15.1 Substring problem

Input: String, s, of length n and a pattern, p, of length m
Output: All occurrences of p in s

For example, the string could be Google’s database of websites and the pattern could be a search phrase.

We want to preprocess s so that each search can be done in time $O(m)$ and many searches can be run in parallel. There is an algorithm that constructs a Finite State Machine from the pattern and then runs the input string through the FSM to determine all locations of the pattern. However, this runs in time $O(n)$, which is slower than we would like.

15.1.1 Trie data structure

We could construct a trie of all suffixes of the string. However, this data structure could be $O(n^2)$ large. Consider the string $s = aaa \ldots aaabaaa \ldots aaa$. This would generate a tree like the following.

![Trie Diagram](image)

15.1.2 Patricia Tree or suffix tree

To solve this problem, we can generate a Patricia Tree or suffix tree instead of a Trie. A Patricia Tree allows an edge to represent multiple letters. We can construct a Patricia Tree from a Trie by removing any node with only 1 child and merging the incoming edge and the outgoing edge. This tree has only binary nodes and leaves. With the relation that $|leaves| = |binary\ nodes| + 1$ we see that the space complexity is $2n - 1 \in O(n)$.

If we are able to build this tree, lookups will only take $O(m + \log n)$ time. How can we construct this tree? If we simply insert every prefix, this tree can be constructed is $O(n^2)$ time. However, we can do better than this.
15.1.3 Constructing Suffix Array

Instead of constructing a suffix tree, we will construct a suffix array. A suffix array is a sorted array of the suffixes. In our case, this is most easily represented as an array of points into the string. Naively, this can be constructed in $O(n^2 \log n)$ work by using quicksort on all the suffixes (since each comparison is potentially $O(n)$) or in $O(n^2)$ work using radix sort. Our goal is $O(n)$, which can be done. However, we will describe a simpler version which runs in $O(n \log n)$ work.

Input: String of length n
Output: Suffix array of pointers into the string
An interesting note about this algorithm is that the sequential version was solved using the parallel technique of contraction.

The algorithm is:

1. Break the string into all possible (n) sets of 3 consecutive characters.

<table>
<thead>
<tr>
<th>MIS</th>
<th>ISS</th>
<th>SSI</th>
<th>SIS</th>
<th>ISS</th>
<th>SSI</th>
<th>IPP</th>
<th>PPI</th>
<th>P$</th>
<th>ISS</th>
<th>$$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

 Figure 15.1.2: Suffix triplets

2. Group all triplets beginning at any index equivalent to 1 (mod 3) into an array.

3. Append all triplets beginning at any index equivalent to 2 (mod 3) to the end of this array.

4. Radix sort the array and label them with their index. Now we have an array with $(2n/3)$ elements sorted by their index.

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triplet</td>
<td>ISS</td>
<td>ISS</td>
<td>IPP</td>
<td>ISS</td>
<td>SSI</td>
<td>SSI</td>
<td>PPI</td>
<td>$$$</td>
</tr>
<tr>
<td>Sort</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

 Figure 15.1.3: Triplets sorted by radix

5. We do a recursive call on this array. (Numbers are treated as just characters)

6. To deal with the remaining elements (the ones equivalent to 0 (mod 3)) we can make use of the sorting that we just did. We can use radix sort on a pair of characters: the character at 0 (mod 3) and then the index of the character sequentially after it.
Now we have a sorted array of length 2n/3 corresponding to the suffixes of the elements equivalent to 1 and 2 (mod 3) and a sorted array of length n/3 corresponding to the suffix of the elements equivalent to 0 (mod 3). To obtain our answer, we merge these two arrays. The exact method for this will be covered in the next lecture.

7. Now we have a sorted array of length 2n/3 corresponding to the suffixes of the elements equivalent to 1 and 2 (mod 3) and a sorted array of length n/3 corresponding to the suffix of the elements equivalent to 0 (mod 3). To obtain our answer, we merge these two arrays. The exact method for this will be covered in the next lecture.