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P r o g r a m m i n g  

A l g o r i t h m s  

I n  t h e  p a s t  2 0  y e a r s  t h e r e  h a s  b e e n  t r e m e n -  

d o u s  p r o g r e s s  i n  d e v e l o p i n g  a n d  a n a l y z i n g  

p a r a l l e l  a l g o r i t h m s .  P~esearchers have developed efficient 
parallel algorithms to solve most problems for which efficient 

sequential solutions are known. Although some of these algo- 

rithms are ejficient only in a theoretical framework, many are 

quite ~ficient in practice or have key ideas that have been used 

in eJficient implementations. This research on parallel algo- 

rithms has not only improved our general understanding of par- 

allelism but in several cases has led to improvements in 

sequential algorithms, u n f o ~ u n a t e l y  t h e r e  h a s  

b e e n  l e s s  s u c c e s s  i n  d e v e l o p i n g  g o o d  l a n -  

g u a g e s  f o r  p r o g r a m m i n g  p a r a l l e l  a l g o r i t h m s ,  

particularly languages that are well suited for teaching and pro- 

totyping algorithms. There has been a large gap between lan- 

guages that are too low level, requiring specification of many 

details that obscure the meaning of the al~'orithm, and languages 

that are too high level, making the perjormance implications of 
various constructs unclear. In sequential computing many stan- 

dard lanLmages such as C or Pascal do a reasonable job of bridg- 
ing this gap, but in parallel languages building such a bridge 

has been siffnificantly more difficult. 
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O u r  resealcl-i involves developing a parallel language 
that is usefill fi)r teaching as well as |or in lp len len t ing  par- 
allel algoriihlns.  -lk) achieve this, an impor tant  goal has  

been to develop a l a n g u a g e / h a t  allows high-level descrip- 
tions of paiallel algorithms I)nt also has a well-understood 
nlal)piug o n t o  a perlorlnance nl()del (i.e., hriitges ti le 
gap). Based oil ou r  research, we believe that the tollowiug 
t.wo lealures are iu lpor ian t  lor achieving this goal:  

• A language-I)ased pe r lo r lnance  model  thai uses work 
and  depth rather  than a ulachine-bascd model  that uses 
" r u n n i n g  time." 

• Suppor t  tbr n,tsted dalrz-/)arallel COilStructs. This  is the 
ability io :tl)lily a fiUlCtion in parallel to each e lement  of  
a collection of data and  the ability to nest such parallel 
calls. 

In this article we describe these I~aturcs and  explain why 
they are i lnpor tan t  tot p r o g r a n l m i n g  parallel algorithnls.  
To nlake the ideas (:oucrete, We describe the i )rogiaul  - 
ruing larlguage Nicsi. 151, which we designed based on the 
teatures, and go through several exanlples oJ" how to pro- 
gl'ain and  analyze parallel a lgori thnls  iiSillg the langliage. 
\Vc have beeu using Nr:sl tor three  ycars in un i l c rg radu-  
;lie and graduate courses on parallel algorithms 171. "l-he 
algorithms we cover in this article ill'L" relatively.straight- 
l i i rwaid.  Mally nloi'e algorithnls can lie t(-liilld through 
the Web version of this article (availablc at hitp://web.scan- 
dal.cs.ciuu .ed u/wxvw/caclu.h tull). 

I Shared M cmiory I 

r "m 
F i g u r e  1. A d i a g r a m  of  a Parallel R a n d o m  Access 
M a c h i n e  (PRAM). It is a s s u m e d  in th is  m o d e l  t h a t  all 
t h e  processors can access m e m o r y  locat ions in t h e  
shared  m e m o r y  s i m u l t a n e o u s l y  in u n i t  t ime .  

D e p t h  W o r k  

1 4 

1 

I I 

4 Tota l  Tota l  15 

F i g u r e  2.  S u m m i n g  16 n u m b e r s  on a t ree .  The  to ta l  
d e p t h  ( longes t  cha in  o f  d e p e n d e n c i e s )  is 4 a n d  t h e  
to ta l  w o r k  ( n u m b e r  of  opera t ions )  is 15. 

W o r k  a n d  D e p t h  
Analyzing l )e r ibrmance  is a key part of  s tudying algo- 
rithms. Al though such analysis is not used to predict tile 
exact r u n n i n g  time of  an algori thm on a part icular  ma- 
chine,  it is impor tan t  in de t e rmin ing  how tile r u n n i n g  
time grows as a fimction of the input  size. To analyze per- 
Ibrnlance,  a fi)rmal model  is needed to account Ibr the 
costs, hi parallel COUlputing, tile most COUllllon mode l s  
are based (m a set of  processors conl lecled ei ther  by a 
shared memory,  as in the Parallel Raridonl Access Ma- 
chines (PRAM) (see Figure 1), or  th rough a network,  as 
with the hypercube  or grid nl()dels. In such processor-based 
models, per lo rn lance  is calculated in ler lns Of t he  i i u n l b e r  
of  instruct ion cycles a con lpu la t ion  takes (its r u n n i n g  
time) and  is usually expressed as a l h n d i o n  of  input  size 
and  m u n b e r  of  processors. 

All impor tant  advance in parallel con lpu t ing  was tilt" 
in t roduct ion  of  the not ion of  virtual models. ,,\ virtual 
model is a pe r tb rmance  model  that does not attem]-)l to 
represent  any machine  thai we would actually build but  
ra ther  is a higher-level model  that can be tnapped onto  
various real machines.  For example,  the PRAM is ofiten 
viewed as a virtual nlodel  1~25]. From this viewpoint,  it is 
agreed that a PRAM cannot  be I)uih directly, since in prac- 
tice it is unreasonab le  to assunle that every processor can 
access a shared memory  in uni t  tiule. Instead,  the PRAM 
is Ireated as a virtual machine  tha l  can be nmpped  onto 
more realistic machines  ctli(:iently by s imula t ing  uluhil)le 
processors of  the PRAM on a single processor of a host 
machine.  ' l h i s  s imulat ion imposes some slowdown K. btl! 
requires a tactor of K tower processors, st) the total Cosl 
(processor-tinle product)  remains  the same. The  advan-  
tage of  virtual models over physical mach ine  models is 
Ihat they cau be easier to program.  

\, 'irtual models can be taken a slep fi.u'ther and  used t() 
de i ine  pe r tb rmance  in more  abstract measures  than .just 
r u n n i n g  time on a part icular  machine.  A pair of  such me;i- 
sures are work and  depth:  Work is de t ined  as tl3e total 
n u m b e r  of opera t ions  executed t)y a computa t ion ,  and  
deplh is de l ined  as tile hmgest chain of sequential  depen-  
dencies in tile conlputa t ion.  Consider ,  tot  example ,  sunl- 
ruing 16 n u m b e r s  using a balanced biuary trec (see Figure 
~). The  work re(luired by lhis compula t ion  is 15 opera t ions  
(the 15 additions).  T h e  depth  of the computa t ion  is tbur  
operat ions,  since the longest  chain of  dependenc ies  is the 
depth  of tile summat ion  t r e e - - t h e  sunls need to be calcu- 
lated s tar l ing at the leaves aud  going down one  level at a 
time. hi general ,  s u m m i n g  n n u m b e r s  on a balatlced tree 
rt:(luires , -  1 work and  Iog2u del)th. Work is usually 
viewed as a nleaslire Of" lhe  total cost of a coinpntatiol i  
(integral of'needed iesoui+ces ovel iinle), and also specilies 
Ihe r t inni i lg time i f lhe  algorithin is executed on a seqtleu- 
t ial  proc(.~sS(ll. The d(:t)th repres(~ilts the bcsl I)()ssilJl¢ rul l -  
uing thn¢ asstii l i i i lg an ideal nlachii le,with au unl i i l i i ted 
nun|bet o1 plocessoi 's. 

Work and depth have been used inlormal ly |or l i lai ly 
)ears IO descril)e the pc i ' l ( ) i i l i i i i l ce  ( i f  parallel algorithins 
[23 I, especially when teaching Ihcrn [ 16, 171. l l l C  ciaini is 
Ihat it is easier to describe, think alioul., and  analyze algo- 
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i m m i n g  

st)eci[ ~ what to rood|t\ ' .  For ea(:h pair ( i , v ) ,  tile value v is 
inser ted into i)osition i of  tile dest inat ion sequen(:e. I:or 
example ,  

w r i t e ( [ O ,  O, O, O, O, O, O, 01, [ ( 4 , - 2 ) , ( 2 , 5 ) , ( 5 , 9 ) 1 ) ;  

inserts tile - 2 ,  5,  an(t 9 into the seqi lence al h)(:ali()ns 4, 
2, au{I 5, respectively, r e tu rn ing  

[0,  O, 5,  O, - 2 ,  9 ,  O, 01. 

i f  an index is repeate(I,  then one value is writ ten 
nondeterministk:al ly.  For readers  thmiliar with tile vari- 
;.lilts (.)t" tile PRAM model ,  we n()te that Ihe w r i t e  filnction 
iv allah}gous to iltl "a rb i t ra ry"  c(}nCllll(211{ write. NESl. also 
inclutles a lhnction e _ w r i t e  that does n()t allow repeated 
ill(liccS al/d is analogims Io an exclusive write. I[ rei)calc'd 
radices arc used with e_wr i t e ,  Ihe curren!  iml) lemenla-  
tion repor ls  Jill CITf)I'. 

Nested paralMisnl  is supl)lied in N~:s[ by,' a l lowing se- 
quences  Io t}e ncste(l and alh)wing l)arallel funclions to I)e 
used in an apply-to-each.  For example ,  we could apply !he 
sum_ {hnction in parallel over  a nested sc(tuence, as ill 

{ s u m ( a )  : a tn  [[2,31,  [ 8 ,3 ,91 ,  ['711}, 

which would re turn  [5, 2 0 ,  71. l lore. there  is parallelism 
both within each stun and across the stHns. T h e  Quicksort  
a lgor i thm showed ano the r  exanlp le  of  nested ca l l s - - the  
a lgor i thm is itself used in an apply-t(}-each to invoke Iwo 
r ecurs | r e  calls in parallel. 

The Performance Model 
We now re lurn to the issue of  l)erfi)rlnanct: models, this 
t ime ill Ihe c()nlex[ of  NEsI...*\s i l lent i tmed earlier,  NE:s[. 
(tetincs work and depth in ternls o l l h e  work and depth  of  
lhc pr im| l ive  opera t ions  and rules tiw c{m~l)osil~g die 
measllres across expressions.  Vv'e will use W(e) and D(e) t() 
retkw (() the work an(I d{:pth o f  evaluating an expression e. 
Ill lnost cases, tile w(}rk alld dep th  o f  ;in expless ion  ille 
lhe Siil]lS o i t l ] e  work and deplI| o i t h e  sul)expressions. S(}, 
tbr examph: ,  if we have an expvcssi(m el + e~, where  el 
and eL, are  subexi)ressions, Ihe | l  the work of  tile • expres-  
sion is 

W(e~ + e ~ ) =  1 + W(ei)  + W(e,_,), 

Depth 

Wlhct(n) =/)tact(n) = 5 n -  2 

Work = | + sum(Wtact(3) , Wlact(1), Wl,,ct(5), Wla(l(2)) 
= ! + sum(13, 3, 23, 8) 
= 48 

Depth = 1 + max (l)f~,ct(3), Dfa,:t ( I ), l)f~,ct (5), l)f:,,:t (2)) 
= 1 + max(13, 3, 23, 8) 
= 24 

Figure 6. Calcu la t i ng  t h e  w o r k  and  d e p t h  o f  {fac- 
t o r i a l ( n )  : n in  [3, 1, 8, 21} 

where  the 1 is file cost of  the add. A similar rule is used li)r 
depth.  T h e  in le res tmg rules conce rn ing  parallelism ave 
the rules tbr an apply- to-each expression:  

g,'({e~(a) : a i n e ~ } ) =  1 + W(eu)+ ~ W(,:,(a)) (I) 
,, in ,,._, 

D({ei(a) : a in e~}) = I + D(e~) + max l)(ei(a)). (2) 
,, t n  ,,_, 

Figure 7. List Of s o m e  o f  t h e  s e q u e n c e  f u n c t i o n s  
s u p p l i e d  by NESL. The work required for  each funct i0n is 
g i ven  in t h e  Work  c o l u m n :  L ( v )  re fe rs  t o  t h e  l e n g t h  
o f  t h e  s e q u e n c e  v. The w o r k  Of t h e  w r i t e ( d ,  a)  func-  
t i o n  ac tua l l y  d e p e n d s  o n  w h e t h e r  t h e  a r g u m e n t  d 
needs  t o  be c o p i e d  o r  no t ,  b u t  in t h e  e x a m p l e s  in 
th is  a r t i c le  t h e  d i f f e r e n c e  has no  e f fec t .  

dist(a,I) 
#a 

a[i] 
Is:el 
[s:c:d] 
mum(a) 
wriIe(d,a) 
a + + b  
drop(a ,n)  
in terleave (a,b) 
llatten (a) 

Create a sequence of  as of  length 1. 
l~turn leng,~h O['sequenc~e a. 
Return element at position i (~a. 
Return integer sequence f fom s to e. 
Return integer sequence from s to e t~y d. 
Return sum of sequence a. 
Place elements a in d. 
Append sequences a and b. 

l)rop first n elements of sequence a. 
Interleave elements of sequences a and b. 
Flatten nested sequence a. 

Nork Depll 

I 
1 
1 
(e - s) 
(e - s ) / d  
L(a) 
l.(a) 
t.(a) + l_.(b) 
L(resuh) 
L(resuh)  
L(resuh) 

i 
1 
I 
1 
1 
log l.(a) 
! 
I 
1 
1 
I 
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..1 
I p r o c e d u r e  PRIMES(n) :  
2 let A be an array o f  length n 
3 set all but  the tirst e lement  of  A to TRUE 
4 for  i f r o m  2 to 4 n  
5 b e g i n  
6 i f  A[i ]  is TRUE 
7 then  set  all m u h i p l e s  o f  i tip Io n to FALSE 
8 e n d  

II~igUl'e 8.  Pseudoc0c le  fo r  t h e  sieve of  Era tos the -  
nes 

"]he tirst rule specifies tha| the work is the sum of  the 
wo|k  of each of the applications of  el Io an e lement  o f  a, 
phis the work (.)fe,2, phls 1 to accollllt ti)r overheads.  T im 
rule tor dep |h  is similar, btu takes Ihe m a x i m u m  of tim 
depth  o1" each applicat ion of  el. This  suppor ts  our  inlui-  
t ion  that the applicat ions are executed in i)arallel and  that 
tile evahiati(m of the apply-to-each (:nmpletes when the 
last call conlpletes. Th e  o ther  in teres t ing rules ;ire the 
rules f in an i f  expression,  which tor work is 

W(if  el t h e n  e~ e l s e  e:0 { l+'(e,_,) el = f ~ l L  
= 1 + He(eL)+ (3) 

W(e:0 olhe*vvise, 

wilh a similar rllle t()r depth.  "fhe work anti depth  tbr a 
thn(:tio|l call anti fi)r scalar i)ri| |litives ave each I. T h e  costs 
o f  tile Nt..sl. ftmcliollS on sequences are sur |ullarized in 
Figure 7. We note that the p e r i b rma n ce  rules can be more  
precisely def ined using an operat ional  semantics [6]. 

As an ex;unple  o fcon ipos ing  work and  depth ,  consider  
ewduat ing  the expression 

e -- { f ac t 0 v i a l (n )  : n i n  a}, 

where a = [8 ,1 ,8 ,2 ] .  Using tlae rules tot work and  the 
code lor f a c t o r i a l  given earlier,  we can write the tbllow- 
ing equat ion  f i ) r  work: 

Wfact(n) = 1 + 1 + IV== 
/ 0 n = 1 

+ 

l,V. + W_ + Wfact(n - 1) n > I 

where W==, W., aim W_ are die  work Áhi - - , *, a | |d  - ,  
and  arc all 1. T im two uni t  constants  come fro||l Ihe (:()st (.)f 
the function (:;ill and  the !t-theft-else rule. \ d d i n g  tip tbe  
terms and  solving lhe recur rence  gives Wf~dn) = 5n - 2. 
Since there  is no  parallelism in the lactorial funct ion,  the 
(lel)tli is the same ;is the work. -1o calculate work and  

depdl  to |  the full expression { f a 0 t o r i a l ( n )  : n i n  a}, we 
can use e(itmlions 1 and  2. This  calculation is shmvn in 
l"igure 6. 

Examples  o f  Paral le l  A l g o r i t h m s  in NEst 
Several parallel a lgori thms are (lescril)e(l and  analyzed 
here, provid ing  examples  of how to anah 'ze  algori t lnns in 

terms of work and  depth  and  o |  how to use nested data- 
parallel constructs.  They  also iu t roduce  some impor tan t  
ideas conce rn ing  parallel algori thms. Again, the main  
goals are to have the code closely nmtch the high-level 
intui t ion of the a lgor i thm and  to make il easy to analyze 
the asymptotic pe r to rmance  f iom the code. 

Primes 
O u r  tilst a lgor i thm finds all pr ime n u m b e r s  less than n. 
This  example  demons t ra tes  a c o m m o n  technique  used in 
parallel a lgor i thms--soh ' i r ig  a smaller case o f  tim same 
prolfiem Io speed tim solu | ion of tim full problem.  We also 
use the example  to in t roduce  the not ion of  work elti- 
ciencv. An impor tan l  asticct of  developing  a good parallel 
a lgor i thm is des ign ing  one  whose work is ch)se to tile t ime 
I o r  a good sequential  algori t lml thai soh'es the same prob-  
lent. Without  this condi t ion  we (:annot hope to get good 
sl)eedu I) of  tl|e parallel a lgori thm over the sequential  al- 
gori thnL Parallel a lgor i t lnns  are | e t e r | e d  I() as work-q[fi- 
cient relative to a sequential  a lgori | lml  if their  work is 
wit bin a constant  tactor o f  the t ime of  the sequential  algo- 
rithn}. All the algori t luns we have discussed so flu are 
work-efficient relative to the best sequential  algori th |ns.  In 
part icular ,  s u m n i i n g  n n u m b e r s  took O(n) work al|(I paral- 
lel Quicksort  took O(n log n) expected work, both ofwhicl i  
are the saine as requi red  se(tuentially. For f inding  primes,  
ou r  goal should again be to deveh)p a work-efficient algo- 
Hilum We therelore  start by looking at elIicient sequential  
algorit bros. 

The  nlost c o m m o n  se(luential a lgorMnn lot  f inding 
pr imes is the sieve o f  Eratosthenes,  whicll is specified in 
l:'igure 8. -I"he a lgor i th |n  r c tu ,n s  an array in which the {h 
p<)silion is set to rRctC ifi  is a p r ime and  to i...u.sl.: otherwise. 
The  a lgor i thm works by initializing the array A to rm:~: 
and  then sett ing to t:..u.s~: ;ill |nuhiplcs  of  each pr inle  it 
finds, h starts whh the first pr ime,  2, and  works up to "V'~. 
The  algori thm only needs to go up to VT, since all com- 
posite n u m b e r s  (ni)f~)r imes)  less Ihan n must  have a flit:- 
tot  less or equal to Vn .  If line 7 is iml) lcmented  by lool)ing 
over the muhiples ,  then tile a lgori thnl  can be shown t() 
take O(n log log n) time, and  the constant  is small. T h e  
sieve of Eramsthenes  is not the theoretically best algo- 
r i thm lot  f inding primes,  but it is close, and  we would be 
happy to derive a parallel a lgorkhm tha| is work-eflicien|  
relative to il (i.e., does O(n log log n) work). 

h turns  out  fllat the algori thm as described has some 
easy parallelis |n.  In part icular ,  line 7 can be imp lemen ted  
in parallel. In N ~:sL, the muhiples  of a value i can be gen-  
ermed in parallel with the expression 

[2* i :n : i }  

and  can lie wr iuen  into die array A in pa ra l ld  with the 
w r i t e  tunct ion.  Using tim rules tk)r CoStS (see Figure 7), 
the depth  of  daese opera t ions  is constant  and  the work is 
file n u m l m r  of  multiples,  which is the same as the t ime of 
the sequential  version. Given the parallel imp lemen ta l i on  
of  line 7, the total work of  the a lgor i thm is flle same as the 
scquenlial  algorif lm|,  since it does the same numl)ev of  
operat ions,  and  the dep lh  o t t h e  a lgor i thm is O(VT), since 
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each iteration of thc loop in lines 5-8  has constant depth 
and the number  of iterations is X/IT. Note that thinking of 
the algorithnl in terms of work and del)th allows a simple 
analysis (assuming ~e know the runn ing  time of the se- 
quential algorithm) without our having to worry about 
how tile parallelism maps onto a machine. In particular, 
the amount  of parallelism varies greatly ti-onl the tirst iter- 
ation, in which we have n/2 muhit)les of 2 to knock ()lit in 
paralld,  to the last iteration, where we have oulv ~ mul- 
tiples. "lhis varying parallelism w()nhl make it messy to 
program and analyze on a t)roccssor-based model. 

We now cons ider  i m l ) r o v m g  t i le  d e p t h  o f  the a lg ( ) r i [hm 
withol l l  g iv ing ii l) any  work. We l)ote thai  i f  w e  were  g iven  
all the primes t]om 2 up to V'17, we could then generate all 
tile muhiples of these primes at once. "lhe NksL code fin. 
generating all lice muhiples is 

{[2*p:n:p]: p in  sqr_primes};  

where s q r _ p r i m e s  is a sequence containing all the primes 
u t) to V , .  Ibis computation has nested t)arallelism, since 
there is parallelism across the s q r _ p r i m e s  (outer parallel- 
ism) and also in generating Ihe muhiples of each l)rime 
(inner parallelism). The depth o1" tile comptmltion is con- 
stant, since each sul)call has constant depth, and the work 
is ()0~ log log n), since the total number  of mtdtiples when 
summed actress the suhcalls is the same as tile number  (4  
muhiplcs used I)v the sequential version. 

Wc have assumed that sq r_p r imes  was given, b u t  to 
generate these primes we can simply call the algorithm 

m i n i  

recursively on X/n. Figure 9 shows the full algorithm tin 
linding primes based on tiffs idea• Instead of re turning a 
sequence of flags, the algorithm returns a sequence wid l  
the values of the primes. For exalnple, p r i r n e s ( 1 0 )  
wonld r e t u r n  the seqnence [2,3,4,7] .  The algorithm re- 
cursively calls itself on a problem of size X/77 an(l termi- 
nates when a problem of size 2 is reached. l h e  work and 
depth can I)e analyzed by looking at the i)icture at the 
bottonl o[ + Figure 9. Clearly most of the work is doltc at the 
top level of recurs[on, which does O(n log log n) work. The 
total work is thcretore also O(n log log n). Now let's con- 
sider the depth. Since each recurs[on level has COllStalll 
depth, the total depth is proportional to the number  of 
levels. To calculate this m.nnber, we note that Ihe size of 
the problem at level i is n 1/2' and thai when {lie size is 2, the 
alger[tirol terminates. This gives us the e qua t i on ,  ~,e" = 2, 

F i g u r e  9. The  code  for  t h e  pr imes  a lgor i thm,  an 
e x a m p l e  o f  o n e  level o f  t h e  recurs lon,  and a dia- 
g r a m  of  t h e  w o r k  and  d e p t h .  In t h e  code  [ ] in[, indi-  
cates an e m p t y  s e q u e n c e  of  in tegers .  The  f u n c t i o n  
isqrt  takes t h e  square  r o o t  of  an in teger .  The  func -  
t i o n  f l a t t e n  takes a n e s t e d  s e q u e n c e  and  f l a t tens  it. 
The  f u n c t i o n  d_tst ( a , n )  d is t r ibutes  t h e  va lue  a to  a 
s e q u e n c e  o f  l e n g t h  n. The  express ion  { 1 in  tO:n] i f l  
In [ lags I fl} can be read as " for  each 1 f r o m  o t o  n 
and  each f l  in f lags r e t u r n  t h e  i If t h e  c o r r e s p o n d i n g  
f l  is t rue" .  The  f u n c t i o n  d r o p ( a , n )  drOpS t h e  f i rst  n 
e l e m e n t s  of  t h e  s e q u e n c e  a. 

f u n c t i o n  p r i m e s ( n )  = 
i f n  == 2 then  ([] in t )  
else 

let  sq r_p r imes  = p r i m e s ( i s q r t ( n ) ) ;  
compos i t e s  = l [ 2 * p : n : p ] :  p in sqr_pr imes};  
f l a t_comps  = f la t ten  ( c ompos i t e s ) ;  
flags = w r i t e ( d i s t ( t r u e ,  n ) ,  { ( [ , fa lse) :  i in flat c o m p s } ) ;  
i nd ices  = {i in tO:n];  fl in ['lags I t11 

in d r o p ( i n d i c e s ,  2); 

Example for primes(20):  

sqr_primes = 
composites = 
flat_comps = 
tlags = 
indices = 
result = 

[2,3] 
[ [4 ,6 ,8 ,10 ,12 ,14 ,16 ,18]  , [6 ,9 ,12 ,15 ,18]]  
[4,6,8, 10,1 2,14, 16, 18,6,9, 12, 15, 18] 
[ t , t , t , t ,  f , t , f , t , f , f , f , t , f , t , f , f , f , t , f , t  ] 
[0,1,2,3,5,7,1 1,13,17,19] 
[2,3,5,7,1 ! ,13 ,17,19]  

Depth 

primes(n) 

primes(n j'2) 

pri mes ( n I/4) 

primes(2) 

I 
I nl/21°g log n I /2  I 

EZI 
Q 

n log log n 

~ ~ ' n ~  ~ 'ISm iklmlJ blar¢/a 1996/Vol sg,d,,It~ 3 " ~  
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7 
where d is the del)th we seek. Soh, ing Ibr d, this method  
gives d = h,g log ~. l h e  costs are there |ore:  

14' = O(n h)g log n) 
D = O ( I o g  log n) 

This  algori thnl  , emains  work-eFfi(:ient rehttive to tile se- 
quen | ia l  sieve of  Eralosthenes and greatly iJnproves the 
del)th. 

Sparse Matrix Mult ip l icat ion 
Sparse matrices, which are conm]on in scientific ap|lli(:a- 
dons, are matrices in whk'h most e lemenls  arc zero. To 
save space and  r t u m i n g  time it is critical to st(ire only the 
iionzel 'o elemenls .  A s t ; in ( la rd  r e p l e S e l l l a l i o n  of si-);tl'Se 
matrices in Se(luenli;ll lauguages is an array willl one ele- 
ment  per  row, each of which contains  u linked-list of  the 
nonzero  values in thut row aloug with Iheir co lumn n u m -  
ber. A sinfihlr representa t ion  can tic used in parallel. In 
~l(SI.  ;l s l )al 'se n]aIl iX c a n  he  r e p r e s e r l l e d  ;is ;I se(ltlerlee ()1 
ro,.vs, each ()[ which is a seqnence o f  ( C 0 k l l n n - n u m b e r ,  
v a l u e )  | ) a i rs  o | t h e  no l lZe lO v a h l e s  ill t i le  toby. T h e  lna l l iX 

2.0 - 1.0 0 0 
A = - 1 . 0  2.0 - 1 . 0  0 

0 - I . 0  2.0 - 1 . 0  
0 0 - 1.0 2.0 

is represented  in this way as 

A = [[(0, 2 . 0 ) ,  (1 ,  - 1 . 0 ) 1 ,  
{(0, - 1 . 0 ) ,  (1 ,  2 . 0 ) ,  (2 ,  - 1 . 0 ) 1 ,  
[(1, - 1 . 0 ) ,  (2 ,  2 . 0 ) ,  (3 ,  - 1 . 0 ) l ,  
[(2,  - 1 . 0 ) ,  (3 ,  2.0)11, 

where A is a nested Se(lucnce. This  representa th)n  can lie 
Ilscd I~)l" Illiltl'iCCS wi th  a rb i t ra l ) '  pat terns o f  IlOllZel'o elc- 
I]lelltS, s i nce  e a d l  s i l h s e q l l e n c e  c a n  he  (if 11 ( l i f l ( ' reu t  size. 

A c o m m o n  ollerat ion ou sl)arse matrices is |o muhip ly  
|hem by a dense  vector. In such an operat ion,  the restd| is 
the dot-pro(lucl  o t euch  sparse row (if the mairix with the 
deusc vector. The  N~.:sl code Ibr taking Ihe do~-produc! of 
a s l ) a l s e  rt)w with  a del lSe vet : for  X is: 

sum({w:x[ i ]  : ( i , v )  in row}) 

This  code takes each index-yah , :  I)air ( i , v )  in the sl)a]se 
row, muhipl ies  v by tilt.: i 'h v; l lue  o f  X, and stuns die re- 
suhs. The  work and  depth  is easily c:d(:ula|ed using the 
pertbrman(:e  rules. I f ,  is |lit: numl)er  of  nonzero  ele- 
ments  ill the row. then the depth  of the conll)utat ion is the 
depth  of |he sum, whicl-i is O(Iog n), and  the work is the 
sum ot the work across the elements ,  wllich is O(n). 

r h e  full code fin" muh ip ly ing  a sparse matrix A rel)re- 
senle(I by a dense  vector x requires that we apply the code 
t,) each row in parallel, wllich gives 

{sum(tv*x[ i ]  : ( i , v )  in  row}) 
: row  in A/. 

This  examl)le I~as u,us|ed l)arallelisnl, sit|(:(: there  is paral- 
lelism both across the rows mid widliu (:;l(:ll row Ibr the 
d(.)I I)roducts. -I'he Iolul depth  of  the code is tilt: m a x i n u u n  

of the deptl-i of  tile dot i)roducls, which is the Iogarhhm of  
the size of  Ihe largest row. T h e  total  wozk  is propor t ional  
to |he to ta l  ni t rnher  o [  r lonzero e l e m e n t s .  

Planar C0nvex-Hull  
Our  next example solves the i)hlnar convex hull  prol) lem: 
Given ~ pob}ls in a phu~e, find wllk'h of  d)enl lie on the 
pe rhne le r  of the smallest convex region thai conlahls  all 
points. This  example  shows ano the r  use of nested paral- 
lelism tot d iv ide -and-conquer  algori lhms.  The  algori t lnn 
we use is a parallel Quickhul l  [20]. so Jlun]ed because o t u s  
similarity to the Quicksort  ulgorithm....-ks with Quicksort,  
tile strategy is to pick a "pivol" e leineul ,  spill the thtla 
base(I on  tile pivot, and  re(:urse on each of tile sl)lil sets. 
Also ;is with Quicksor/ ,  the pivot e lement  is n o t  gu ; i r a l l -  

teed to split the data into equally sized sets, and  ill the 
worst case the a lgor i thm requires O(n-') work: however,  in 
I)ractice the alg()rithln is often very etficient. 

Figure l0 shows tile code and  an cx;lulph: of the Quick- 
hull ;dgorithm. l h e  algori thnl  is based on the recursive 
rout ine  h sp l i t .  Tills Iiincli(.)n takes a set of  points iu the 
I)lane (Ix,y) coordinates) and  two points p l  and p2  knowrl  
to lie on the convex hull and  rel t l rns all tilt + t)oints [ha| lie 
on the hull ch)ckwise from p l  t() 132, inchlsive o f p l ,  but  
not o f  p2.  In I"iglue 10, given ;ill the points [A., ]3, (2, . . . , 
P], p l  = A, and  p 2  = P, h s p l i t  would r e lu rn  lhe se- 
( luence [A, ]3, J ,  01. In h sp l i t ,  the o rder  of 131 anti p 2  
matters,  since if we swit(:h A and P, h s p l i t  wouhl  re tu rn  
the hnll a long die oi l ier  direct ion [P, N, (2]. 

The  h s p l i t  t imer |on tirst FeIII(IV(!S all the e lements  that 
t:;tllll()| lie (in the hidl because |hey lie below the line he- 
hveen 131 and  p 2  (whkh we denote  hy 131-132). r i d s  is 
(lone by removing  e lements  wilose (:ross i)roducl with the 
line he |ween p l  :m(I p 2  is negative. Iu the case p l  = A 
and  p 2  = P, ~lle points I/3, D, F, G, H, J ,  K, M, 01 wt)ultt 
remain  and  lie phlced in the sequence p a c k e d .  The  algo- 
r i thm now finds the pohat p m  lhrthest h (nu  tilt: l ine p l -  
p2.  T h e  point  p m  must  be on tile hull, since as a line at 
iufinily parallel to p l - p 2  In(ires toward p l - p 2 ,  it must 
Ihst hit pro. T h e  pc |hi  p m  (J in the run/ )b lg  example)  is 
t bund  hy taking the point  ~vi|h the maxinatnn cross prod- 
uct. ( )uce p m  is li)un(l, h s p l i t  calls itself |wice recurs | re ly  
using tile points ( p l ,  p ro)  and  (pro,  p 2 )  (in the examl)le, 
(A, J )  and  ( J ,  P)). When die recursive clllls re turn ,  
h s p l i t  t la |Iens |he )cslJh, therehy a p p e n d i n g  Ihe two 
sullhulls. 

The  overall c 0 n v e x - h u l l  algori thnl  works by f inding 
the i)oints with min imtml  and  ,naxi lnuul  x coordinates  
(Ihcse points must lie on the hull) au(l then using h s p l i t  to 
find the u p p e r  and  lower hldl. Each recurs | re  call has con- 
stant ( lep|h and  O(n) work. However,  shlce many i)oinls 
might he deleted tin each step, the work (:ould he sig,ifi-  
candy less. As widl Quicks(.)rt, tile worsl-case costs ;ire ff' = 
()In ~) and  D = O(n). I:or m hull poiuts the best case tinles 
are O(Iog m) depth  and  O(n) work." It is hard to st;lie the 
average-case tinle, since it de l lends  on the (listrihution (if 
IIte iuputs.  ( ) | he r  parallel a lgori thms tot  |he convex-hudl 
p ,oh lem Fun ill D = ()(log Hi, and  14' = O(,)  in the worst 
(:asc [16], hut  have huger  constau|s .  



i n Q  

T h r e e  O t h e r  A l g o r i t h m s  

We conclude  our  examples  with br ie f  discussions ill th ree  
o lher  algori thms:  the last l :our ier  i rans tbrm (FFI ) ,  Ihc 
scan opera t ion  (all prefix sums), and an a lgor i thm for 
t i nd ing  the k m smallest e lemeut  o f  a set. All the code is 
shown ill Figllre 11. These  alg()rithnls t i l r ther  demol l -  
sir;tie the conciseness o f  nested dam-paral le l  conslrllcls.  

We rise the suindard recursive version lot  the F H ' [ I  I]. 
T h e  second a rgunmnt  w is a sequence  of  tile same length 

tiinction cross_producl (o,line) = 
let ( x o , y o )  = o; 

((xl,yl),(x~2,y2)) = line 
in (x 1- xo) * (y2-yo) - (y l -yo)  * (x2-xo) ;  

function hspl i t (points ,pl ,p2)  = 
let cross = Icross_product (p, (p l ,p2))  : p in points}; 

packed = {p:p in points; c in cross I plusp(c)} 
in if (#packed < 2) then [pl]  ++ packed 

else 
let p m =  points[max index(cross) J 
in llatten ( { h s p l i t ( p a c k e d , p l , p 2 ) :  

pl in [p l ,pm] ;  p2 in {pm,p2]}); 

function convex_hull(points)  = 
let x = (x : (x ,y)  in pointsl; 

minx = points [rain_index(x) l ; 
maxx = points [max_index(x)]  

in hspl i t (poinls ,minx,maxx) ++ hsplit(points, 
maxx,nlinx) ; 

.I 

A ~  P 

[A B C  D E F G  H IJ  K I ,  M N O P] 

A I B D F ( ; H , I K M O ]  P [ C E I I .  N] 
a tB FI.I [0 ]  P N [C E1 

A B J O P N C  

F i g u r e  I@. Code and  e x a m p l e  o f  t h e  Quickhul l  al- 
g o r i t h m .  Each s e q u e n c e  in t h e  e x a m p l e  s h o w s  o n e  
s tep of  t h e  a lgor i thm.  Since A and  P are t h e  t w o  x 
ex t rema ,  t h e  l ine AP is t h e  or iginal  spl i t  line. J and N 
are t h e  f a r t h e s t  po in ts  in each subspace f r o m  AP 
and are, t h e r e f o r e ,  used for  t h e  n e x t  level of  splits. 
The values o u t s i d e  t h e  brackets  are hull  po in ts  t h a t  
have  a l ready b e e n  f o u n d .  

as & con tah l i ng  all the c o m p l e x  n m roots o f u n i l y .  T h e  H : i  
is cal led recursively Oil lhe o d d  and eVell {: lel i iel i lS o f  &. 
T h e  results are Ihen combh led  i.ising 0&dd and 0mu l l ;  
( complex  add i i i ou  a i ld  inu l t ip l i ca t ion) ,  ass t l i i l i l l g  Ihat 
0&clcl a i id  0mu.lt, lake col is tant  w o r k  a i ld  dep th ,  then tht' 
rec i l rs ion gives us the CoSls: 

W(n) = 2W(n/2) + kn = O(n log , )  
D(n) = D(n/_ 9) + h = f ) ( Iog n). 

T h e  phls-scan opera t i on  (cal led a l l -pret ix-su ins)  lakes a 
seqtlellCe o1 rallies alld re turns  a se(llle[ice of  equal  lellgl h 
lor which each e lc lnent  is the sum of  all previous elenlcnis  
in the original  sequence.  For exaniple ,  execu l ing  a phls- 
scan on tile sequence  [3, 5, 3, 1, 6] re lurns  [0, 3, 8, I 1, 
12]. This  can be imp lemen ted  :is shown in Figure  1 I. T h e  
algori thni  works by e icmenlwise  add ing  the odd and even 
e lements  and recursively solving die p rob lem on these 
sums. T h e  resuh of  tile recursive call is then used to gen-  
erate  ;ill the pretix sulns. T h e  costs arc: 

II'(n) = W(n/2) + ku = O(n) 
D(n) = D(nl2) + k = O(Iog n) 

T h e  part icular  code shown works only on sequences thai 
have a leng lh  equal  to a power  o l t w o ,  but  il is not hard  to 
general ize  il I() work o n  sequences o f  tiny length. 

l i inction tl't(a,w) : 
i f#a == l then a 

I else 
let r = {ffi (b, even_ehs(w)): 

b in [even_ehs(a),o(l(l_(:hs(a)]} 
in {cadd(a, cmuh(b, w)): 

a in riO] ++ riO]; 
b i n r [ l ]  ++ r [ l l ;  

w in w}; 

function s(:an (a) = 
if#a== I then [0] 
else 

let e = even ells(a); 
o = odd_ells(a) ; 
s = seall({e t o: e in e; o ill ol)  

in inierleave(s,ls + c: s in s; e in el); 

function kth_smallest(s, k) = 
let pivot = s[#s/~2]; 

lesser = {c in sl e < pivot}; 
greater = {e in sl e >pivot}; 

in if" (k < #lesser) then 
kth_smallcst (lesser, k) 

else if (k >= #s - #greater) then 
kth_smalh:sl (greater, k -  (#s- #greater)) 

else piw+t; 

Work = O(n I(g n) 
Oq2th = O(h,g n) 

Work = 0 (n) 

Depth = O(Iog n) 

14brk = O(n) 
(expccu:d) 

Depth = O(Iog n) 
(expected) 

F i g u r e  1 1. Code for  t h e  fast  Four ie r  t rans forms,  
t h e  scan opera t ion ,  and  for  f i n d i n g  t h e  k m smal lest  
e l e m e n t  of  a set  
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A variation of  Quicksort  can be used to l ind the k 'i' 
smallest e lemeni  of  a sequence [11]. This  algori thni  calls 
itself recursively only on the set of elements containing the 
result. Here we consider a parallel version of this algo- 
rithm. Atier selecting the l e s s e r  elements, if # l e s s e r  is 
greater than R, then the k 'l' smallesl element must belong 
to that set. In this case, tile algorithm calls k th  s m a l l e s t  
re(:ursively on l e s s e r  using the same k. Otherwise, the 
algor i thm selects the e lements  that are greater  than the 
pivot, aud can sinli larlv l ind i f  the k TM elentenl belongs in 
g rea ter .  I f  it does behnig in g'Pe&tee, the algor i thm calls 
itself recursively but niusi llOW rea{!just k by subtracting 
the number of elements less than or equal to the pivot. If 
the k 't' element behmgs in neither l e s s e r  nor greater ,  
allen it lnusl be the pivot, and  the algori thm re turns  this 
vahie. For sequences of length , ,  the expected work of this 
a lgori t lun is O(n), which is the same as the t ime of  the 
serial version. The  expected deplh  is ()(log n), since the 
expecled depth  of recursion is O(Iog n). 

Summary 
The  Nl.:si. language was designed to lie uselul fiJr pro- 
grammi,~g and  teaching parallel algoridmis.  For these 
purposes,  it ~viis impor tan t  that it allow simple descrip- 
tions o fa lgor i lhn l s  that closely match our  high-level intui-  
tion, and  also that il supply a well-del ined model  Ior ana- 
lyzing per tornlance .  We believe the language has 
successfully achieved these goals. Th e re  are inany aspects 
of N~:sl., and  the purpose  of  this article was Io exlract the 
two ti_'atures that are utost i inportanl  for prograntming 
parallel algorithms. They  are: 

• A perlorutauce model based on work and del)th. An 
i inportant aspect is tltat Ihe niodel is del ined directly in 
ternls of  language COilSlrUCtS rather thari t rying to ap- 
peal to ally intui t ion of  a machine. As discussed, the 
inode] is a virtual one tor which we give inappings onto 
running iinles for vaiiotis physical inachii ie models. 

• The use o f  data-parallel COliStrucis tot expressing paral- 
lelism and the ability iO nesl  such cOnSlI'tiClS, llkl;e cer-  
t a in l y  (Io nol  i l leall Io exclude ailv other parallel coil- 
sti'il(:ts, bUl having some way of  mappi i ig  a funcl ion 
over a set o |  vahies in parallel seeins critical 10r express- 
ing inai iy parallel algorhhins. 

This article is stiggestiilg a change in ihe un( ler ly ing mod- 
els we use tot analyzing parallel algoi i lhuts. !11 particular, 
it suggests t|iai we move away t}oin tlshtg theoretical per- 
li)l'nlance ntodels based on  u lach i i l es  to using nlodels 
based on langt iages.  /\s i n e i l l i o n e d  in Ihe article, settle re|'- 
e r e n c e  w o r k s  aheady i l l | i ) l ' l i l a l l y  a l ia l vze  parallel algo- 
l ' i lh l l lS i l l  ICI'IIIS o f  work a l l d  depth I)el i) l 'e Ill;tpfJhl<~ Ih( : ln  
onto  a PI,U\M 116, 17]. We suggest lhat the eXtla step be 
taken of lormal iz ing a model  based on work and  depth .  
With this Iormal model,  the PRAM can be cut out o[  Ihe 
loop, dilecily m a p p i n g  the model  onto more  realislic ma- 
chilies. \Ve l i l r therln(u'e argue lhal languagc-I)ased Illo(l- 
els seem to I)e the nlosl reasonable way to del ine a pro- 
grani i i i i i ig  niodel based Oil work and deplh. 

,4 tttll inip]einentat ion of  NEsi is ct irrently available oi l  

the World-Wide Web. The  compiler  is based on a tech- 
n ique  called thi t tening nested parallelism 141 and  compiles 
to :in in tern iedia te  language  called \"com.:. Beric |unark 
restihs |br  this implementa t ion  lot  the Connec t ion  Ma- 
chines CM-7 and  CM-5 and  the Crav C90 are described in 
[81. These  results show that Nesi.'s pe r t b rm ance  is con> 
petitive with that of  machine-specit ic codes te l  those 
benchmarks .  
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