.

• TheMapBuilder [14] is responsible for vision, and for
maintaining egocentric (body-centered) and allocentric
(world-centered) maps of the environment.

• The Pilot [16] handles localization and navigation.

• The Grasper [9] is responsible for manipulation, for
those robots that include an arm.

Tekkotsu programmers issue requests to the Crew to achieve
desired effects. The Crew modules are responsible for deter-
mining how to satisfy these requests, which may require in-
vocation of complex algorithms such as path planners or in-
verse kinematics solvers. These algorithms are also directly
accessible to students, and can be explicitly invoked when
students want to explore them in detail. But under normal
circumstances students work at a higher level of abstraction
and leave these details to the Crew.

3. SEVEN QUESTIONS AND THE SEVEN

BIG IDEAS

3.1 How Do Robots Know What To Do?
Big idea: Autonomous robot behaviors are mechanisms

constructed from carefully designed algorithms and repre-
sentations.

Underlying technology: event-based architectures and hi-
erarchically structured, parallel state machines.

Learning goal: students will be able to think algorithmi-
cally about robot behavior.

Specific skills: students will be able to decompose a behav-
ior into a series of states and transitions, draw state machine
diagrams by hand, translate between graphical and textual
state machine notations, make appropriate use of fork and
join operations, visualize the execution of a state machine
using Tekkotsu’s Storyboard tool, and locate and describe
errors in state machine definitions.

3.2 How Do Robots See The World?
Big idea: Robots use sophisticated but imperfect com-

puter vision algorithms to deduce real world object rep-
resentations from arrays of pixels.

Underlying technologies: basic vision algorithms (e.g., Hough
transforms), AprilTags [10], SIFT (Scale-Invariant Feature
Transform) [7], face detection, and more.

Learning goal: students will be familiar with both the
capabilities and limitations of state of the art machine per-
ception algorithms.

Specific skills: students will be able to use the MapBuilder
to demonstrate the function of several built-in vision al-
goirithms, and use these components effectively in robotics
applications.

3.3 How Do Robots Know Where They Are?
Big idea: Robots estimate their position and orientation in

the world using a combination of odometry, visual land-
marks, and other types of sensory information.

Underlying technology: particle filters.
Learning goal: students will understand the uses and lim-

itations of odometry and visual landmarks, the basic prin-
ciples of particle filters, and how particle filters are used for
localization.

Specific skills: students will be able to demonstrate ef-
fective robot navigation behavior by arranging landmarks
appropriately in the environment and invoking the Pilot’s
localization mechanism as needed to determine their robot’s
position.

Figure 1: Top: Robot wandering in an E-shaped
maze with AprilTag landmarks. Bottom: robot’s
estimated position and heading shown by a blue tri-
angle; particle cloud shows each particle’s position
and heading value.

Figure 2: Starting position of the robot relative to
a vee-shaped barrier in the Mirage simulator. The
real-world version of the barrier uses two sheets of
posterboard at a 120◦ angle.

Figure 3: Top panel: world map with barrier and
AprilTags; the path planned by the Pilot is shown
in blue, and the goal location marked with a red cir-
cle. The robot is following the path. Bottom panel:
how the path planner works. Once search trees from
the start location (black) and goal location (green)
meet in the RRT-Connect algorithm, the path can
be extracted and then smoothed, yielding the blue
line in the top panel.

3.4 How Do Robots Know Where To Go?
Big idea: Robots navigate through the world using a path

planner to search for routes around obstacles and an exe-
cution monitor to ensure that the robot stays on the path.

Underlying technology: RRTs (Rapidly-exploring Ran-
dom Trees) [6].

Learning goal: students will understand the concept of
a stochastic search algorithm, how the RRT-Connect algo-
rithm is used for path planning, and how planning can fail.

Specific skills: students will be able to invoke one of the
Pilot’s path planners to plan and execute paths through en-
vironments containing obstacles.

3.5 How Do Robots Control Their Bodies?
Big idea: Robots describe their bodies as kinematic trees

and use kinematics solvers to translate between joint an-
gles and body coordinates.

Underlying technology: kinematic description files, for-
ward and inverse kinematics solvers.

Learning goal: students will understand kinematic de-
scriptions expressed as trees of joints and links, and how
kinematics solvers use this representation when translating
between world coordinates and joint coordinates.

Specific skills: students will be able to construct and vi-
sualize kinematic descriptions using Tekkotsu’s DH Wiz-
ard tool, and invoke kinematics solvers via the Lookout or
Grasper to produce desired robot motions.

3.6 What Can We Do When A Robot Becomes
Too Complex For One Person To Fully Un-
derstand It?

Big idea: Robots are complex software systems that em-
ploy standard abstraction and software engineering tech-
niques to manage complexity.

Underlying technologies: tools such as modular design,
coding standards, doxygen (automatically generated docu-
mentation), standard libraries, etc.

Specific skills: students will be able to search and navi-
gate through the extensive online Tekkotsu documentation
(over 3500 web pages), make appropriate use of abstraction
mechanisms (e.g., write classes that inherit from predefined
node types, or create appropriate enumerated types for state
machine signaling), produce code that conforms to Tekkotsu
coding conventions, and give a picture of the modular orga-
nization of Tekkotsu in terms of directories and namespaces.

3.7 How Do We Calculate the Quantities Needed
To Make A Robot Function?

Big idea: Geometry, trigonometry, and linear algebra are
the mathematical underpinnings of much of robotics.

Underlying technology: Tekkotsu’s angular arithmetic classes
and fmat matrix/vector manipulation package.

Learning goal: students will understand frames of refer-
ence, angular and vector arithmetic, homogeneous coordi-
nates, coordinate transformation matrices, and how these
concepts are applied in robotics.

Specific skills: students will be able to solve simple kine-
matics problems using Tekkotsu’s built-in kinematics solvers
and matrix/vector classes.

4. HOW TO TEACH THESE IDEAS
The first stage of the Understanding by Design process is to
define the learning goals, big ideas, and essential questions,

as listed above. The second stage, which will not be cov-
ered here, is to plan for assessment by deciding what consti-
tutes acceptable evidence that students have met the learn-
ing goals. The third stage is to choose specific instructional
activities that will lead students to achieve these learning
goals. For most of the big ideas, a seven-step framework
similar to the WHERETO schema of Wiggins and McTighe
[17] or the framework of Bransford et al. [3] can be used
to guide instruction. Here is how this framework would be
applied to the third big idea in our list, localization:

• Motivate: Introduce an essential question and big
idea: How do robots know where they are?

• Demonstrate: Show the technology students will learn
about, e.g., set out some landmarks and demonstrate
the robot using them to keep track of its position as it
moves. How did it do that?

• Explain: Provide a high level explanation of how the
technology works, e.g., describe particle filters and how
they’re used by the Pilot for localization.

• Visualize: Give students a way to see the algorithm
in action, e.g., show them how to display the particles
the Pilot is using, and observe how the particles change
as the robot moves (Figure 1).

• Experiment: Guide students to play with the tech-
nology to test its accuracy and uncover its limitations.
For example, how does the particle filter respond if
you move one of the landmarks? How does it cope
with ambiguous (visually identical) landmarks?

• Apply: Show students how to apply the technology
in programs they write themselves. Example: show
them how to ask the Pilot to use specific landmarks
for localization, and how to obtain the robot’s position
estimate from the particle filter.

• Review: Ask students to summarize what they’ve
learned about particle filters and localization, and to
demonstrate mastery by answering quiz questions and
solving small problems.

Algorithm visualization (step 4) is the most technically
demanding of the seven steps, since it requires software en-
hancements, but most of this work has already been done
for Tekkotsu. Figure 1 shows the particle filter’s state made
visible using a tool called the SketchGUI [14]. The robot is
visualized using the Mirage simulator. AprilTags [10] on the
walls of the maze serve as landmarks.

Tekkotsu includes an extensive collection of visualization
tools, such as the Storyboard, which generates and displays
a state machine execution trace, and the DH Wizard, which
displays the kinematic structure of a robot. To take one
more example: when the Pilot is navigating from the robot’s
starting position (Figure 2) to a goal location on the other
side of a vee-shaped barrier, the planned path is automati-
cally displayed as a blue line (Figure 3, top); also note the
tight particle cloud. The bottom panel shows the search tree
constructed by the path planner using the RRT-Connect al-
gorithm [6]. Figure 2 was generated by the Mirage simulator,
and Figure 3 by the SketchGUI tool. Students can pose their
own path planning problems and see the results visualized
automatically using this tool.

Figure 4: A challenge problem using pairs of April-
Tags to guide the robot.

Guided experimentation (step 5) is also difficult to do well,
and we expect to explore many variations on this activity
over the next few years. For example, we recently developed
an activity called Particle Filter Bingo in which students use
Tekkotsu to participate in a competitive simulation of robot
localization. It’s fun, but we don’t know yet whether this
activity achieves its intended effect of reinforcing student
understanding of how particles are evaluated by a particle
filter.

5. WHAT CAN STUDENTS DO?
Figure 4 shows part of a challenge task from the 2011 ARTSI
Student Robotics Competition. Students had to program
their robot to read and follow instructions to make its way
around a complex course they had not seen before. The
instructions consisted of pairs of AprilTags describing a dis-
tance to travel and a direction to turn to reach the next
instruction pair in the sequence. The task combines vision,
navigation, and state machine control. Some student teams
who completed this task had taken or were presently en-
rolled in a Tekkotsu-based robotics elective, but other teams
learned in less formal settings, using the material on the
wiki.

A high school student who learned Tekkotsu programming
in a summer enrichment program was able to program a
Chiara hexapod robot to approach an electronic piano key-
board, visually locate the keys, and play Ode to Joy with its
right front leg (Figure 5). This work combined computer vi-
sion algorithms with kinematics calculations. The student’s
video explaining how his software worked received an award
at the 2011 Association for the Advancement of Artificial
Intelligence conference [5].

Other student projects have included chasing and swatting
a ball in a maze, and playing tic-tac-toe using the Grasper
to calculate arm trajectories for moving the pieces. A mas-
ters student programmed a robot to play chess on a real
chessboard [4].

6. BARRIERS TO IMPLEMENTATION
The Tekkotsu software and curriculum materials are freely
available on the web, so the cost of adoption is limited to the

Figure 5: Chiara hexapod robot programmed by a
high school student to play Ode to Joy.

Figure 6: Calliope prototype with pan/tilt camera
and 5 degree-of-freedom arm. A version with a Mi-
crosoft Kinect in place of the webcam is under de-
velopment.

hardware cost of the robots. One of the biggest barriers to
improving undergraduate robotics courses since the demise
of the Sony AIBO has been the lack of capable but afford-
able robots. The iRobot Create mobile base provides excel-
lent price/performance but is not a complete solution due
to its lack of sensors and on-board computing power. For-
tunately, several good options are now available that place
an Ubuntu Linux netbook atop a Create. The Calliope from
RoPro Design costs $900 for the basic model and is available
from RobotShop.com with Tekkotsu pre-installed. Versions
with a pan/tilt and an arm (Figure 6) are planned for 2012.
The Turtlebot from Willow Garage, and the Bilibot, which
originated from a group at MIT, both sell for roughly $1200
and include a Microsoft Kinect as the camera. Both come
with ROS, the Robot Operating System fromWillow Garage
[18]. The Bilibot also includes a 2 degree of freedom arm.
All three designs are open source.

Although these platforms are admittedly more expensive

than LEGO or VEX kits, fewer are needed, because they are
interchangeable and can thus easily be shared. Four robots
are recommended for a class of 8 to 12 students.

We’ve recently begun supplying students with bootable
8GB flash drives that have Ubuntu, Tekkotsu, and the Mi-
rage simulator pre-installed. This allows students to use
their personal laptops for robotics assignments without al-
tering their hard drive in any way.

While some work can be done in simulation, students will
still need ample laboratory time to interact with physical
robots. And the robots need space to run around in. This
is perhaps the hardest barrier to overcome, as space is at
a premium at many schools. The ideal arrangement is a
dedicated lab with keycard access so students can have un-
restricted access to the robots. Some schools instead opt to
have designated periods each day for the laboratory to be
open with a faculty member or graduate student present.

A final issue is lack of a textbook specific to this curricu-
lum. At present, instructors are using the labs and tutorials
on the Tekkotsu wiki as their primary source, with supple-
mentary material of their own choosing. A popular supple-
mentary textbook has been Mataric’s Robotics Primer [8].

The curriculum design presented here could potentially
be used with other software frameworks that provide par-
ticle filters, path planners, and visualization tools, such as
ROS. Tekkotsu’s design philosophy differs from ROS [12],
e.g., Tekkotsu provides tightly-integrated components and
uses a shared memory model for simplicity, while ROS em-
phasizes modularity (at the cost of increased complexity)
and uses a networking model for scalability. Both seek to
provide services to robot programmers based on state of the
art algorithms.

7. DISCUSSION
Robotics courses using the Tekkotsu framework have been
taught for six years at Carnegie Mellon, and for several years
at ARTSI Alliance-affiliated schools including Norfolk State
University, Florida A&M University, Hampton University,
Winston-Salem State University, Jackson State University,
and the University of the District of Columbia. Tekkotsu
and the associated curriculum materials have both evolved
substantially over this time. The curriculum described here,
which is the new target for both Carnegie Mellon and the
ARTSI Alliance, is partially implemented now and will be
completed over the next few years.

7.1 What Do Students Gain?
Besides learning about robotics, students gain several other

important things in a course of this type:
Appreciation for mathematics. We require CS majors

to take a lot of math, but almost none of it is used in their
CS courses. For many, especially those who have not taken
computer graphics, robotics may be their only opportunity
to apply trigonometry and linear algebra to real computing
problems. For some students, robotics will actually be their
introduction to linear algebra.

Mastery of advanced programming concepts. Many
students report that learning Tekkotsu has made them bet-
ter C++ programmers by helping them understand features
such as templates, multiple inheritance, operator overload-
ing, functors, and namespaces. These topics are often intro-
duced superficially in undergraduate courses, using only toy
examples. Since they are used extensively in Tekkotsu, stu-

dents can see how they are actually employed in “industrial
strength” software.

Software engineering skills. Robotics provides a com-
pelling context for teaching software engineering because
students are being asked to delve into and extend a soft-
ware system far more complex than anything they could
expect to write from scratch themselves. Baltes and Ander-
son, describing a mixed reality infrastructure for robotics
instruction, have likewise observed that working on robotics
assignments gave students useful software engineering expe-
rience [1].

7.2 Common Misconceptions
Certain misconceptions about robotics must be corrected

for CS education to move forward [13]:
Robotics is not about building robots. Not for computer

scientists, anyway. We don’t expect our students to build
their own laptops. Why should they be trying to build
robots, when the robots they ought to be using are more
complex than any laptop? Leave the construction to indus-
try. CS students’ time is best spent learning to program the
most capable robots we can provide them with.

Robotics is not just a vehicle for teaching CS1, and robot
programming involves more than writing simple reactive con-
trollers. As computer science faculty become more familiar
with the rich intellectual content of robotics and the tools
for teaching this material to undergraduates, they will be
less likely to trivialize the subject.

7.3 More Big Ideas
Some additional big ideas that could be taught to under-

graduates include:

• Human-robot interaction: How should robots be-
have around people?

• Multi-robot coordination: How can robots work to-
gether?

• Task-level planning: How can robots formulate plans
for solving complex problems?

These topics would be difficult to fit into the one semester
course outlined in this paper, but would be good choices for
the second half of a two-semester robotics sequence.

8. ACKNOWLEDGMENTS
This research was supported in part by National Science
Fondation awards DUE-0717705 and CNS-1042322. I am
grateful to Sharon Carver at Carnegie Mellon for introducing
me to the Understanding by Design methodology and for
several very helpful discussions. I would also like to thank
the faculty and students of the ARTSI Alliance for their
insights and feedback regarding the Tekkotsu framework and
curriculum.

9. REFERENCES

[1] J. Baltes and J. E. Anderson. Leveraging mixed
reality infrastruture for robotics and applied AI
instruction. In Proceedings of EAAI-10: The First
Symposium on Educational Advances in Artificial
Intelligence, Menlo Park, CA, 2010. AAAI Press.

[2] C. Boonthum-Denecke, D. S. Touretzky, E. J. Jones,
T. Humphries, and R. Caldwell. The ARTSI Alliance:
Using robotics and AI to recruit African-Americans to
computer science research. In Proceedings of
FLAIRS-24. AAAI Press, 2011.

[3] J. D. Bransford, A. L. Brown, and R. R. Cocking. How
people learn: Brain, Mind, Experience, and School.
National Academy Press, Washington, DC, 2000.

[4] J. Coens. Taking Tekkotsu out of the plane. Master’s
thesis, Carnegie Mellon University, Computer Science
Department, 2010. Available at
http://reports-archive.adm.cs.cmu.edu/
anon/2010/CMU-CS-10-139.pdf.

[5] A. Iyengar. Chiara robot plays the piano, 2011. Video
available at aivideo.org or
http://www.youtube.com/watch?v=-e8zmGypBDg.

[6] J. J. Kuffner and S. M. LaValle. RRT-connect: an
efficient approach to single-query path planning. In
ICRA’2000, 2000.

[7] D. G. Lowe. Object recognition from local
scale-invariant features. In ICCV 2, pages 1150–1157,
1999.

[8] M. J. Mataric. The Robotics Primer (Intelligent
Robotics and Autonomous Agents). The MIT Press,
Cambridge, MA, 2007.

[9] G. V. Nickens, E. J. Tira-Thompson, T. Humphries,
and D. S. Touretzky. An inexpensive hand-eye system
for undergraduate robotics instruction. In SIGCSE
2009, pages 423–427, 2009.

[10] E. Olson. AprilTag: A robust and flexible
multi-purpose fiducial system. Technical report,
University of Michigan April Laboratory, 2010.
Available at http://april.eecs.umich.edu/papers/
details.php?name=olson2010tags.

[11] Tekkotsu robotics development framework, 2011.
http://Tekkotsu.org.

[12] E. J. Tira-Thompson and D. S. Touretzky. The
Tekkots robotics development environment. In
Proceedings of ICRA-2011, Shanghai, China, 2011.

[13] D. S. Touretzky. Preparing computer science students
for the robotics revolution. Communications of the
ACM, 53(8):27–29, August 2010.

[14] D. S. Touretzky, N. S. Halelamien, E. J.
Tira-Thompson, J. J. Wales, and K. Usui.
Dual-coding representations for robot vision in
Tekkotsu. Autonomous Robots, 22(4):425–435, 2007.

[15] D. S. Touretzky and E. J. Tira-Thompson. The
Tekkotsu “crew”: Teaching robot programming at a
higher level. In Proceedings of EAAI-10: The First
Symposium on Educational Advances in Artificial
Intelligence, Menlo Park, CA, 2010. AAAI Press.

[16] O. Watson and D. S. Touretzky. Navigating with the
Tekkotsu Pilot. In Proceedings of FLAIRS-24. AAAI
Press, 2011.

[17] G. Wiggins and J. McTighe. Understanding by Design.
Pearson Education, Upper Saddle River, NJ,
expanded 2nd edition, 2005.

[18] Willow Garage. ROS: Robot Operating System, 2011.
http://ros.org.

