
Final Project Guidlines Parallel Algorithms (Fall’07)

Your final project is an opportunity to explore the use of parallel algorithms on real-world
datasets. Below are some project ideas to help you start thinking. You are more than welcome to
suggest your own project; there is really no limit in creativity on your part. Each project is to be
completed by 1 - 2 students. The final project is worth 20% of your grade.

Graph Theme. Graphs are an important abstraction in computer science. Many important
problems in optimization, machine learning, and various other fields can be formulated succintly as
graph problems. For the project, you can consider implementing one of the graph algorithms and
running it on real-world graphs. You can select from a number of graph algorithms we discussed
in class, or be more adventurous and read recent papers.

You will have access to (at least) the following datasets: partial Google Web Graph, a number
of road networks, a power-grid graph, a number of Mesh graphs, and the Netflix graph. Here is a
brief list of what fun applications you can try on these graphs:

• Spanning Tree. Often, we would like to know whether or not a graph is connected. For many
real-world applications, this is the first step before running other sophisticated algorithms.
Constructing a spanning tree automatically gives us connectivity and some more.

• Shortest Paths. Your favorite trip planning program, e.g. Google Map, MapQuest, needs
this (and a few more tricks).

• Maximal Independent Set. A great number of parallel algorithms rely on being able to
compute a maximal independent set efficiently. There are various tradeoffs you can consider
here.

• Graph Separator. In the simplest form, the graph separator problem is seeking a partition
of a graph into 2 (roughly) equal parts that minimize the number of edges going across the
partition. This subject has fascinated people from medical imaging and computer vision to
theoretical computer science. You can be thrilled, too.

• Biconnected Components. When the route from A and B fails, we seek an alternate
route. A biconnected component is a graph where there are always 2 disjoint paths between
every pair of nodes. Can you find all of them?

• Graph Drawing. I have 1,342,269 nodes and about ten million edges. How could I possibly
visualize this graph? We want to render the graph nicely on a screen so that what we see
makes sense.


