
02/15/10 15-494 Cognitive Robotics 1

World Maps and Localization

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2010

02/15/10 15-494 Cognitive Robotics 2

Frames of Reference

● Camera frame: what the robot sees.

● projectToGround() = kinematics + planar world
assumption.

● Local map assembled from camera frames each
projected to ground; robot moves head but not body.

● World map assembled from local maps built at different
spots in the environment.

camera

ground

world

local

02/15/10 15-494 Cognitive Robotics 3

Four Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS

02/15/10 15-494 Cognitive Robotics 4

Deriving the Local Map

1) MapBuilder extracts shapes from the camera frame

– Use a request of type MapBuilderRequest::cameraMap if you
want to stop here and just get camera-space shapes.

2) MapBuilder does projectToGround()

– Use MapBuilderRequest::groundMap if you want to stop here and
just get ground shapes from the current camera frame.

3) MapBuilder matches ground shapes against local shapes.

– Request type should be MapBuilderRequest::localMap

4) MapBuilder moves to the next gaze point and repeats.

– The world is assumed not to change during this process.

02/15/10 15-494 Cognitive Robotics 5

Deriving the World Map
● The local map covers only what the robot can see from a

single viewing position.

● The world map can cover much larger territory.

– Use MapBuilderRequest::worldMap

● The world map persists over a long time period.

– The world will change. Updates must be possible.

● We update the world map by:

– Constructing a local map.

– Aligning it with the world map (by translation and rotation)

– Importing shapes from the local map.

– Noting additions and deletions since the last local map match.

02/15/10 15-494 Cognitive Robotics 6

Localization

● How do we align the local map with the world map?

● This turns out to be equivalent to determining our
position and orientation on the world map.

● Tricky, because:

– The local map is noisy

– The environment can be ambiguous (multiple pink landmarks)

● Sensor model: describes the uncertainty in our sensor
measurements.

– Can mix sensor types (vision, IR), info types (bearing, distance)

02/15/10 15-494 Cognitive Robotics 7

SLAM

● Simultaneous Localization and Mapping

● When is this necessary?

– When we don't know the map in advance.

– When the world is changing (landmarks can appear or
disappear, or change location.)

– When we're moving through the world.

● How do we localize on a map that we are still in the
process of building?

● Motion model: estimates (by odometry) our motion
through the environment.

02/15/10 15-494 Cognitive Robotics 8

Particle Filtering

● A technique for searching large, complex spaces.

● What is the hypothesis space we need to search?

– Robot's position (x,y)

– Robot's orientation

– Which world space shapes have disappeared since last update?

– What new shapes have appeared in local space?

● Each particle encodes a point in the hypothesis space.

● How can we evaluate hypotheses?

– Use sensor and motion models to update particle weights

02/15/10 15-494 Cognitive Robotics 9

Ranking a Particle: 1-D Case

Local map

World map

Hypothesis: dx = 18

Match hypothesis

Poor
match

02/15/10 15-494 Cognitive Robotics 10

Ranking a Particle: 1-D Case

Local map

World map

Hypothesis: dx = 56

Match hypothesis

Good
match

02/15/10 15-494 Cognitive Robotics 11

Matching a Landmark

Gaussian probability
distribution: a sensor
modelWorld

Local

02/15/10 15-494 Cognitive Robotics 12

Pick the Best Candidate

Local map

World map

Hypothesis: dx = 56

Local map

Good
match

Match each local landmark
against the closest world
landmark of the same type
and color. Score with a
gaussian.

02/15/10 15-494 Cognitive Robotics 13

Matching a Set of Landmarks

Gx ,x0 = exp[−x−x0
2

2]

P s∈L ,t∈W∣h = GL.sh,W.t

P s∈L∣W ,h=max t∈W P s∈L ,t∈W∣h

P h = ∏
s∈L

P s∣W ,h

● Take the product of the match probabilities of the
individual landmarks:

● Allow penalty terms for addition, deletion.

L.s = coordinate of
shape s in Local map

W.t = coordinate of
shape t in World map

h = location hypothesis

02/15/10 15-494 Cognitive Robotics 14

Addition Penalty

● A shape in the local map that isn't in the world map must
be accounted for as an addition.

● Assess a penalty on P(h) for each addition, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

World map

Local map

02/15/10 15-494 Cognitive Robotics 15

Deletion Penalty

● A shape in the world map that should be visible in the
local map but isn't must be accounted for as a deletion.

● Assess a penalty on P(h) for each deletion, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

World map

Local map

02/15/10 15-494 Cognitive Robotics 16

What Shapes Should be Visible?

● Take bounding box of shapes in local space.

● All shapes within that box should be visible in world
space.

Local map

World map

02/15/10 15-494 Cognitive Robotics 17

When Objects Move

● If an object moves only a little bit, it will still match, and
the position will be updated.

● If an object moves by a larger amount, we'll get:

– An object deletion at the old location

– An object addition at the new location

● Could watch for this and combine both changes into a
single “move” penalty.

● If h is a poor hypothesis, then every object will appear to
have “moved”.

02/15/10 15-494 Cognitive Robotics 18

Importance Sampling

● For each particle h, calculate the probability P(h)

● Create a new generation of particles by resampling from
the previous population:

– Particles with high probability should be more likely to be
sampled, and will therefore multiply.

– Particles with low probability likely won't be sampled, and will
therefore probably die out.

● The new particle's parameters are “jiggled” a little bit.
This is how we search the space.

● Repeat this resampling process for several generations.

02/15/10 15-494 Cognitive Robotics 19

Jiggling a Particle

● Perturb the translation term (x, y)

● Perturb the orientation term

● Flip the state of an “addition” bit: one bit for each local
shape

– A value of 1 means this is a new addition to the world.

● Flip the state of a “deletion” bit: one bit for each world
shape.

– A value of 1 means this world shape has been deleted.

02/15/10 15-494 Cognitive Robotics 20

So What's In A Particle?
float dx, dy;

AngTwoPi orientation;

vector<bool> additions(numLocalShapes, false);

vector<bool> deletions(numWorldShapes, false);

Parameters to adjust:

– Number of particles (2000)

– Number of generations (15)

– Amount of noise to add to dx, dy,

– Probability of flipping an add or delete bit

02/15/10 15-494 Cognitive Robotics 21

Particle Filter Simulation:
2000 Particles

Zero Iterations

World Map

Rotated Local Map

02/15/10 15-494 Cognitive Robotics 22

Particle Filter Simulation

One Iteration

World Map

Rotated Local Map

+ means addition
x means deletion
 means match

02/15/10 15-494 Cognitive Robotics 23

Particle Filter Simulation

Five Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match

02/15/10 15-494 Cognitive Robotics 24

Particle Filter Simulation

Fifteen Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match

02/15/10 15-494 Cognitive Robotics 25

Local and
World Maps
on the Robot

Local
Map

World
Map

02/15/10 15-494 Cognitive Robotics 26

Localization
After
Movement

Local
Map

World
Map

02/15/10 15-494 Cognitive Robotics 27

Construct World Map

Three pieces on the board. Let's delete one.

02/15/10 15-494 Cognitive Robotics 28

Delete a Game Piece

Actual change: dx = 0 mm, dy = 0 mm, = 0o, delete shape 30005
Particle filter: dx = 9 mm, dy = 13 mm, = -0.2o, delete shape 30005

02/15/10 15-494 Cognitive Robotics 29

Construct World Map

Three pieces on the board. Let's add one.

02/15/10 15-494 Cognitive Robotics 30

Add a Game Piece

Actual change: dx = 0 mm, dy = 0 mm, = 0o, add shape 20006
Particle filter: dx = 2 mm, dy = -.5 mm, = -0.6o, add shape 20006

02/15/10 15-494 Cognitive Robotics 31

Construct World Map

Four pieces on the board. Let's move, add, and delete.

02/15/10 15-494 Cognitive Robotics 32

Change Position and Add/Delete

Actual change: dx = 670 mm, dy = -260 mm, = 45o, add 20011, del. 30010
Particle filter: dx = 678 mm, dy = -306 mm, = 42o, add 20011, del. 30010

02/15/10 15-494 Cognitive Robotics 33

Another Particle Filter Demo

Set up a world with three landmarks (worldShS):

02/15/10 15-494 Cognitive Robotics 34

#nodeclass ParticleDemo : VisualRoutinesBehavior : DoStart

 // Build the world map

 NEW_SHAPE(orange1, EllipseData,
new EllipseData(worldShS,Point(35,-50,0,allocentric),27.5,27.5));

 orange1->setColor(“orange”);

 NEW_SHAPE(orange2, EllipseData,
new EllipseData(worldShS,Point(135,-50,0,allocentric),27.5,27.5));

 orange2->setColor(“orange”);

 NEW_SHAPE(green1, EllipseData
new EllipseData(worldShS,Point(135,-150,0,allocentric),27.5,27.5));

 green1->setColor(“green”);

02/15/10 15-494 Cognitive Robotics 35

Move to New Location and
Use MapBuilder to Look Around
Results are constructed in localShS:

02/15/10 15-494 Cognitive Robotics 36

// Build a local map from what we can see

#nodeclass BuildMap : MapBuilderNode(MapBuilderRequest::localMap) : DoStart

 localShS.clear();

 NEW_SHAPE(gazePoly, PolygonData,
new PolygonData(localShS, Lookout::groundSearchPoints(),

 false));

 mapreq.searchArea = gazePoly;
 mapreq.doScan = true;
 mapreq.pursueShapes = true;
 mapreq.maxDist = 2000;
 mapreq.clearShapes = false; // to preserve gazePoly

 mapreq.addObjectColor(ellipseDataType,”orange”);
 mapreq.addObjectColor(ellipseDataType,”green”);

#endnodeclass

02/15/10 15-494 Cognitive Robotics 37

Use Particle Filter to Localize
on the World Map

02/15/10 15-494 Cognitive Robotics 38

BiColor Markers

02/15/10 15-494 Cognitive Robotics 39

LookForBiColorMarkers Demo

02/15/10 15-494 Cognitive Robotics 40

FourCorners Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

