
03/20/10 15-494 Cognitive Robotics 1

The Map Builder

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2010

03/20/10 15-494 Cognitive Robotics 2

Horizontal Field of View

Rat: 300 deg. Human: 200 deg. Typical robot: 60 deg.

03/20/10 15-494 Cognitive Robotics 3

Seeing A Bigger Picture

● How can we assemble an accurate view of the robot's
surroundings from a series of narrow camera frames?

● First, convert each image to symbolic form: shapes.

● Then, match the shapes in one image against the shapes
in previous images.

● Construct a “local map” by matching up a series of
camera images.

Image Shapes Local Map

03/20/10 15-494 Cognitive Robotics 4

Can't Match in Camera Space

● We can't match up shapes from one image to the next if
the shapes are in camera coordinates. Every time the
head moves, the coordinates of the shapes in the
camera image change.

● Solution: switch to a body-centered reference frame.

● If we keep the body stationary and only move the head,
the coordinates of objects won't change (much) in the
body reference frame.

camera plane

03/20/10 15-494 Cognitive Robotics 5

Planar World Assumption

● How do we convert from camera-centered coordinates to
body-centered coordinates?

● Need to know the camera pose: can get that from the
kinematics system.

● Unfortunately, that's not enough.

● Add a planar world assumption: objects lie in the plane.
The robot is standing on that plane.

● Now we can get object coordinates in the body frame.

03/20/10 15-494 Cognitive Robotics 6

Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS across multiple images

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS

03/20/10 15-494 Cognitive Robotics 7

Invoking The Map Builder

● Let's map the tic-tac-toe board:

03/20/10 15-494 Cognitive Robotics 8

Frame 1

03/20/10 15-494 Cognitive Robotics 9

Frame 2

03/20/10 15-494 Cognitive Robotics 10

Frame 3

03/20/10 15-494 Cognitive Robotics 11

Frame 4

03/20/10 15-494 Cognitive Robotics 12

Frame 5

03/20/10 15-494 Cognitive Robotics 13

Final Local Map

03/20/10 15-494 Cognitive Robotics 14

Shape Matching Algorithm

● Shape type and color must match exactly.

● Coordinates must be a reasonably close match for
points, blobs, and ellipses.

● Lines are special, because endpoints may be invalid:

– If endpoints are valid, coordinates should match.

– If invalid in local map but valid in ground space, update the
local map to reflect the true endpoint location.

● Coordinates are updated by weighted averaging.

03/20/10 15-494 Cognitive Robotics 15

Noise Removal

● Noise in the image can cause spurious shapes. A long
line might appear as 2 short lines separated by a gap, or
a noisy region might appear as a short line.

● Assign a confidence value to each shape in local map.

● Each time a shape is seen: increase its confidence.

● If a shape should be seen but is not, decrease its
confidence.

● Delete shapes with negative confidence.

03/20/10 15-494 Cognitive Robotics 16

Where to Look?

● Start with the shapes visible in the camera frame.

● Move the camera to fixate each shape: get a better look.

● If a line runs off the edge of the camera frame, move the
camera to try to find the line's endpoints.

– If the head can't rotate any further, give up on that endpoint.

● If an object is partially cut off by the camera frame, don't
add it to the map because we don't know its true shape.

– Move the camera to bring the object into view.

03/20/10 15-494 Cognitive Robotics 17

MapBuilderRequest

● You invoke the Map Builder by creating an instance of a
MapBuilderRequest object.

● You can use a MapBuilderNode to create the request and
submit it to the Map Builder for you.

● Fill in the fields of the member variable mapreq to
indicate what you want the MapBuilder to do, e.g., find
pink lines and project them to local space.

● At the completion of the DoStart, the request will be
submitted to the MapBuilder.

#shortnodeclass MakeRequest : \
 MapBuilderNode($,MapBuilderRequest::localMap) : DoStart
 mapreq.addObjectColor(lineDataType,”pink”);

03/20/10 15-494 Cognitive Robotics 18

Examine the Results with Another
VisualRoutinesStateNode

 #nodeclass Report : VisualRoutinesStateNode : DoStart

 cout << “MapBuilder found “ << localShS.allShapes().size()
<< “ shapes.” << endl;

 #endnodeclass

● The results left by the MapBuilder in camShS or localShS
can be examined by any subsequent state node that
inherits from VisualRoutinesStateNode.

● Running the behavior again will clear out the shape
spaces before processing the next request. (This can be
overridden by setting mapreq.clearShapes=false.)

03/20/10 15-494 Cognitive Robotics 19

Programming the MapBuilder

#nodeclass LocalMapDemo : VisualRoutinesStateNode

 #shortnodeclass MakeRequest : \
 MapBuilderNode($,MapBuilderRequest::localMap) : DoStart
 mapreq.addObjectColor(lineDataType,”pink”);

 #shortnodeclass Report : VisualRoutinesStateNode : DoStart
 cout << “Saw “ << localShS.allShapes().size() << “ shapes” << endl;

 #nodemethod setup
 #statemachine
 startnode: MakeRequest =MAP=> Report
 #endstatemachine
#endnodeclass

REGISTER_BEHAVIOR(LocalMapDemo);

● Use a MapBuilderNode to submit a MapBuilder request.

● Use a =MAP=> transition to detect request completion.

Parent state machine
must be a
VisualRoutinesStateNode
if any of its children are.

03/20/10 15-494 Cognitive Robotics 20

MapBuilderRequest Parameters
● RequestType

– cameraMap

– groundMap

– localMap

– worldMap

● Shape parameters:

– objectColors

– occluderColors

– maxDist

– minBlobArea

– markerTypes

● Utility functions:

– clearShapes

– rawY

– immediateRequest

● Lookout control:

– motionSettleTime

– numSamples

– sampleInterval

– pursueShapes

– searchArea

– doScan, dTheta

– manualHeadMotion

03/20/10 15-494 Cognitive Robotics 21

Programming the MapBuilder
#nodeclass MakeRequest : \
 MapBuilderNode($,MapBuilderRequest::localMap) : DoStart

 mapreq.numSamples = 5; // take mode of 5 images to filter out noise
 mapreq.maxDist = 1200; // maximum shape distance 1200 mm
 mapreq.pursueShapes = true;

 mapreq.addObjectColor(lineDataType, “pink”);
 mapreq.addOccluderColor(lineDataType, “blue”);
 mapreq.addOccluderColor(lineDataType, “orange”);

 mapreq.addObjectColor(ellipseDataType, “blue)”;
 mapreq.addObjectColor(ellipseDataType, “orange”;

#endnodeclass

03/20/10 15-494 Cognitive Robotics 22

Sharing Among State Nodes

● NEW_SKETCH and NEW_SHAPE define local variables that
go out of scope when the DoStart method returns.

● But the sketch or shape itself is still present.

● To access a sketch created by another state node, use
GET_SKETCH to bind a local variable.

● Use GET_SHAPE to access shapes.

#shortnodeclass Step1 : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(pink_stuff, bool, visops::colormask(camFrame, “pink”));
 NEW_SKETCH(pink_edges, bool, visops::edge(pink_stuff));

#shortnodeclass Step2 : VisualRoutinesStateNode : DoStart
 GET_SKETCH(pink_edges, bool, camSkS);
 NEW_SKETCH(outline, bool, visops::neighborSum(pink_edges) > 0);

03/20/10 15-494 Cognitive Robotics 23

MapBuilder Clears camSkS

● The MapBuilder clears camSkS before processing a new
camera image.

● If your behavior involves repeated calls to the
MapBuilder, you may want to prevent a particular sketch
from being lost across calls.

● To retain a sketch, use:
mySketch->retain();

● Use GET_SKETCH to recover access to the sketch.

● To release a sketch, use:
mySketch->retain(false);

03/20/10 15-494 Cognitive Robotics 24

Qualitative Spatial Reasoning
● Reading for today:

 How qualitative spatial reasoning can improve
 strategy game AIs
 Ken Forbus, James Mahoney, and Kevin Dill (2002)

● Uses visual routines
to “reason about” maps,
e.g., compute reachability,
calculate paths, etc.

● Possible research topic:
applying these ideas to
world maps in Tekkotsu.

