Object Recognition

15-494 Cognitive Robotics
David S. Touretzky & Ethan Tira-Thompson
Carnegie Mellon
Spring 2013
What Makes Object Recognition Hard?

- Translation invariance
- Scale invariance
- Rotation invariance (2D)
- Rotation invariance (3D)
- Occlusion
- Figure/ground segmentation (where is the object?)
- Articulated objects (limbs, scissors)
Template Matching

- Simplest possible object recognition scheme.
- Compare template pixels against image pixels at each image position.

Source image Template Match Score
Template Matcher

Sketch<uint> templateMatch(const Sketch<uchar> &sketch, Sketch<uchar> &kernel, int istart, int jstart, int width, int height) {
 Sketch<uint> result("templateMatch("+sketch->getName()+")",sketch);
 result-> setColorMap(jetMapScaled);
 int const npix = width * height;
 int const di = - (int)(width/2);
 int const dj = - (int)(height/2);
 for (int si=0; si<sketch.width; si++)
 for (int sj=0; sj<sketch.height; sj++) {
 int sum = 0;
 for (int ki=0; ki<width; ki++)
 for (int kj=0; kj<height; kj++) {
 int k_pix = kernel(istart+ki,jstart+kj);
 if (si+di+ki >= 0 && si+di+ki < sketch.width &&
 sj+dj+kj >= 0 && sj+dj+kj < sketch.height) {
 int s_pix = sketch(si+di+ki,sj+dj+kj);
 sum += (s_pix - k_pix) * (s_pix - k_pix);
 } else
 sum += k_pix * k_pix;
 }
 result(si,sj) = uint(65535 - sqrt(sum/float(npix)));
 }
 result -= result->min();
 return result;
}
Limited Invariance Properties

Original

Occluded

Rotated

Flipped

Sideways

Diagonal
Color Histograms (Swain)

- Invariant to translation, 2D rotation, and scale.
- Handles some occlusion.
- But assumes object has already been segmented.
Object Classes

Test Images

Figure from M. A. Stricker, http://www.cs.uchicago.edu/files/tr_authentic/TR-92-22.ps
Blocks World Vision

- One of the earliest computer vision domains.
 - Roberts (1965) used line drawings of block scenes: the first “computer vision” program.

- Simplified problem because shapes were regular.
 - Occlusions could be handled.

- Still a hard problem. No standard blocks world vision package exists.
AIBO Blocks World

- Matt Carson's senior thesis (CMU CSD, 2006).

- Goal: recover positions, orientations, and sizes of blocks.
Find the Block Faces
Find the Block From the Faces
AprilTags

- Robust fiducial markers created by Edwin Olson at the University of Michigan.
- Inspired by ARTag (Fiala) and ARToolkit.
How AprilTags Work (1/4)

1. Convert to greyscale and apply a Gaussian blur.

2. Compute gradient at each pixel: magnitude + direction.
How AprilTags Work (2/4)

3. Generate a list of two-pixel “Edges”.

4. Group aligned edges into Clusters; color indicates gradient direction.

5. Fit lines to the clusters, forming Segments. (The notch points toward the bright side of each line.)
How AprilTags Work (3/4)

6. For each Segment, find others that begin where this segment ends.

7. Find loops of length 4, called Quads.
8. Decode the Quads by looking at the pixels inside the border to see if they represent a valid tag code.

9. Search for overlapping tag detections and keep only the best ones (lowest Hamming distance or largest perimeter.)
SIFT (Lowe, 2004)

• Scale-Invariant Feature Transform
• Can recognize objects independent of scale, translation, rotation, or occlusion.
• Can segment cluttered scenes.
• Slow training, but fast recognition.
How Does SIFT Work?

• Generate large numbers of features that densely cover each training object at various scales and orientations.

• A 500 x 500 pixel image may generate 2000 stable features.

• Store these features in a library.

• For recognition, find clusters of features present in the image that agree on the object position, orientation, and scale.
SIFT Feature Generation

1) Scale-space extrema detection
 - Use differences of Gaussians to find potential interest points.

2) Keypoint localization
 - Fit detailed model to determine location and scale.

3) Orientation assignment
 - Assign orientations based on local image gradients.

4) Keypoint descriptor
 - Extract description of local gradients at selected scale.
Gaussian Smoothing
Difference of Gaussians: Edge Detection

Difference of Gaussians

DoG

-10

0

10

-0.02

0.02

One Dimensional

Two Dimensional

Zero Crossings = Edges
Scale Space

- Scale (next octave)
- Scale (first octave)
- Gaussian
- Difference of Gaussian (DOG)
Scale Space Extrema

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked with circles).
Filtering the Features

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an additional threshold on ratio of principal curvatures.
Keypoint Descriptors

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
Figure 13: This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and the 640x315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image, with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for recognition.
Real-Time SIFT Example

Fred Birchmore used SIFT to recognize soda cans.

http://eyecanseecan.blogspot.com

See demo videos on his blog.
SIFT in Tekkotsu

• Xinghao Pan implemented a SIFT tool for Tekkotsu:
 – Allow users to construct libraries of objects
 – Each object has a collection of representative images
 – User can control which SIFT features to use for matching
 – Java GUI provides for easy management of the library

• How to integrate SIFT with the dual coding system?
 – Object scale can be used to estimate distance
 – Match in camera space must be converted to local space
Tekkotsu SIFT Video

http://www.youtube.com/watch?v=2QVSTtjenCs
SIFT Tool

![Input Image: cherrylimeade01.](image1)

![Matched: object "Object #1",](image2)
Object Recognition in the Brain
Object Recognition in the Brain

- Mishkin & Ungerleider: dual visual pathways.
 - The dorsal, “where” pathway lies in parietal cortex.
 - The ventral, “what” pathway lies in temporal cortex.
 - Lesions to these areas yield very specific effects.
The Macaque “Vision Pipeline”

RGC = retinal ganglion cells

DJ Felleman and DC Van Essen (1991), *Cerebral Cortex* 1:1-47.
Serre & Poggio (PAMI 2007): Model Based on Temporal Cortex
To Learn More About Computer and Biological Vision

• Take Tai Sing Lee's Computer Vision class, 15-385.

• Take Tai Sing Lee's Computational Neuroscience class, 15-490.

• There are many books on this subject. One of the classics is “Vision” by David Marr.