
15-492: Parallel Algorithms Lecturer: Guy Blelloch
Topic: Parallel Models 2 Date: September 4, 2007
Scribe: Jason Knichel

3.1 PRAM: Parallel Random Access Machine

Memory

...P1 P2 P3 Pn

Each processor has its own set of registers and program counter.

Assume that reading and writing takes unit time.

Assume that there is a global synchronized clock so all processors work in lockstep (this is the least
realistic of the assumptions).

3.1.1 Read Write Conflicts

• Exclusive Read = one read from a memory location at a time

• Concurrent Read = multiple reads from a memory location at a time

• Exclusive Write = one write to a memory location at a time

• Concurrent Write = multiple writes to a memory location at a time

– Arbitrary: an arbitrary one of the write attempts wins

– Priority: Assume there is a priority on the processors and whichever processor has
highest priority wins

– Combining: somehow combine values (sum, max, etc)

– Detection: some special value gets written when there is a concurrent write

You can combine either of the read strategies with either of the write strategies, but the exclusive
read - concurrent write combination is usually not considered

• The only reason to do an exclusive read is if a concurrent read is too expensive

• If a concurrent read is too expensive, then a concurrent write will probably also be too
expensive

1



3.2 Networked Models

...P1 P2 P3 Pn

...M1 M2 M3 Mm

Network

Some examples of networks are:

• Crossbar

• Butterfly

• Grid

• Bus - only one request can go through at once

Latency = time message takes to get through

Throughput = how often a message can be injected into the network

For the purpose of simulating PRAM assume

• Latency = log n

• Throughput = one message per cycle

• memory split up sequentially across memory banks

If multiple processors request data from the same memory bank, since the throughput is 1 per
cycle, the requests queue up to the memory banks and it has to send data back one at a time so
reading and writing is not unit time in those situations.

One proposed solution is to randomly distribute memory to memory banks

• This doesn’t guarantee there will be no problems but it reduces the chance that it will happen

• This would still have problems if multiple processors try to read the exact same memory
location

– A fix to this would be to combine identical requests into a single request and then break
up the response on the way back so it gets to everyone who requested it

2



3.3 DAG Models (Work/Depth)

DAG = Directed Acyclic Graph

nodes = instructions

edges = dependencies

Start

Work = number of nodes = 8

Depth = length of longest path = 3

3.3.1 Nested Parallelism

�
�
�
�

�
�
�
�

�
�
�
�

Gb

Ga

or Ga GbG = 

series composition parallel composition

or

node

3.3.2 Mergesort

Assume we have a parallel merge function that has W = O(n) and D = O(log2n)

3



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

merge

msort(n/2)

merge

msort(n)

msort(n/2)

merge

mergesort:

W (n) = 2 ∗ W (n

2
) + O(n) = O(nlogn)

D(n) = D(n

2
) + O(log2n) = O(log3n)

3.3.3 Mapping from DAGs to PRAM

Definitions:

• A node is ready when all its parents have completed. All ready jobs can be run in parallel

• In a greedy schedule, if if there are p or less nodes ready where p is the number of available
processors, then assign all ready nodes to the processors, otherwise assign any p ready nodes
to processors.

4


