20.1 Scheduling fine-grained threads

For a Directed Acyclic Graph of size W and depth D we know that any greedy schedule will run in $\Theta(W/P + D)$ where P is the number of processors. Assuming a collection of ready threads, Q, scheduling algorithms tend to differ primarily on the ordering of work performed in Q. The operation of forking is simply a matter of pushing a new task onto Q.

![DAG example](image)

Figure 20.1.1: DAG example

Figure 20.1.1 demonstrates a possible DAG with a fork/join and also a simple usage of futures (or synchronous variables). The data dependencies are intended to illustrate that while fork/join implies only a single data dependency link back, futures allow any number of reads.

- $JT(x)$ is a join edge in the original thread.
- $JF(x)$ is a join edge in the forked thread.
- $DT(y)$ is a future read edge.
- $DF(y)$ is a future finished edge.

The meaning of join will be considered first, in this pseudo-code:

$$JT(x) = \begin{cases} \text{if } x.\text{state} = 0 \\ \text{then continue} \end{cases}$$
else set x.continuation to current continuation
 decrement x.state
 yield

JF(x) = if x.state = 0
 then push continuation of original thread onto Q
 yield
else decrement x.state

x.state is initialized to the number of forked threads. As each forked thread completes, it decre-
ments x.state until 0 has been reached. At this point, the join is complete and it is now okay
to proceed with the computation in the original thread. Therefore, the meta-variable x needs to
contain this information which is shared across all threads.

\[x = \langle \text{state}, \text{continuation} \rangle \]

In addition, it is important that x be updated atomically.

Futures require some more work because there are multiple possible continuations after the parallel
computation has finished. Therefore a different meta-variable, y, is used:

\[y = \langle \text{state}, \text{value}, \text{continuation list} \rangle \]

where state is either Unfinished or Finished.

DT(y) = if state = Finished
 then continue
 else push current continuation onto x.continuations
 yield

DF(y) = set state to Finished
 for each T in x.continuations
 push T onto Q
 continue

Threads waiting for a future to finish will invoke DT(y) in order to be placed on the waiting list.
When the future finishes, it invokes DF(y) to queue up the waiting tasks. Some form of atomicity
should be used to prevent contention over y. While futures are simple in pseudo code, the details
can be quite complex which is why they are not widely available.

20.1.1 Real APIs

20.1.1.1 pthreads

- fork: pthread_create
- join: pthread_join
20.1.1.2 OpenMP
- fork: parallel sections
- join: barriers

20.1.1.3 Cilk
- fork: spawn
- join: sync

20.1.1.4 X10
- fork: async
- join: finish

20.1.1.5 Concurrent ML
- fork: spawn
- join: joinEvt with sync
- synchronous variables: iVar, iPut, iGet (write-once) mVar, mPut, mGet (mutable)

20.1.1.6 Parallel Haskell
- fork: par, parMap, forkIO and other combinators
- futures: implicit
- synchronous variables: newTMVar, putTMVar, takeTMVar (transactional memory library)

20.2 Schedulers

There are a number of strategies for dealing with Q which can produce different performance characteristics.

Breadth-First Use Q as a FIFO queue thus in effect traversing the DAG in breadth-first fashion. This is very simple, so it is often used, but has some serious deficiencies. It is possible for the Q to become very large. Consider Matrix Multiplication: at some point the DAG will be $O(n^3)$ in breadth and therefore the queue can grow cubically!\(^{1}\)

\(^{1}\)This is why most pthreads implementations cannot be used for fine-grained threading.
Parallel Depth-First Assign a priority to nodes in the DAG by preordering them. Then when considering between choices of nodes to run next, choose that with best priority. If you only have fork/join, this produces the same effect as treating Q as a stack. This is better than Breadth-First because $|Q| \in \mathcal{O}(p \log n)$.

Work Stealing With this algorithm, Q is broken down into per-processor queues which are double-ended. From one end, a push or a pop can be performed by the local processor. From the other end, only a pop can be performed, and that is called a steal. The basic idea behind the algorithm is that each processor will check its local queue for work, and if there is nothing, then it will randomly steal some work from another processor.