15-492: Parallel Algorithms Lecturer: Guy Blelloch
Topic: String Processing Date: October 16, 2007
Scribe: Kyle Comer(kcomer@)

15.1 Substring problem

Input: String, s, of lenght n and a pattern, p, of length m
Output: All occurances of p in s

For example, the string could be Google’s database of websites and the pattern could be a search
phrase.

We want to preprocess s so that each search can be done in time O(m) and many searches can be
run in parallel. There is an algorithm that constructs a Finite State Machine from the pattern and
then runs the input string through the FSM to determine all locations of the pattern. However,
this runs in time O(n), which is slower than we would like.

15.1.1 Trie data structure

We could construct a trie of all suffixes of the string. However, this data structure could be O(n?)
large. Consider the string s = aaa . .. aaabaaa . .. aaa. This would generate a tree like the following.

15.1.2 Patricia Tree or suffix tree

To solve this problem, we can generate a Patricia Tree or suffix tree instead of a Trie. A Patricia
Tree allows an edge to represent multiple letters. We can construct a Patricia Tree from a Trie by
removing any node with only 1 child and merging the incoming edge and the outgoing edge. This
tree has only binary nodes and leaves. With the relation that |leaves| = |binary nodes| + 1 we see
that the space complexity is 2n — 1 € O(n).

If we are able to build this tree, lookups will only take O(m + logn) time. How can we construct
this tree? If we simply insert every prefix, this tree can be constructed is O(n?) time. However, we
can do better than this.

15.1.3 Constructing Suffix Array

Instead of constructing a suffix tree, we will construct a suffix array. A suffix array is a sorted array
of the suffixes. In our case, this is most easily represented as an array of points into the string.
Naively, this can be constructed in O(n?logn) work by using quicksort on all the suffixes (since
each comparison is potentially O(n)) or in O(n?) work using radix sort. Our goal is O(n), which
can be done. However, we will describe a simpler version which runs in O(nlogn) work.

Input: String of length n

Output: Suffix array of pointers into the string

An interesting note about this algorithm is that the sequential version was solved using the parallel
technique of contraction.

M|{I|S|S|I|S|S|I|P|P|TI]|SE§
0111234567 |8]9]|10(11

Figure 15.1.1: Sample array

Assume $ comes before all characters lexicographically.

The algorithm is:

1. Break the string into all possible (n) sets of 3 consecutive characters.

MIS | ISS | SSI | SIS | ISS | SSI | SSI | IPP | PPI | PI$ | I$$ | $$$
0 1 2 3 4 5 6 7 8 9 10 | 11

Figure 15.1.2: Suffix triplets

2. Group all triplets beginning at any index equivalent to 1 (mod 3) into an array.
3. Append all triplets begining at any index equivalent to 2 (mod 3) to the end of this array.

4. Radix sort the array and label them with their index. Now we have an array with (2n/3)
elements sorted by their index.

Index 1 4 7 10 2 5 8 11
Triplet | ISS | ISS | IPP | I$$ | SSI | SSI | PPI | $$$
Sort 4 4 3 2 6 6 5 1

Figure 15.1.3: Triplets sorted by radix

5. We do a recursive call on this array. (Numbers are treated as just characters)

6. To deal with the remaining elements (the ones equivalent to 0 (mod 3)) we can make use of
the sorting that we just did. We can use radix sort on a pair of characters: the character at
0 (mod 3) and then the index of the character sequentially after it.

[4]4]3]2[6]6][5[1[%]

Figure 15.1.4: Recursive problem of size 2n/3

44326651 | 4326651 | 326651 | 26651 | 6651 | 651 | 51 | 1
5 4 3 2 8 7 6 |1

Figure 15.1.5: Solution to recursive problem

mb | s4 | s3 | p2
1 4 13| 2

Figure 15.1.6: Sorting the 0 (mod 3) suffixes

7. Now we have a sorted array of length 2n/3 corresponding to the suffixes of the elements
equiavlent to 1 and 2 (mod 3) and a sorted array of length n/3 corresponding to the suffiex
of the elements equivalent to 0 (mod 3). To obtain our answer, we merge these two arrays.
The exact method for this will be covered in the next lecture.

M[I]S[S]I|[S]S|I[P[P]I
- 5[8[-Ja[7|-[3]6]-]2]1
L] -]-Jal-]-13]-[-]2]-[-
|5]4af11]9]3]10][8[2][7[6]1]0]

Figure 15.1.7: Merging of 2 sorted suffix arrays

