
01/25/12 15-494 Cognitive Robotics 1

Tekkotsu Behaviors & Events

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

01/25/12 15-494 Cognitive Robotics 2

Quiz (1)

● Given these node definitions:

hi: SpeechNode(“Hello”)
bye: SpeechNode(“Goodbye”)
ping: SoundNode(“ping.wav”)

● What's the difference between this:

hi =C=> bye
hi =C=> ping

● And this:

hi =C=> {bye, ping}

01/25/12 15-494 Cognitive Robotics 3

Quiz (2)

● Given this node class definition:

$nodeclass MyThing : StateNode : doStart {
 …
}

● What's the difference between:

thing: MyThing =C=> OtherThing =C=> MyThing

● And this:

thing: MyThing =C=> OtherThing =C=> thing

01/25/12 15-494 Cognitive Robotics 4

● This lecture will show you how Tekkotsu works at the
basic level of behaviors and events.

● Some slides will contain...

ugly computer source code.

● Tekkotsu programmers don't really code this way.

● They use the state machine shorthand instead.

Disclaimer

01/25/12 15-494 Cognitive Robotics 5

Behaviors
● State machines are behaviors.

– Both state nodes and transitions
are behaviors.

● Behaviors are instances of classes.

– Add them to the ControllergGUI
“User Behaviors” menu using the
REGISTER_BEHAVIOR macro.

– Double click on the “User Behaviors”
menu item to instantiate and run.

– When you stop a behavior (double
click on the menu item again), the
instance is deleted.

01/25/12 15-494 Cognitive Robotics 6

Five Behavior Components

#include “Behaviors/BehaviorBase.h”

class PoodleBehavior : public BehaviorBase {

Constructor

PoodleBehavior() : BehaviorBase(“PoodleBehavior”) {}

doStart() is called when the behavior is activated

 virtual void doStart() {
 cout << getName() << “ is starting up.” << endl;
}

01/25/12 15-494 Cognitive Robotics 7

Five Behavior Components

doStop() is called when the behavior is deactivated, but
you rarely need to bother with this.

 virtual void doStop() {
 cout << getName() << " is shutting down." << endl;
}

doEvent processes requested event types

 virtual void doEvent() {
 cout << getName() << " got event: "
 << event->getDescription() << endl;
}

01/25/12 15-494 Cognitive Robotics 8

Five Behavior Components

getClassDescription() returns a string displayed by
ControllerGUI pop-up help

static std::string getClassDescription() {
 return "Demonstration of a simple behavior";
}

}; // end of PoodleBehavior class definition

01/25/12 15-494 Cognitive Robotics 9

Behaviors are Coroutines

● Behaviors are coroutines, not threads:

– Many can be “active” at once, but...

– Only one is actually running at a time.

– No worries about mutual exclusion.

– Must voluntarily relinquish control so that other active
behaviors can run.

● BehaviorBase is a subclass of:

– EventListener

– ReferenceCounter

● Behaviors will be deleted if they are deactivated and
the reference count goes to zero.

01/25/12 15-494 Cognitive Robotics 10

Browsing the Documentation

● Go to Tekkotsu.org and click on “Reference” in the gray
nav bar.

● “Class List” in the left nav bar

– Click on a class name (BehaviorBase) to see documentation

– Then click on a method name (doEvent) to jump to detailed
description

– Click on line number to go to source code

● “Directories” in left nav bar shows major components

– Look at the Behaviors and Events directories

01/25/12 15-494 Cognitive Robotics 11

Searching the Source

● The “search” box in the online documentation can be
used to search for classes, methods, variables,
enumerated types, etc.

● Use the “ss” shell script to search the source code
using grep:

> cd /usr/local/Tekkotsu

> ss LBump

> ss IRDist

01/25/12 15-494 Cognitive Robotics 12

Events
● Events are subclasses of EventBase

● Three essential components:

 Generator ID: what kind of event is this?

buttonEGID, visionEGID, timerEGID, ...

 Source ID: which sensor/actuator/behavior/thing
 generated this event?

CreateInfo::PlayButOffset
ERS7Info::HeadButOffset

 Type ID, which must be one of:

activateETID
statusETID
deactivateETID

01/25/12 15-494 Cognitive Robotics 13

Where are These Defined?

● EventGeneratorID_t defined in Events/EventBase.h

● Event source ids are specific to the event type:

– PlayButOffset defined in Shared/CommonCalliopeInfo.h

– visPinkBallSID defined in Shared/ProjectInterface.h

– For completion events, the source id is the address of the state
node that is completing.

● EventTypeID_t defined in Events/EventBase.h

enum EventTypeID_t {
 activateETID,
 statusETID,
 deactivateETID,
 numETIDs
};

01/25/12 15-494 Cognitive Robotics 14

Event Generator IDs
unknownEGID
aiEGID
audioEGID
buttonEGID
cameraResolutionEGID
erouterEGID
estopEGID
grasperEGID
locomotionEGID
lookoutEGID
mapbuilderEGID
micOSndEGID
micRawEGID
micFFTEGID
micPitchEGID
mocapEGID
motmanEGID
pilotEGID
powerEGID
remoteStateEGID
runtimeEGID

sensorEGID
servoEGID
stateMachineEGID
stateSignalEGID
stateTransitionEGID
textmsgEGID
timerEGID
userEGID
visInterleaveEGID
visJPEGEGID
visObjEGID
visOFbkEGID
visPNGEGID
visRawCameraEGID
visRawDepthEGID
visRegionEGID
visRLEEGID
visSegmentEGID
wmVarEGID
worldModelEGID

01/25/12 15-494 Cognitive Robotics 15

Types of Events
● Most events are described using EventBase.

● A few specialized events require additional fields to
convey all their information, so they use a specialized
subclass of EventBase.

01/25/12 15-494 Cognitive Robotics 16

The Event Router

● Runs in the Main process.

● Distributes events to the Behaviors listening for them.

01/25/12 15-494 Cognitive Robotics 17

The Event Logger

● Root Control
 > Status Reports
 > Event Logger

● Outputs to console

● Use shift-click to select
a range of entries.

01/25/12 15-494 Cognitive Robotics 18

Subscribing to Events

addListener(listener, generator, source, type)

#include “EventRouter.h”

virtual void doStart() {
 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::GreenButOffset,
 EventBase::activateETID);
}

Transitions do this to listen for
events, so you don't have to call

addListener() yourself.

01/25/12 15-494 Cognitive Robotics 19

Processing Events

virtual void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::buttonEGID:
 cout << “Button press: “ << event->getDescription()
 << endl;
 break;

 default:
 cout << “Unexpected event: “
 << event->getDescription() << endl;
 }
}

Transitions use doEvent() to
check the event and decide

whether to fire.

01/25/12 15-494 Cognitive Robotics 20

Text Message Events

 You can send text messages to
the robot via the ControllerGUI's
“Send Input” window:

 !msg Hi there

 This causes the behavior
controller to post a TextMsgEvent.

 You can also give the msg
command to Tekkotsu's command
line (with no exclamation point).

01/25/12 15-494 Cognitive Robotics 21

Subscribing to TextMsg Events

#include “Events/TextMsgEvent.h”

virtual void doStart() {
 erouter->addListener(this, EventBase::textmsgEGID);
}

The source ID is meaningless (it's -1).

The type ID is always statusETID.

01/25/12 15-494 Cognitive Robotics 22

Casting TextMsg Events
to Get Access to the String

void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::textmsgEGID: {
 const TextMsgEvent *txtev =
 dynamic_cast<const TextMsgEvent*>(event);
 cout << “I heard: '” << txtev->getText() << “'” << endl;
 };
 break;

 case EventBase::buttonEGID:
 ...

01/25/12 15-494 Cognitive Robotics 23

State Machine Shorthand
for Text Message Events

waitForUser: StateNode
waitForUser =TM("cheeseburger”)=> giveBurger
waitForUser =TM("fries”)=> giveFries
waitForUser =TM=> askAgain

Competing transitions can fire in any order, and the first
one “wins”. So how does the default =TM=> case work?

Answer: a timer delays firing so the other transitions can
fire first if they match the string.

01/25/12 15-494 Cognitive Robotics 24

Timers

Timers are good for two kinds of things:

● Repetitive actions: “Bark every 30 seconds.”

– Whenever a timer expires and a timer expiration event is
posted, the timer should be automatically restarted.

● Timeouts: “If you haven't seen the ball for 5 seconds,
 bark and turn around.”

– One-shot timer. Will need to be cancelled if we see the ball
before the time expires.

01/25/12 15-494 Cognitive Robotics 25

addTimer

● addTimer(listener, source, duration, repeat)

– listener is normally this

– source is an arbitrary integer

– duration is in milliseconds

– repeat should be “true” if a sequence of timer events is desired

● Starts timer and automatically listens for the event.

● Timers are specific to a behavior instance; can use the
same source id in other behaviors without interference.

● Behaviors can receive another's timer events if they
use addListener to explicitly listen for them.

● removeTimer(listener, source)

01/25/12 15-494 Cognitive Robotics 26

Timer Example

#include “Behaviors/BehaviorBase.h”
#include “EventRouter.h”

virtual void doStart() {

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::PlayButffset,
 EventBase::activateETID);

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::AdvanceButOffset,
 EventBase::activateETID);
}

01/25/12 15-494 Cognitive Robotics 27

Timer Example
virtual void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::buttonEGID:
 if (event->getSourceID() == RobotInfo::PlayOffset)
 erouter->addTimer(this, 1234, 5000, false);
 else if (event->getSourceID() == RobotInfo::AdvanceButOffset)
 erouter->removeTimer(this, 1234);
 break;

 case EventBase::timerEGID:
 cout << “On no!!!! Timer expired!” << endl;
 }

}

 What does this behavior do?

01/25/12 15-494 Cognitive Robotics 28

ControllerGUI Can Post Events
To Tekkotsu

Type this command in
the “Send Input” box:

 !post buttonEGID GreenBut A

● Monitor the result using the
Event Logger

● You can also use the post
command in the Tekkotsu
command line (no exclamation
point).

01/25/12 15-494 Cognitive Robotics 29

What Is A Completion Event?

● State nodes use completion events to indicate that their
action has completed successfully.

● Event content:

– Generator id: stateMachineEGID

– Source id: address of the state node that is completing

– Type id: statusETID

● CompletionTrans looks for completion events.
Shorthand form: =C=>

● If you define your own node class as a subclass of
StateNode, you can signal completion by calling
postStateCompletion().

01/25/12 15-494 Cognitive Robotics 30

Tekkotsu Architecture

01/25/12 15-494 Cognitive Robotics 31

World State

● Shared memory structure between Main and Motion

● Updated every 32 msec

● sensorEGID events announce each update

● Contents:

– joint positions, duty cycles, and PID settings

– button states: state->buttons[PlayButOffset]

– IR range readings: state->sensors[CenterIRDistOffset]

– accelerometer readings (if installed)

– battery state, thermal sensor

– commanded walking velocity (x,y,a)

01/25/12 15-494 Cognitive Robotics 32

Sensor Observer Monitors the
Sensor Portion of World State

● Root Control
 > Status Reports
 > Sensor Observer

● Try monitoring the
IR wall sensor.

● Then move your hand
in front of the robot.

01/25/12 15-494 Cognitive Robotics 33

Control of Effectors

● How do we make the robot move?

● Must send commands to each device (head, legs, arm,
LED display, etc.) every 32 ms.

● This is real-time programming.

● Can't spend too long computing command values!

● Best to do all this in another process, independent of
user-written behaviors, so motion can be smooth.

01/25/12 15-494 Cognitive Robotics 34

Tekkotsu Architecture: Motion

01/25/12 15-494 Cognitive Robotics 35

Motion Command State Nodes

● WalkNode, ArmNode, HeadPointerNode, LEDNode, etc...

● Creates the motion command in shared memory.

● User can “program” the motion command by calling
one of its methods to tell it what to do.

● The node's start() method registers the motion
command with the Motion Manager, making it active.

● The node listens for motion manager events to detect
when the motion is complete.

● Removes the motion command when it completes.

● Posts a completion event to notify the outgoing =C=>
transition to fire.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

