
15-494 Cognitive Robotics04/02/08

Manipulation with Friction

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2008

1

15-494 Cognitive Robotics04/02/08

Introduction

1. Friction

2. Jacobians

3. Dynamics

4. Control (P, PD, PID)

2

15-494 Cognitive Robotics04/02/08

Friction: Coulomb’s Law

3

f f

fa

mg

f f

fa

µ smg

µdmg

Figure 6.1 - Mason, Mechanics Of Robotic Manipulation

Pulling force

Static friction force
balances pulling force, up
to maximum specified by
static friction coefficient

Fr
ic

tio
n

Fo
rc

e

Once object begins
moving, frictional force
drops to constant value,
called sliding friction or

kinetic friction

15-494 Cognitive Robotics04/02/08

Friction: Coulomb’s Law

4

• For common tasks, independent of velocity
and surface area

• With extreme pressures, coefficient rises

• With extreme velocities, coefficient drops

• Coefficients of friction are different for
every pair of surfaces — table lookup

• also differ for every change in temperature,
humidity, dust/dirt, vibration, celestial
alignment, etc. — not terribly accurate

15-494 Cognitive Robotics04/02/08

Friction within Joints

• Static friction is a headache for fine motor
control

• motor has to ramp up power to overcome
static friction within gears, but as soon as it
succeeds in doing so, it’s now providing too
much power and will “jump” to life.

• this is the fundamental reason you see the
Aibo’s joints twitch from time to time

• the higher the gear ratio, the bigger the problem

5

15-494 Cognitive Robotics04/02/08

Computing with Forces

• Forces are defined by a line through space,
and a magnitude

• usually represented by a vector and a point

• but the point is not unique — any point along
the vector is equally valid (“line of action”)

6

N

F

x1

x2

f

f

line of action

Figure 5.1 - Mason,
Mechanics Of Robotic Manipulation

15-494 Cognitive Robotics04/02/08

Friction with Objects

• Now we can define a friction cone:

• Edges of the cone define maximum angle
allowed for forces without slippage

• If you break applied force into normal force fn
and tangental force ft, friction cone is defined
as |ft| ≤ µ|fn|, with interior angle 2 tan-1µ

7

lL lR2 tan
−1

µ

ft

fn

15-494 Cognitive Robotics04/02/08

Friction with Objects

• Remember Reuleaux’s Method?

• Works with friction cones as well

• Now we’re analyzing forces, not
displacements, a different interpretation!
(be careful about trying to mix them...)

• Only forces which agree with the all of the
contacts’ constraints can be applied by the
contact(s):

8

lL lR

+ –

+ –

15-494 Cognitive Robotics04/02/08

Combining Forces

• Adding multiple contacts allows
you to apply any force in the linear
span of their friction cones

• Remember that forces act along a
line through space

• slide forces along line of action to
intersection

• Resultant force is the vector sum of
the two forces, acting through
common intersection

9

f1

f2

f1 + f2

15-494 Cognitive Robotics04/02/08

Friction with Objects:
Examples

10

–
NO

NO

NO

YES

YES

YES

NO

+
YES

YES

Don’t actually care about
the object itself once contacts

have been analyzed

+ –

For reference:

15-494 Cognitive Robotics04/02/08

Center of Friction

11

• Similar to center of mass, center of friction is
the integrated pressure over the support region

• Allows you to treat the interaction as a single contact

• Different surfaces provide different friction
coefficients, thus center of friction is a weighted
average of the mass over its contacts

Chewing gum
µ=100 Table, µ=5

Applied Force

Uniform bar

Center
of Mass

Center
of Friction

Example:

15-494 Cognitive Robotics04/02/08

Center of Friction

12

• Hard to model — with a rigid body, small
variances completely throw off pressure
distribution, e.g. spinning dinner plates

• Ever play Jenga?

Ph
ot

og
ra

ph
er

: D
er

ek
 M

aw
hi

nn
ey

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/J

en
ga

15-494 Cognitive Robotics04/02/08

Applying Friction & Forces

• Use weight to flip brick

• Use wall to direct ball (extra arm)

• Get ball away from wall

• Use wall to align/direct brick

• Stand bone upright

• Insert objects without jamming or wedging

13

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix

• One of the most important tools in
analyzing and controlling robot motion!

• Provides the instantaneous velocity in each
of the 6 freedoms (translation and
orientation along/around each of x, y, and z)
as a function of the joint angles

14

= Jacobian (6×n) — a function of
 current joint angles (q)

= joint velocity vector (length n)

= workspace velocity vector (length 6)ẋ

q̇J(q)q̇ = ẋ

J(q)

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Usage

15

• Find current workspace velocity/force

• Determine contribution of
individual joints

• Analyze rank to detect singularities
(for better or worse)

• a singularity occurs when joints
become aligned, causing a loss in
effector mobility (but increased
strength along that axis!)

• under-actuated robots always have
incomplete rank

Full (planar) mobility

Singularity:
cannot move along y axis, but

also don’t have to do any
work to resist forces along it

x
y

x
y

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Usage

• Things to watch out for at/near singularities:

• Small workspace movements/forces may
require instantaneous joint motion (infinite
motor torque!)

• Usually occur at workspace limits

• May have infinite inverse kinematic solutions

• Test for configuration “quality”:

16

M(q) =
√

det(J(q)JT(q))
Swap J(q) and JT(q) if

under-actuated (i.e. J(q) is
less than full rank)

M(q)
becomes zero
at singularities

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Composition

17

J(q)q̇ = ẋ

Jp(q)

Jo(q)

ṗ

ω

= Position component (sometimes)

= Orientation component

= Linear velocity vector of end effector
= Angular velocity vector of end effector

Jacobian is split into two components:
Jv(q)

[

Jp(q)
Jo(q)

]

q̇ =

[

ṗ

ω

]

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Position Component

18

If Joint i is prismatic:

If Joint i is revolute:

Jp(q) =

∂px

∂q1

∂px

∂q2
. . .

∂px

∂qn

∂py

∂q1

∂py

∂q2
. . .

∂py

∂qn

∂pz

∂q1

∂pz

∂q2
. . .

∂pz

∂qn

Jp(q)1 Jp(q)2 Jp(q)n
. . .

Jp(q)i = zi × (p − pi)

Jp(q)i = zi

Where:
zi = z axis of joint i
 p = position of the end effector

pi = position of joint i’s origin
(all relative to base frame)

Remember that a joint’s z
axis is always defined to point

along its axis of motion

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Orientation Component

19

If Joint i is prismatic:

If Joint i is revolute:

Jo(q)1 Jo(q)2 Jo(q)n

Jo(q) =

∂ωx

∂q1

∂ωx

∂q2
. . .

∂ωx

∂qn

∂ωy

∂q1

∂ωy

∂q2
. . .

∂ωy

∂qn

∂ωz

∂q1

∂ωz

∂q2
. . .

∂ωz

∂qn

. . .

Jo(q)i = 0

Jo(q)i = zi

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Example

20

A planar RRR arm

x

x

x

x

y

y

y

y

a1

θ1

θ2
θ3a2

a3

J(q) =

[

z0 × (pe − p0) z1 × (pe − p1) z2 × (pe − p2)
z0 z1 z2

]

These are all given to you by the forward
kinematics: each joint’s transformation matrix

holds the current z vector in the 3rd column and
the current position in the 4th column

15-494 Cognitive Robotics04/02/08

Forward Kinematics
Supplies the pi Values

21

A planar RRR arm

p2 =

a1c1 + a2c12

a1s1 + a2s12

0

pe =

a1c1 + a2c12 + a3c123

a1s1 + a2s12 + a3s123

0

p0 =

0

0

0

p1 =

a1c1

a1s1

0

x

x

x

x

y

y

y

y

a1

θ1

θ2
θ3a2

a3

Notation:
s1 = sin(θ1)

c123 = cos(θ1+θ2+θ3)

J(q) =

[

z0 × (pe − p0) z1 × (pe − p1) z2 × (pe − p2)
z0 z1 z2

]

z0 = z1 = z2 =

0

0

1

15-494 Cognitive Robotics04/02/08

The Jacobian Matrix:
Result of Substitution

22

A planar RRR arm

x

x

x

x

y

y

y

y

a1

θ1

θ2
θ3a2

a3

Notation:
s1 = sin(θ1)

c123 = cos(θ1+θ2+θ3)

J(q) =

−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

0 0 0
0 0 0
0 0 0
1 1 1

15-494 Cognitive Robotics04/02/08

Dynamics

23

• How will joints move as power is applied?

• Ideally, the robot manufacturer tells you:

• Inertia Tensor (, 3×3 matrix) for each link:
angular momentum can then be found:

• Motor properties for each joint: rotor inertia (Im),
gear ratio, viscous and coulomb friction

• Sony isn’t ideal – we don’t have these parameters

• Aibo doesn’t give direct control over torque
anyway (we specify position, it computes power)

I

L = Iω

15-494 Cognitive Robotics04/02/08

Control

24

• So then, how does it compute the power
for each joint?

• We want to move the joint to a specified
position, and hold it there

• Sounds easy, right? Harder than it sounds:

• there may be other forces acting on the joint
(e.g. gravity, inertia, etc.)

• you’re controlling acceleration, two derivatives
away from position — go fast, but don’t oscillate

15-494 Cognitive Robotics04/02/08

Proportional Control

• Here’s an idea:

• take the current position error (e(t) = x(t) - xtgt)

• multiply e(t) by some parameter kp

• use this value as the new power output
 output = -kp· e(t)

• Should work, right? Farther away means
more power. As we get closer, reduce power.

25

15-494 Cognitive Robotics04/02/08

Proportional Control

• Here’s the resulting graph of position over
time:

• Whoa, look at that oscillation, and it isn’t
even oscillating around the right value!

• One thing at a time buckaroo – oscillation first

26

Position
Target

15-494 Cognitive Robotics04/02/08

PD Control

• The oscillation is caused because there’s
nothing to cause it to slow down as it’s
approaching the target — inertia will keep
the link moving and blow right past the target

• if you have significant friction or little inertia
(with a speed limit), this may not be a problem

• Add a braking factor kd, multiplied by the
current error derivative ∂e(t)
 output = -(kp· e(t)) - (kd· ∂e(t))

27

15-494 Cognitive Robotics04/02/08

PD Control

• Here’s a new graph of position over time:

• Closer! Now, let’s take care of that offset.

28

Position
Target

15-494 Cognitive Robotics04/02/08

PID Control

• That offset is caused by external forces, like
gravity. We need another term to handle
its constant input to our system.

• Use an integral of the error term, and
multiply it by a new coefficient ki:
 output = -(kp· e(t)) - (ki· ∫e(t)dt) - (kd· ∂e(t))

• Actual implementations vary in the
parameterization, many use:
 output = -kp· (e(t) + (ki· ∫e(t)dt) + (kd· ∂e(t)))

29

15-494 Cognitive Robotics04/02/08

PID Control

• Now look at the graph:

• Ta-da!

30

Position
Target

15-494 Cognitive Robotics04/02/08

PID Control

• We’ve put an Excel spreadsheet for this
simulation online so you can play with it

31

15-494 Cognitive Robotics04/02/08

Qualifications

• The graphs shown previously were based
on a system with inertia

• If the system you are controlling does not
have inertia, or equivalently, you are
controlling velocity directly (not force),
proportional control may be all you need!

• Proportional control often used as a potential
field function for steering mobile robots...

32

15-494 Cognitive Robotics04/02/08

Downside of the I Parameter

• If grasping an object with several
manipulators, any error in the manipulator’s
position will cause gradually increasing
internal strain

• This is why the Aibo will sometimes
shutdown with a joint overload error,
simply from standing idly on the ground

33

15-494 Cognitive Robotics04/02/08

The Dirty Little Secret

• How do we pick the P, I, and D parameters?

• Hard way: lots of math (a lecture unto itself)

• Read up on: Laplace Transforms, characteristic
equations, pole placement, bode plots

• Easy way: play with them until you get
something you like

• be careful not to make big changes at a time —
don’t want to get into unstable feedback loops

• Smart way: adaptive self-tuning

34

15-494 Cognitive Robotics04/02/08

Intuitive PID Tuning Advice

• In our notation (which I believe the AIBO uses)

• Scaling all the parameters together will scale
maximum power output without changing
control style (very much) — in the alternative
formulation, only P can be scaled this way.

• P tends to have the biggest impact — higher P
means more power , but more oscillation

• D balances oscillation, but reduces top speed

• I balances final errors (remember joint twitching?)

35

15-494 Cognitive Robotics04/02/08

Pulse-Width Modulation
(PWM)

• Finally, one last trick: servos are not
controlled with analog power levels

• Instead, power is “pulsed” on and off at high
frequency

• The portion of the period during which the
power is turned on is called the duty cycle

• Generally, this is a transparent effect, but
knowing this allows you to interpret the
“duty cycle” feedback given by each joint

36

15-494 Cognitive Robotics04/02/08

Getting Power From Position

• So, now that we have some understanding
of how power is computed from desired
position, we should be able to invert it to
compute a target position which will result
in a desired force!

• Make life easy for yourself: set ki and kd to
0, and specify an offset from current joint
position as the target — force will be
directly proportional to your offset (and kp)

37

