
15-492: Parallel Algorithms Lecturer: Guy Blelloch
Topic: Introduction Date: 08/28/2007
Scribe: Kanat Tangwongsan

1.1 Course Announcement

In this course we will study parallel algorithms, with an emphasis on algorithms that can be used
on shared-memory parallel machines such as multicore architectures. We will devote the first half of
the semester to the theory of parallel algorithms and spend the second half learning about various
parallel-programming platforms. An approximate schedule can be found on the course’s web site.

• Instructor: Guy Blelloch (guyb@cs.cmu.edu), WeH 7125

• TA: Kanat Tangwongsan (ktangwon@cs.cmu.edu), WeH 7102

• Website: http://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/

• Course Mailing List: 15492-f07@lists.andrew.cmu.edu

Course Requirements and Grading: scribing 2 lectures (15%), a take-home midterm (15%),
5 assignments (50%), and a final Project (20%).

1.2 Ubiquitous Parallelism

Parallel computing has been a subject of active study for decades. From logic gates inside a
microprocessor to millions of machines on the Internet, some level of parallelism is available.

Logic Gates

Implicit Pipelining

MMX, Vector instructions (explicit pipelining)

Hyper-threading
Multi-core processors

Shared-memory multi-chip systems

Clusters
Internet

Different levels of parallelism are shown in the diagram above. Inside a processor, logic gates
can process signals simultaneously. In modern processors, multiple instructions are executed at the
same time. We call this (implicit) pipelining. Some modern processors also have vector instructions
(e.g., MMX instructions). This is a form of explicit pipelining—the user explicitly specifies that
certain operations should be carried out in parallel. For this course, we will focus on small-scale
parallelism (i.e., how a single user can exploit parallelism).

1

1.3 Models of Parallelism

Computer scientists invent abstract models of machines so that a theoretical study can accurately
predict the performance of an algorithm on an actual computer without having to deal with the
complicated details of an actual machine. For sequential machines, the RAM model has been the
standard model for theoretical analysis of algorithms. In this section, we will review the RAM
model and introduce few models of parallel machines, which will be examined later in the course.

The RAM Model. The RAM model has successfully been used to study the performance of
sequential algorithms. In the RAM model, instructions are executed in a sequence one after another,
with no concurrent operations. A random access machine (RAM) consists of a program counter
(PC), a number of registers, and some (random-access) memory. See CLRS for more details.

The Circuit Model. In parallel computing, an important aspect we want to capture is depen-
dencies. For a large class of computations, this can be modeled as a directed acyclic graph (DAG),
where a directed edge from u to v indicates that the computation at v depends on the outcome of u.
Then the cost of a computation can be characterized by the size (number of nodes) and the depth
(length of the longest path) of the DAG. The circuit model, however, is less than ideal, because it
is static and lacks the ability to model dynamic decisions that occur in most algorithms.

The PRAM Model. With the success of the RAM model, we are tempted to extend it to model
parallel machines. We will ignore the nitty-gritty of parallel machines for now. In the simplest
form, a PRAM operates on a shared memory, as depicted in the figure below. All processors run
synchronously under the control of a single clock.

Shared Memory

P1 P2 P3 P4

1.4 Matrix Multiplication

Let us assume for simplicity that we always deal with square matrices. Given matrices A ∈ Fn×n

and B ∈ Fn×n, we want to computer the matrix C = AB. This is one of the most fundamental
problems in computing. If we let Aij denote the entry at the j-th column of row i, then the
definition of matrix multiplication gives that Cij =

∑n
k=1 Aik ·Bkj . This summation is exactly the

dot product of the i-th row of A with the j-th column of B. From this, one can come up with the
most natural sequential algorithm for matrix multiplication like the one below. Note that lines 3
to 6 is nothing more than computing the dot product (as mentioned earlier).
1: for i = 1 to n do
2: for j = 1 to n do

2

3: Cij = 0;
4: for k = 1 to n do
5: Cij = Cij + Aik · Bkj ;
6: end for
7: end for
8: end for

Now looking more closely at the sequential code above, we quickly realize that if have n2 processors,
each Cij can be computed separately and in parallel with other entries. We just designate each
processor to run lines 3 to 6 of the code above, one processor for each (i, j) ∈ {1, 2, . . . , n} ×
{1, 2, . . . , n}. Using this scheme, the algorithm has work O(n3) and depth O(n). That is O(n2)
speed-up from the näıve sequential algorithm.

Can we do even better? Clearly if we can speed up the dot-product computation to, say, O(log n)
depth, we will have improved the algorithm to O(log n) depth. The crucial observation here is that
+ is associative. For example, we know that ((a+ b)+ c)+d = (a+ b)+ (c+d). Let ak = Aik ·Bkj ,
so Cij =

∑n
k=1 ak. One can imagine building a perfect binary tree, where all ak’s sit at the leaves,

and each internal node is the sum of the two children. Figure 1.4 shows an example with n = 8.
We know that a perfect binary tree has depth O(log n). Since an internal node depends only on its
two children, the depth of the dot-product calculation is O(log n).

a1 a2 a3 a4 a5 a6 a7 a8

+ + + +

+ +

+

Figure 1.4.1: A perfect binary tree for summing n = 8 numbers.

1.5 Quick sort

Quick sort is a popular divide-and-conquer, comparison-based sorting algorithm. When the pivots
are chosen uniformly at random, we know that quick sort makes O(n log n) comparisons with high
probability1. Below is a pseudo-code for sequential quick sort:

QSort(A) =
if |A| ≤ 1 return A

1An event E occurs with high probability if Pr[E] ≥ 1−O(n−c) for some constant c ≥ 1.

3

else
p = A[rand(|A|)];
return QSort({x ∈ A : x < p})++{p}++QSort({x ∈ A : x > p});

If we draw the recursion tree for quick sort, we will see that a call only depends on their prede-
cessors. Therefore, a simple thing is try to parallelize the recursive calls. Assuming that quick
sort always splits the array in half every time, this gives us a parallel algorithm with depth
D(n) = D(n/2) + O(n) and work W (n) = 2W (n/2) + O(n). The recurrence relations2 solve
to D(n) = O(n) and W (n) = O(n log n). With a more careful analysis, we can show that random-
ized quick sort which spawns a new thread for each recursive call has work O(n log n) and depth
O(n) with high probability.

After all this is not so impressive—having infinite processors only yields log n speed up. When we
examine this code more, we realize that perhaps we want to parallelize the partitioning routine.
As we will see later in the course, partitioning (i.e., constructing the array {x ∈ A : x < p}) can be
accomplished in parallel with depth O(log n) and work O(n). This will give us a version of parallel
quick sort with depth O(log2 n) and work O(n log n).

2There are many ways to solve these recurrences. E.g., one can use the master formula (see e.g. CLRS) or simply
unfold them.

4

