
04/20/10 15-494 Cognitive Robotics 1

Architectures for Robot Control

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2010

04/20/10 15-494 Cognitive Robotics 2

Why Is Robot Control Hard?

Coste-Maniere and Simmons (ICRA 2000):

● High-level, complex goals

– Assemble this water pump

– Cook my breakfast

● Dynamic (changing) environment

● Robot has dynamic constraints of its own
(don't fall over)

● Sensor noise and uncertainty

● Unexpected events (collisions, dropped objects, etc.)

04/20/10 15-494 Cognitive Robotics 3

Approaches To Control

1.Hierarchical: classic sense-plan-act
● “Top-down” approach

● Start with high level goals, decompose into subtasks

● Not very flexible

2.Behavioral
● “Bottom-up” approach

● Start with lots of independent modules executing concurrently,
monitoring sensor values and triggering actions.

● Hard to organize into complex behaviors; gets messy quickly.

3.Hybrid
● Deliberative at high level; reactive at low level

04/20/10 15-494 Cognitive Robotics 4

Levels of Control Problem

Robots pose multiple control problems, at different levels.

● Low-level control:

– Example: where to place a leg as robot takes its next step

– Generally, continuous-valued problems

– Short time scale (under a second); high frequency loop

● Intermediate level control:

– Navigating to a destination, or picking up an object.

– Continuous or discrete valued problems

– Time scale of a few seconds

● High level control:

– What is the plan for moving these boxes out of the room?

– Discrete problems, long time scale (minutes)

04/20/10 15-494 Cognitive Robotics 5

Low-Level Control Issues

● Real-time performance requirement

– Code to issue motor commands or process sensor readings
must run every so many milliseconds.

● Safety: avoid states with disastrous consequences

– Never turn on the rocket engine if the telescope is uncovered.

– Never fail to turn off the rocket engine after at most n seconds.

– Therac-25 accident (see IEEE Computer, July 1993)

– Safety properties sometimes provable using temporal logic.

● Liveness: every request must eventually be satisfied

● Deadlock-free

04/20/10 15-494 Cognitive Robotics 6

“Reactive” Architectures

● Sensors directly determine actions.

● In its most extreme form, stateless control.

● “Let the world be its own model.”

● Example: light-chasing robot:

light detectors

motors,
wheels

light source

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

04/20/10 15-494 Cognitive Robotics 7

Overriding a Behavior

● If robot loses sight of the light, turn clockwise until the
light comes back into view.

light source

light detectors

motors,
wheels

0?

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

(behavior find-light
 :overrides (chase-light)
 :test (0? (+ (left-sensor-value)
 (right-sensor-value)))
 :actions
 ((set left-motor 0.5)))

04/20/10 15-494 Cognitive Robotics 8

Light Chasing in a
State Machine Formalism

● States treated as equal alternatives.

● State is discrete, but control signal is continuous.

● “Find Light” has to know which state to return control to
when the light is found.

● Usually not parallel (but can be).

Chase
Light

Find
Light

Lost light

Found light

04/20/10 15-494 Cognitive Robotics 9

Rod Brooks' Subsumption Idea

● In 1986 Rod Brooks proposed the “subsumption”
architecture, a kind of reactive controller.

● Robot control program is a collection of little autonomous
modules (state machines).

● Hierarchy of layers of control.

● Some modules override (subsume)
 inputs or outputs of lower layer
 modules.

04/20/10 15-494 Cognitive Robotics 10

Genghis: Six-Legged Walker

04/20/10 15-494 Cognitive Robotics 11

Hannibal (Breazeal)

Three Distinct Insect Gaits:
(1) slow wave, (2) ripple,
(3) tripod

04/20/10 15-494 Cognitive Robotics 12

Coping With a Noisy World

● URBI (Baillie, 2005) provides a ~ operator to test if a
condition has held true for a certain duration.

● Onleave test is true when condition ceases to hold.

● You can build a
state machine
from these
primitives.

04/20/10 15-494 Cognitive Robotics 13

Guarded Commands vs.
Finite State Machines

whenever (foo_test) foo_action;

at (bar_test) bar_action; onleave baz_action;

foo
guard

foo
action

foo test

NullTrans

bar
guard

bar
action

bar test baz
action

! bar test

NullTrans

04/20/10 15-494 Cognitive Robotics 14

Why Is Complex State Bad?

● Can be expensive to compute (vision)

● Error-prone: what if you make a map, and it's wrong?

● Goes stale quickly: the world constantly changes

● But...

– Non-trivial intelligent behavior can't be achieved without
complex world state.

– You really do need a map of the environment.

– Can't use a subsumption architecture to play chess.

– Or even chase a ball well...

04/20/10 15-494 Cognitive Robotics 15

Chase Ball 1

● Cooperation between two simple processes:

– Point the camera at the ball

– Walk in the direction the camera is pointing

● Each process can execute independently.

● Purely reactive control.

04/20/10 15-494 Cognitive Robotics 16

Chase Ball 2

● If we lose sight of the ball, must look for it.

● Now we introduce some internal state:

Track
Ball

Follow
Head

Pan
Head

Lost sight Rotate
Body

Timeout

Timeout

 Found ball

04/20/10 15-494 Cognitive Robotics 17

Chase Ball 3

● More intelligent search: direction of turn should depend
on where the ball was last seen.

● Now we need to maintain world state (ball location).

04/20/10 15-494 Cognitive Robotics 18

Chase Ball 4
● Must avoid obstacles while chasing the ball.

– May need to move the head to look for obstacles.

– Attention divided between ball tracking and obstacle checking.

● May need to detour around obstacles.

– Subgoal “detouring” temporarily overrides “chasing”.

● Where will the ball be when the
detour is completed?

– Mapping, trajectory extrapolation...

Say “goodbye” to
reactive control!

04/20/10 15-494 Cognitive Robotics 19

Mid-Level Control:
Task Control Languages

● Takes the robot through a sequence of actions to
achieve some simple task.

● Must be able to deal with failures, unexpected events.

● There are many architectures for mid-level control.
Various design tradeoffs:

– Specialized language vs. extensions to Lisp or C

– Client/server vs. publish/subscribe communication model

– Provide special exception states, or treat all states the same?

– How to provide for and manage concurrency.

● Lots of languages/tools: RAPs, TCA, PRS, Propice, ESL,
MaestRo, TDL, Orccad, ControlShell, 3T, Circa.

04/20/10 15-494 Cognitive Robotics 20

Gat's ESL
● ESL: Execution Support Language (Gat, AAAI 1992; AAAI

Fall Symposium, 1996) provides special primitives for
handling failures and limiting retries.

(defun move-object-to-table ()
 (with-recovery-procedures
 ((:dropped-object :retries 2)
 (locate-dropped-object)
 (retry))
 (pick-up-object)
 (move-to-table)
 (put-down-object)))

(defun pick-up-object ()
 (open-gripper)
 (move-gripper-to-object)
 (close-gripper)
 (raise-arm)
 (if (gripper-empty)
 (fail :dropped-object)))

04/20/10 15-494 Cognitive Robotics 21

ESL (Continued)

● Cleanup procedures are necessary to ensure safe state
after failure.

● Deadlock prevention: ESL includes “resource locking”
primitives for mutual exclusion and deadlock prevention.

● Synchronization: “checkpoints” allow one process to wait
until another has caught up.

(with-cleanup-procedure
 ((shut-down-motors)
 (close-camera-port))
 (do-some-thing-that-might-fail))

04/20/10 15-494 Cognitive Robotics 22

High Level Control: Planning
“Deliberative” architectures may run slowly, infrequently.

– Path planning for navigation.

– Planning as problem solving: achieve A-B-C by moving only one
block at a time (gripper can't hold two blocks).

C

A

B C B

A

CA B CA

B

C

B

A
X

Start
State

Goal
State

04/20/10 15-494 Cognitive Robotics 23

Shakey the Robot (1968)
And The STRIPS Planner

04/20/10 15-494 Cognitive Robotics 24

Really High Level Control

● Can potentially use cognitive modeling architectures
such as SOAR (Newell) or ACT-R (Anderson) to control
robots.

● RoboSoar (Laird and Rosenbloom, 1990):
plan-then-compile architecture.

– Generate high level plan.

– Then compile into reactive rules for execution.

● ACT-R has been used in simulated worlds.

● Grubb and Proctor (2006): Tekkotsu interface for ACT-R

04/20/10 15-494 Cognitive Robotics 25

Gat's Three-Level Architecture
● Gat (Artificial Intelligence and Mobile Robots, ch. 8, 1998)

proposed a different three-level architecture:

● The Controller:

– collection of reactive “behaviors”

– each behavior is fast and has minimal internal state

● The Sequencer

– decides which primitive behavior to run next

– doesn't do anything that takes a long time to compute, because
the next behavior must be specified soon

● The Deliberator

– slow but smart

– can either produce plans for the sequencer, or respond to
queries from it

04/20/10 15-494 Cognitive Robotics 26

What Does Tekkotsu Provide?

● State machine formalism can be used for reactive control
or a more hybrid approach.

● Behaviors can execute in parallel; event-based
communication follows a publish/subscribe model.

● Main/Motion dichotomy – but Motion is only for ultra-low-
level control.

● Specialized path planners for navigation and
manipulation.

● We could move the really slow, higher level deliberative
code out of Main to another process.

04/20/10 15-494 Cognitive Robotics 27

Tekkotsu Subsystems

● The Lookout controls the head:

– visual search

– target tracking

– obstacle detection

● The Pilot controls the body:

– walking, rotating in place

– path planning

– trajectory following

● The Grasper controls the arm

– grasping, pushing, toppling, flipping, etc.

04/20/10 15-494 Cognitive Robotics 28

Potential for Lookout/Pilot
Interactions

● The Lookout may need to turn the body in order to
conduct a visual search, when head motion alone isn't
enough.

– Lookout makes a request to the Pilot for a turn.

● The Pilot may need to ask the Lookout to locate some
landmarks so it can self-localize.

– Pilot makes a request to the Lookout for a search.

● Interactions must be managed to prevent deadlock,
infinite loops.

● But the user shouldn't have to worry about this.

04/20/10 15-494 Cognitive Robotics 29

Robot Cooperation
● An even higher level of control is cooperation among

multiple robots working as a team.

● Tekkotsu allows robots to communicate by subscribing to
each other's events.

● Can also subscribe to state updates using

 requestRemoteStateUpdates(ip, type, interval)

● This is only a low-level form of coordination, but
cooperation could be built on top of this.

DoStart:
 int ip = EventRouter::stringToIntIP("172.16.0.4");
 erouter->addRemoteListener(this, ip, EventBase::motmanEGID);

processEvent:
 if (event.getHostID() == ip)
 cout << “Got remote event “ << event.getDescription() << endl;

04/20/10 15-494 Cognitive Robotics 30

Part II

State Machine Signalling
In Tekkotsu

04/20/10 15-494 Cognitive Robotics 31

Three Mechanisms for
Communication Among States

1) Sketch and shape spaces are shared across all states, so
sketches/shapes created by one state can be accessed
by another using GET_SKETCH and GET_SHAPE.

2) SignalTrans allows one state to send a message to
another as part of a transition, e.g., to send an int:

state1 =S<int>=> state2

3) Variables defined in a parent state can be accessed by
children using the parentAs<T>() construct.

04/20/10 15-494 Cognitive Robotics 32

1) Accessing Sketches, Shapes

#shortnodeclass state1 : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(pinkx, bool, visops::colormask(camFrame,”pink”));
 NEW_SKETCH(pblobs, uint, visops::labelcc(pinkx));

#shortnodeclass state2 : VisualRoutinesStateNode : DoStart
 GET_SKETCH(pblobs, uint, camSkS);
 cout << “I found “ << pblobs->max() << “ blobs” << endl;

Variable pblobs goes out of scope upon exiting
state1::DoStart, but the sketch it points to persists in
camSkS.

GET_SKETCH retrieves the sketch from camSKS and binds
a new local variable with that name so we can access it.

04/20/10 15-494 Cognitive Robotics 33

Using sketch->retain()

● NEW_SKETCH the makes sketch visible in the sketchGUI,
which protects from garbage collection.

● If you use NEW_SKETCH_N instead, must call retain() to
preserve the sketch when variable goes out of scope.

 #shortnodeclass state1 : VisualRoutinesStateNode: DoStart
 NEW_SKETCH_N(secret, uchar, ~sketchFromRawY());
 secret->retain();

● To drop a retained sketch:

 secret->retain(false);

04/20/10 15-494 Cognitive Robotics 34

MapBuilder and retain()

● The MapBuilder automatically clears camSkS and
camShS at the start of each request.

● If you need to keep a sketch around across MapBuilder
calls, use retain().

● To clear sketches manually, including retained sketches,
call camSkS.clear() directly.

04/20/10 15-494 Cognitive Robotics 35

2) State Signaling

Two principal uses:

● Transmit an arbitrary value, e.g., a float or struct

● Implement an n-way branch. In this case the signal is an
enumerated type.

Both are implemented by posting a DataEvent and using a
SignalTrans to test for the event.

04/20/10 15-494 Cognitive Robotics 36

When using DoStartEvent instead of DoStart, the
variable event is automatically defined for you and
bound to the event that caused the transition into
this state. The extractSignal call will fail if this is not
a DataEvent<float>.

Transmit an Arbitrary Signal

#nodeclass TransmitDemo : StateNode

 #shortnodeclass Pitcher : StateNode : DoStart
 float x = ...; // some arbitrary computation
 postStateSignal<float>(x);

 #shortnodeclass Catcher : StateNode : DoStartEvent
 float val = extractSignal<float>(event);
 cout << “Message received: “ << val << endl;

 #nodemethod setup
 #statemachine
 startnode: Pitcher =S<float>=> Catcher
 #endstatemachine
 #endnodemethod

#endnodeclass

04/20/10 15-494 Cognitive Robotics 37

N-Way Branch

#nodeclass ChooseDemo : StateNode
 enum choice {goLeft, goRight, goStraight};

 #shortnodeclass Chooser : StateNode : DoStart
 float x = rand()/(1.0f + RAND_MAX);
 if (x < 0.1) postStateSignale<choice>(goLeft);
 else if (x < 0.2) postStateSignal<choice>(goRight);
 else postStateSignal<choice>(goStraight);

 #nodemethod setup
 #statemachine
 startnode: Chooser
 startnode =S<choice>(goLeft)=> WalkNode($,0,0,1,0)
 startnode =S<choice>(goRight)=> WalkNode($,0,0,-1,0)
 startnode =S<choice>(goStraight)=> WalkNode($,100,0,0,0)
 #endstatemachine

#endnodeclass

04/20/10 15-494 Cognitive Robotics 38

3) Parent-Defined Variables

#nodeclass SharedVarDemo : StateNode : counter()
 int counter;

 #shortnodeclass BumpIt : StateNode
 int &counter = parentAs<SharedVarDemo>()->counter;
 ++counter;

 #shortnodeclass Report : StateNode
 int &counter = parentAs<SharedVarDemo>()->counter;
 cout << “Counter = “ << counter << endl;

 #shortnodemethod DoStart
 counter = 0; // can't rely on constructor if called twice

 #nodemethod setup
 #statemachine
 startnode: BumpIt =N=> BumpIt =N=> BumpIt =N=> Report
 #endstatemachine

#endnodeclass

04/20/10 15-494 Cognitive Robotics 39

More State Signaling

● postStateCompletion()

– Use the =C=> transition

– Indicates normal completion of the state's action.

● postStateFailure(), postStateSuccess()

– Use =F=> for abnormal completion, e.g., search failed.

– Use =S=> for a third outcome if =C=> already used

● postParentCompletion(), postParentFailure()

– Can be used to trigger a transition out of the parent node.

– This is how nested state machines can “return” to the
parent state machine.

04/20/10 15-494 Cognitive Robotics 40

When You Must Use =C=>

straight: HeadPointerNode[getMC()->setJoints(0,0,0)]
 =RND=> {left, right}

left: HeadPointerNode[getMC()->setJoints(0,0.5,0)]
 =T(5000)=> straight

right: HeadPointerNode[getMC()->setJoints(0,-0.5,0)]
 =T(5000)=> straight

What's the problem? The =RND=> transition won't wait for the
head motion to complete. Same for =N=> transition. Can only
use =C=> here.

