Guy E. Blelloch

Parallel

Algorithms

in the past 20 years there has been tremen-
dous progress in developing and analyzing
paraliel algorithms. Researchers have developed efficient
parallel algorithms to solve most problems for which efficient
sequential solutions are known. Although some of these algo-
rithms are efficient only in a theoretical framework, many are
quite efficient in practice or have key ideas that have been used
in efficient implementations. This research on parallel algo-
rithms has not only improved our general understanding of par-
allelism but in several cases has led (o itmprovements in
sequential algorithms. Unfortunately there has
been less success in developing good lan-
guages for progromming parallel olgorithms,
particularly languages that are well suited for teaching and pro-
totyping algorithms. There has been a large gap belween lan-
guages that are too low level, requiring specification of many
details that obscure the meaning of the algorithm, and languages
that are too high level, making the performance implications of
various constructs unclear. In sequential computing many stan-
dard languages such as C or Pascal do a reasonable job of bridg-
ing this gap, but in parallel languages building such a bridge
has been significantly more difficult.

COMMUMICATIONS S FHI RS March 1986/ Vol. 39, Na. 85

Our research involves developing a parallel language
that is useful for teaching us well as for implementing par-
allel algorithms. To achieve this, an important goal has
heen o develop a language thae allows high-level descrip-
tions of parallel algorithms but also has a well-undersiood
mapping onto a performance model {i.e., bridges the
gap). Based on our research, we believe that the following
two features are important for achieving this goal:

¢ A language-based performance model that uses work
and depth rather than a machine-based model that uses
“running time.”

® Suppuort lor nested deda-peoallel constructs, This s the

ability to apply a function in parallel 10 each element of

a collection of dara and the ability to nest such parallel
calls,

In this article we describe these features and explain why
they are important for programming parallel algorithms,
To make the ideas concerete, we describe the program-
ming language Nest [5], which we designed based on the
features, and go through several examples of how o pro-
gram and analyze parallel algorithms using the language.
We have been using Nest. for three years in undergradu-
ate and graduate courses on parallel algovithms [7]. The
algorithms we cover in this article are relatively straight-
forward. Many more algorithms can be found 'lhn)ngll
the Web version of this article (available at hup//web.scan-
dal.cs.omuedu/www/cacm buml).

l

, Shared Memory

AN
oiniainln

Figure 1. A dlagram of a Parallel Random Access
Machine (PRAM). It is assumed in this model that all
the processors can access memory locations in the
shared memory simultanecusly in unit time.

PN

1 Total

Total 15

Figure 2. SUMmMIing 16 numbers on a tree. The total
depth (longest chain of dependencies) is 8 and the
total work (number of operations) is 15.

Muvch 1996/V01. 1380, No. 3 COMMUNICATIONRS OF YHE AW

work and Depth

Analyzing performance is a key part ol studying algo-
rithms. Although such analysis is not used to predict the
exact running time of an algorithm on a particular ma-
chine, it is unportant in determining how the running
time grows as a function ol the input size. To analyze per-
formance, a formal madel is needed o account for the
costs. In parallel computing, the most common models
are based an a set of processors connected either by a
shared memory, as in the Parallel Random Access Ma-
chines (PRAM) (see Figure 1), or through a network, as
with the hypercube or grid models. In such processor-based
medels, performance is calenlated in terms of the number
of instruction cycles a computation takes (its numing
time) and is usually expressed as a funcion of input size
and number of processors.

An important advance in parallel computing was the
introduction of the notion of watual wndels. A virtual
model is a performance model that does not attempt to
represent any machine that we would actually build but
rather is a higher-level model thar can be mapped onto
various rcal machines. For example, the PRAM is ofien
viewed as a virtual model [23]. From this viewpoint, it is
agreed that a PRAM cannot be built directly, since in prac-
tice it is unreasonable to assuime that exery processor can
access d shared memory i unit time, Instead, the PRAM
is treaied as a virtual machine that can be mapped onto
more realistic machines efficiently by siimulating mmuluple
processors of the PRAM on a single processor of a host
machine. "This simulation imposes some slowdown K, but
requires a factor of K fewer processors, so the total cost
(processor-time product) remains the same. The advan-
tage of virtual models over physical machine models is
that they can be easier o program.

Virtal models can be taken a siep further and used w
define pertormance in more abstract measures than just
runming time on a particular machine. A paiv ol such nwa-
sures are work and depth: Work s defined as the toral
number of operahons excented by a computation, and
depifr 1s defined as the longest chamn of sequential depen-
dencies in the computation. Consider, for example, sum-
ming 16 numbers using a halanced binary tree (see Figure
2). The work required by this computation is 5 operations
(the 15 additions). The depth of the computation is four
operations, since the longest chain of dependencies is the
depth of the summation ree—the sums need o be calen-
Lited starting at the leaves and going down one level at a
timme. In general, summing # numbers on a balanced tree
requires 1 — | owork and loger depth. Work is usually
viewed as a measure of the total cost of a computation

(ntegral of needed resources over time), and also speafies
the running tme ifthe algorithmos exceuted on a sequen-
tial processar. The depth represents the best possible run-
ning tune assuming an ideal machine with an unlimited
number of processors.

Work and deprh have been used informally for many
vears (o describe the performance of parallel algorithims
[23], especially when teachmyg them (16, 17]. 'The clann s
that it is easier to describe, think about, and analyze algo-

Parallel Programming

Scalar
Memory Vector Memory
procedure SUM{V):
n=length(V);
fori=110 log,n
begin
¥, = odd_elis(V);
Vo= cven_elis(V);
V = vector_add (V,, ¥,);
end
- return V
Pr‘z:(,‘:j:l:m Parallel Vector Processor

rithims in terms of work and depth than i terms of run-
ning time on a processor-based model (a model based on
P processors). Furthermore, work and depth together zell
us a lot about expected performance on various machines.
We will return to these points, but we lirst describe in
wore detail how work and depth can be incorporated into
a computational model. There are basically three classes
ol such models—caircuit models, vector machine models,
and tangnage-based models—and we brietly describe
cach.

Circuit Models. In civcuit madels, an algorithm is spea-
fied by designing a circuit of logic gates to solve the prob-
lem. The circnits are restricted to have no eycles. For ex-
ample, we could view Figure 2 as a circunit in which the
mputs are at the top, each + is an adder civeuit, and each
ol the lines between adders is a bundle of wires. The final
sum 1s rewarned at dhe botrom. In circuit modets, the cir-
cuit size {number ol gates) corresponds wo work, and the
longest path from an input to an output corresponds to
depth. Although tor a particular input size one could buikd
a circuit o implement an algorithm, i general circui
models are viewed as virtual models from which the size
and depth of the designs tell us sometime about the per-
tormance of algorithms on real machines. As such, the
models have been used for many years to study various
theoretical aspects of parallelism, for example, w0 prove
that certain problems arc hard to solve in parallel (sce [17]
{or an overview). Although the models are well suited lor
such theorenical analysis, they are nor a convenient model
tor programming parallel algorithms.

Vector Machine Models. Thc first programmable ma-
chine model based on work and depth was the Vector
Random Access Machine (VRAM) [4]. The VRAM model
is a sequential random-access machine (RAM) extended
with a set of instructions that operate on vedtors (see Fig-
ure 3} Each location of the mamory containg o whole vec-
tor, and the vectors can vary in size during the computa-
non. The vector mstructions include elementwise

operations, such as adding the corvesponding elements of

two vectors, and aggregate operations, such as exiracting
elements from one vector based on another vector of indi-
ces. The depth ofa computation in a VRAM is simply the
aumber of instructions exceuted by the machine, and the

Figure 3. A diagram of a Vector Random Access
Machine (VRAM) and pseudocode for summing n
numbers on the machine, The vector processor
acts as a slave to the scalar processor. The func-
tions aodd_elts and even.elts extract the odd and
even elements from a vector, respectively. The
function vector-add elementwise adds two vec-
tors. On each iteration through the toop the length
of the vector vV halves. The code assumes r1is a
power of 2, butitis not hard to generalize the code
to work with any n. The total work done by the
computationison + n/2+n/4 + .,) = Cim,and
the depth is a constant times the number of itera-
tions, whichis Otlog m.

work 1s calculated by summing the lengths of the veciors
on which the computation operates. As an example, Fig-
ure 3 shows VRAM code tor taking the sum of » valucs,
This code executes the summation tree in Figure 2—each
loap iteration moves down the tree one level. The VRAM
is again a virtual model, since it would be impractical to
build the vector memory because of its dynamic nature,
Although the VRAM is a good model for describing many
algorithms that use vectors or arrays, it 1s not an ideal
mode! for directly expressing algorithms on more compli-
cated data structures, such as trees or graphs,
Language-Based Models. A \hivd choice tor detining a
model in terms ol work and depth is 1o define it directly in
terms of language consuructs. Such a language-hased perfor-
mance model specities the costs of the primiuve instructions
and a set of rules tor composing costs across prograi ex-
pressions. The use of language-based nadels is certainly
not new. Aho and Ullman, in their popular imtroductory
texthook Foundations of Computer Science [1], define such o
model for deriving running times of sequential algo-
rithins. The approach allows them o discuss the running
time of the algorithms without introducing a machine
model. A similar approach can be taken to define 4 model
based on work and depthe. In this approach, work and
depth costs are assigned to each primitive instruction ol a
language and rules are specilied for combining parallel
and sequential expressions. Roughly speaking, when exe-
cuting a set of tasks in parallel, the wotal work is the sum ol

az

CONAIICATIONS OF VHR BCM March 1996/V0l.59, No. 3

the work of the tasks and the total depth is the maximum
ot the depth of the tasks. When executing tasks sequen-
tially, both the work and the depth arc summed.
rules

These
are made more concrete when we describe Nest's
performance model in the next section, and the algo-
rithms in this article illustrate many examples of how the
rules can be applied.

We note that language-hbased performance models
seem to be significanty more important for parallel algo-
vithms than for sequential algorithms. Unlike Aho and
Ultman’'s sequential model, which corresponds almost di-
rectly to a machine model (the RAM) and is defined
purely for convenience, there seems o be no saustactory
machine model that captures the notion of work and
depth in a general way.,

Why Work and Depth?

We now return to the questuon of why models based on
work and depth are betier than processor-based models
for programming and analyzing parallel algorithms. To
molivate this claim we consider a particular algorithm,
Quicksort, and compare the code and performance analy-
sis of a parallel version of the algorithm using the two
types of models. We argue that in the work-depth model
the code is very simple, the performance analysis is closcly

related to the code, and the code captures the notion of

parallelism in Quicksort at a very high level. This is not
true with the processor-based model.

We start by reviewing sequential Quicksort, for which
pseudocode s shown in Figure 4. A standard perfor-
mance analysis proves that tor n keys the algorithm runs
in O(n log n) time on average (expected case). A similay
analysis proves that the maximum depth of recursive calls
15 Olog n) expecied case; we will use this fact later. Quick-
sort is not hard o parallelize. In particular, we can cxe-
cute the rwe recursive calls in parallel, and furthermore,
within a single Quicksort we can compare all the elements
of § to the pivot ¢ in parallel when subselecting the ele-
ments for §y, and similarly for S and S;. The questions
remain: how do we program this parallel version, and
what is its performance?

We first consider programming and analyzing parallel

procedure QUICKSORT(S):
if S contains at most one element then return S
else
begin
choose an element ¢ randomly from §;
let §), S; and 54 be the sequences of elements in Sless
than, equal to, and greater than g, respectively;
return (QUICKSORT(S,) followed by S, followed by
QUICKSORT{S,))
end

Figure 4. Pseudocode for Quicksort, from Aho,
Hopcroft, and Uliman [2]. Although originally de-
scribed as a seguential algorithm, the algorithm as
stated is not hard to parallelize.

March 1946/Vol 39, No. 1 commitiicarsons &F s adas

Quicksort with a model based on work and depth. Figure
5 illustrates the Nesi code for the algorithm. This code
should be compared with the sequential pseudocode—the
only significant difference is that the Nese code specifies
that the subselection for 81, 82, and 83, and the wo re-
cursive calls to Quicksort should be exceuted in parallel
(in Nesi, curly brackews {} signify parallel exceution).
Since the parallel algorithm docs basically the same opera-
tions as the sequcnti:nl version, the work cost of the paral-
lel version is within a small constant factor of the time of
the sequental version (n log n) expected case). The
depth cost of the alg()rilhm can be analyzed by examining
the recursion tree in Figure 5. The depth of each of the
blocks represemts the sum of the depths of all the opera-
tons in a single call o Quicksort (not including the two
recursive calls). These operations are the test lor termina-
uon, finding the pivot a, generation 81, S2, and 83, and
the two appends at the end. As discussed in more detail in
the next section, in Nesi each of these ()pcr:llions has con-
stant depth (i.e., is fully parallel). The depth of each block
is therefore a constant, and the total depth is this constam
tmes the maximum number of levels of recursion, which
we mentioned earbier s O(log #) expected case. This com-
pletes our analysis of Quicksort and says that the work of
quicksort 1s O(n log #) and the depth is €){log »), both
expected case.! Note that we have dervived performance
measures tor the algorithm based on very high-level code
and without talking about processors.

We now consider code and analysis for parallel Quick-
sort based on a parallel machine model with £ processors,
We clainy that in such a model the code will be very long,
will obscure the high-level intuition ol the algorithm, and
will make u hard to analyze the perlormance ot the alga-
rithm. In parucular, the code will have to specity how the
sequence 1s partutiongd across processor (in general, the
input length does not equal P and needs to be broken up
into parts), how the subselection s implemented i paral-
lel (for generating 8y, Sa, and S4 tn parallel), how the re-
cursive calls get partitioned among the processors and
then load-balanced, how the subealls are synchronized,
and many other detils. This is complicated hy the lact
that in Quicksort the recursive calls are typically not of
equal sizes, the recursion tree is not balanced, and the S,
sets have to be reinserted on the way back up the recur-
sion. Although coding these details might help oprimice
the algorithm {or a particular machine, they have litte to
do with core ideas. Even if we assume the simplest pro-
cessor-hased model with unit-time access to shared mem-
ary and built-in synchronization primitives, the fully par-
allel code for Quicksort in just about any language would
require hundreds of lines of code. This is not just a ques-
tion of verbosity but a question of how we think about the
algorithm.

Relationship of work and depth to running time. Work
and depth can be viewed as the running ume of an algo-

"We nate that the pavatel version of Quicksart requires more memory
than a good implemenration of the sequental version. In parvticular, the
sequential version can be implemented o place, while the parallel version
requires ahout v seratch space.,

Parallel Programming

function qui(‘ksort(S) =
if (#8 «<=1) then §
clse
leta 1 B T{!:il]g £#<S)a]} Work = O{=nlog n} (expected)
82 = {e in Sl ¢ == a}; Depth = O(log n) {expected)
S3 [e in Sl e>d|
= {Quicksort{v); v in [S1,83]};
[()] ++ 82 ++ R{17;
L Quicksort l
L Quicksort —I | Quicksort |
L Quicksort —I I Qs I I Quicksort]
I Q-lllckmrt Qulcksurl I Quicksorﬂ I QsJ
[&] EzLI [&] [o]

rithyn at two limits: one processor {work) and an anlimited
number of processors {depth). In fact, the costs are olten
referred to as T and Tx. In practice, however, we want to
know the running time for some hxed number of proces-
sors. A simple but important result of Brent [9] showed
that knowing the two limits is good enough to place rea-
sonable bounds on running time for any tixed number of
processors. [n particular, he showed that if we know thar a
compuration has work B and depth D, then i will run
with P processors in time 7" such that

w

w
—=r<—+D
r s

This result makes some assumptions about communica-
tion and scheduling costs, but the equation can be modi-
fied il these assumprions change. For example, with a
machine that has & memory latency (the time between
making a remote request and receiving the veply), of I,
the equation is W/P =T = Wi + 1.+ D,

LcUs return to the example of sununing. Brent's equa-
rion. along with our previous analyvsis of work and depth
(W =n—1, D =logm), tells us that # numbers can be
suntned on P processors within the time bounds

()t—l)§7<(n—l)

5 < P + logan.

For example 1,000,000 clements can be sunmed on 1,000
processors in sormewhere beiween 1,000 (10"'/\()“‘) and
1,020 (IO“/I()" + I()gyl()“) cycles, assuming we count one
cvcle per addition. For many paratlel machine models,
such as the PRAM o1 a set of processors conncected by a
hypercube network, thisis indeed the case. To implement
the addition, we could assign 1,000 clements 1o each pro-
cessor andl sum them, which would take 999 cycles, We

Figure 5. The Quicksort algorithm In Nes.. The opera-
tor # returns the length of a sequence. The func-
tion rand(n) returns a random number between O
and n (the expression S(rand(#5)) therefore re-
turns arandom element of 8). The notation (e in

8| e < a}is read: "in parallel find all elementsein s
for which e is less than a”. This operation has con-
stant depth, and work proportional to the length
of 8. The notation (Quicksort(v): vin {81, 831} is
read: "in parallel for vin 81 and 83, Quicksort v''.
The results are returned as a pair. The function ++
appends two sequences.

could then sum across the processors using a tree of depth
log, 1,000 = 10, so the total number of add cycles would
be 1,009, which is within our bounds.

Communication Costs. A problem with using work and
depth as cost measures is that they do not directly account
for communication costs and can Yead to bad predictions
of running time on machines where communication is a
hottleneck. To address this question, led's separate com-
munication costs into two pares: fefency, as defined previ-
ously, and bandwidih, the rate ar which a processor can
access memory. If we assume that cach processor may
have multiple outstanding requests, then latency is not 2
problem. In particular, latency can be accounted for in
the mapping of the work and depth into time tor a ma-
chine (see the preceding), and the simulation remains
work-ctlicient (i.e., the processor-time product is propor-
uonal to the towal work). This is based on hiding the la-
tency by using few enough processors such that on aver-
age cach processor has multiple parallel tasks (threads) to
execute and therefore has plenty 1o do while waiting for
replies. Bandwidth is a more serious problem. For ma-
chines where the bandwideh between processors is very

COMNE PPHCATIONS OF THE S March 1496/ Vel.3Y, No. 3

much less than the bandwidth to the local memory, work
and depth by themselves will not in general give good
predictions of running time. However, the network band-
width available on recent parallel machines, such as the
Crav T3E and 8GI Power Challenge, is great enough ro
give reasonable predictions, and we expect the sityation
to improve with rapidly improving newwork technology.

Nested Data-Parallelism and Nes

Many consuructs have been suggested for expressing par-
allelism in programining languages, including fork-and-
join consiructs, data-parallel constructs, and futures,
among others. The question is which of these are most
usctuld for specitving parallel algorithims? 1t we look at the
parallel algorithms that are described in the terature and
their pseudocode, we tind that nearly all are described as
parallel operations over collections of values. For example
“in parallel lor each vertex in a graph, find its mmnimum
neighbor™, or “in parallel for each row in a matrix, sum
the row”, Of course, the algorithms are not this simple—
they usually consist of many such parallel calls interleaved
with operations that rearrange the order of a collection,
and can be called recursively in parallel, as 1o Quicksort.
This ability to operate in parallel over sets of data is often
reterved o as date-peorallelisom [15], and languages based on
1 are oiten reterred to as data-parallel languages, or collec-
tion-oriented languages [24]. We note that many parallel
languages have data-parallel features in conjunction with
other forms of parallelism [3, 10, 12, 18].

Betore we come 1o the rash conclusion that data-paral-
lel Lingunages are the panacea for programming parallel
algorithms, we make a distincrion between flat and nested
data-parallel languages. In flof daa-parallel languages, a
funcrion can be applied in parallel over a set ol vahies, bt
the funciion itself must be sequential. In rested data-paral-
lel languages [4), any funcion cluding parallel func-
tons, can be applied over a set of values, For example, the
stmmation of ecach row of the matrix mentioned previ-
ously could isclf execute in parallel using a tee sum. We
claim that the ability ta nest parallel calls is critical for
expressing algornthms in a way that matches our high-
level intuition of how they work. In particular, nesced par-
allelism can be wsed ta implement nested loops and di-
vide-and-conguer algorithms in parallel. (Five out of the
seven algorithins described in this aricle vse nesting ina
crucial way.) The importance of allowing nesting in dara-
parallel languages has also been observed by orthers [13]).
However, most exasting data-parvallel languages. such as
High Performance Foriran (HPF} [14] or C* [21], do not
have direct support for such nesting.”

Nest
This article uses Nest [5] as an example of a nested data-
parallel language. Fins section gives an overview ol the
language, and the next section gives several examples of
parallel algorithms described and analvzed with Nesi.

Fhe current HIPE L0 Las some Tinnted support for nested calls, and fu-
nrre versions e kely to have significantly beuer support.

March 1906, Vol 3%, No. 3 coulMUmecations O 7o ace

Nesiwas designed to express nested parallelism in a sim-
ple way with a minimum set of structures and was there-
fore designed as a language on its own rather than as an
extension of an existng sequenual language. The idcas,
however, can clearly be used in other languages. Nesw is
Joosely based on ML [19], o language with a powerful type
system, and on SETL. [22], a language designed for con-
cisely expressing sequential algorvithims, As with ML, Nesi
is mostly hunctional (has only limited {orms of side effects),
but this leature is tangential to the pomts made in this
article.

Nest supports data-parallehism by means ol operations
on sequences—one~climensional arravs. All clements of 3
sequence must be of the same tvpe, and scquence indices
are zero-based (a[0) extracts the lirst element of the se-
quence @), The main data-parallel construct is apply-te-
cach, which uses a set-like notation. For example. the ex-
pression

la*ta:ain(3, -4, -9, 8l};

squares cach element of the sequence (3, —4, -9, 9]
returning the sequence (9, 16, 81, 28], This can be read:
“in parallel, for cach a in the sequence (3, -4, -9, 5],
square a”. ‘The apply-to-cach can be used over multiple
sequences. The expression

fa+b:ainl3, -4, -9,5; bin{l, !, 3, 414

adds the wo scquences clementwise returning {4, —2,
-6, 9). The apply-to-rach construci also provides the
ability 1o subselect elements of a sequence based on a fil-
ter. For example,

{fa *a:ain (3, -4, -9, 8] |a > 0O}

can be read: “in parallel, for cach a in the sequence [3,
—4, —9, 8] such that & is greater than O, square a”. 1t
returns the sequence [9, 28], The clements that remain
maintain thetr relative order. Such filiering was used in
the Quicksort exanple.

Any function, whether primitive or user defined, may
be applied w each element of a sequence. So, for example,
we could define

function factorial (n) =
if (n==1)then 1
else n*factorial (n — 1);

and then apply it over the elements of a sequence, as in
{factoriai(i) : 1 in [3, 1, 7}

which returns the sequence [6, 1, 5040].

In addiion o the parallelism supplied by apply-to-
each, Nest. provides a set of functions on seguences. cach
of which can be implemented in parallel. For example, the
function sum adds the clements of a sequence, and the
funciion reverse reverses the elements of a sequence.
Perhaps the most important funcnon on sequences s
write, which suppiics the only mechamsm to modify mul-
tple values of a sequence m p;u’;illcl. The luncnon write
takes two arguments: the hrse s the sequence o modify,
and the second 1s a sequence of inreger-value pairs that

specity what to moditv. For each pair (1,v), the value v is
inserted into position 1 of the destination sequence. For
example,

write(0, 0, 0, 0, O, O, O, O], [(4,-R),(3,5),(5,9)]);

inserts the —2, 8, and 9 into the sequence at locations 4,
2, and 5, respectively, returning

[0, 0,5, 0, -2, 9,0, 0L

If an index is repeated. then one value 15 written
nondeternunisucally, For readers tamiliae with the var-
ants of the PRAM model, we note that the write function
is analogous to an “arbitrary” concurrent weite, Nesi alse
includes a function e_write that does not allow repeared
indices and is analogons 1o an exclusive write. [repeated
indices are used with e_write, the currem implementa-
thon reports an ¢rror.

Nested parallelism is supplied in Nest. by allowing se-
quences to be nested and allowing parallel functions to be
used in an apply-to-cach. For example, we could apply the
sum function in paratlel over a nested seqguence, as in

{sum(a) : a in (8,3}, (8,3,9], (711},

which would return [B, 20, 7]. Here, there is parallelism
both within each suim and across the sums. The Quicksort
algorithm showed another example of nesred calls—rthe
algorithm is wselt used in an apply-to-each to invoke two
recursive calls in parallel.

The Performance Model
We now return to the issue of pertormance models, this
ume in the context of Nest. As mentioned earlier, Nesi,

defines work and depth in tevms of the work and depth of

the primtive operations and rules for composiug the
measures across expressions. We will use Wie) and D) to
refer to the work and depth of evialuating an expression e.
In most cases, the work and depth of an expression are
the sums of the work and depth of the subexpressions. So,
for example, if we have an expression ¢ + eo, where ¢
and ¢y are subexpressions, then the work of the expres-
sion is

Wiey +e0) =t + Wie) + Wiew),

Parallel Programming

ol

Wt (n) = Dl'nct(n) =Hn-2

Work =1 + sum{W,(8), Wi (1), Wi (B), Wi (2D
=1 +sum(13, 3, 23, 8)
=48

Depth =1 + max (D, (3), Dey (1), Dy A0), D (2))
=1+ max{(13, 3, 23, 8)
=24

Figure 6. Calculating the work and depth of {fac-
torial(n) : nin [3, 1, 5, 21}

where the | is the cost ol the acld. A similar rule is used for
depth. The interesting rules concerning parallelism are
the rules for an apply-to-cach expression:

Wileda) s a in e = 1+ Wie) + 2, Wie @) (1)

win ey,

taines) = 1+ D) + max Diey(@). (2)

w in e,

Dide{w)

Figure 7. List of some of the sequence functions
supplied by Nes.. The work required for each functionis
given in the Work column: L{v) refers to the tength
of the sequence v. The work of the write(d, a) func-
tion actually depends on whether the argumentd
needs to be capied ar not, butin the examples in
this article the difference has no effect.

Operation Description Work Depth
dist{a,l} Create a sequence of as of length 1. 1 1
#a Return length of sequencea. 1]
alil Return element ut position i of a. | 1
Ls:e] Return integer sequence froms lue. (e —3s) |
[s:e:d) Relurn integer sequence froms loe by d. {e-s)/d 1
sumia) Return sum of sequence a. 1L{a) log L(a)
write(d,a) Place elements a ind. L(a) |
atth Append sequences a and b, L{a) + L{b} !
drnp(a,n) LDirop first n elements of sequence a. L{result) 1
interleave(a,b) Interleave elements of sequences a and b. L(result) 1
flatien(a) Flaiten nested sequence a. L{result) |

COMMUMICATIONS $F Yool sras March 1996/Vol. 39, No. 3 9'

1 procedure PRIMES(n):

2 let A be an array of length

3 sct all but the first element of A 10 TRUE
4 for i from 2 to Vn

5 begin

6 if Ali] is TRUE

7 then sct all muliiples of { up 10 » 10 FALSE
o end

Figure B. Pseudocode for the sieve of Eratosthe-
nes

The first rule specifies that the work 1s the sum of the
work ol cach of the applications of ¢, 10 an element of .
plus the work of ey, plus | to account for overheads. The
rule loy depth is similar, b takes the maximum of the
depth ol cach application of ;. This supports our intui-
ton that the applications are executed i parallel and that
the evaluation of the apply-to-cach completes when the
Jast call completes. The other interesting rules are the
rules tor an if expression, which for work is

W(if ¢, then ¢, else ¢4)
HW(es) ¢y = TRLE
=1+ Wig) + (3
Wes) otherne,

with a similir rule for depth, The work and depth for a
function call and tor scalar primitives are ecach 1. The costs
of the Nest functions on sequences are summarized in
Figure 7. We note that the performance rules can be more
precisely defined using an operational semantics [6].

As an example of composing work and depth, conskler
evaluating the expression

¢ = {factorial(n) : n in a},

where a = [3,1,5,8]. Using the rules for work and the
code for factorial given earlier, we can write the follow-
g equation for work:

Weaeefn) = L+ 1 + W

0 =1
+
We + W_ + Wegaein — 1 > 1
where Wo o, We, and W_ are the work for = = | * and —,

and are all 1. The two unir constants come trom the cost of

the function call and the if-then-else vule. Adding up the
terms and solving the recurrence gives Wegee(n) = 5n — 2.
since there is no parallelism in the lactorial function, the
depth is the same as the work. To calculate work and
depth for the full expression {factorial(n) : n in aj, we
can use cquations 1 and 2. This calculation is shown in
Figure 6.

Examples of Parallel Algorithms in Nes
Several parallel algorithims are described and analyzed
here, providing examples of how to analyze algorithims in

March 1996/ V4. 39, Nu. 3 COMMUNICATIONS Of Tos Acar

terms of work and depth and of how 10 use nested data-
parallel constructs. They also introduce some important
ideas concerming parallel algorithms. Again, the main
goals are o have the code closely match the high-level
mtuttion of the algorithm and 1o make n easy to analyze
the asymptouc perforimance from the code,

Primes

Our first algorithm finds all prime numbers less than ».
This example demonstrates @ common technigue used in
parallel algorithms—solving a smaller case of the same
problem to speed the solution of the full problem. We also
use the example o introduce the notion of wark cfti-
ciency. An important aspect of developing a good parallel
algorithm is designing one whose work is close 1o the time
for a good sequential algorithm that solves the same proh-
lenm. Without this condition we cannot hape 1o ger goad
specdup of the parallel algorithm over the sequeniial al-
gorithm. Parallel algorithms are referred 1o as work-effi-
cient relative o a sequennal algorithm if their work is
within a constant factor of the ume of the sequential algo-
rithn. All the algorithims we have discussed so far are
work-efficient relauve o the best sequential algorithins. In
particular, summing z numbers took ((n) work and paral-
lel Qiicksort took On log 1) expected wark, both of which
are the sare as required sequentially. For finding primes,
our goal should again be to develop a work-ellicient algo-
rithin. We chervefore start by looking at ¢flicient sequential
algorithms,

The most common sequential algovichm for finding
primes is the sieve of Eratosthenes, which is speafied in
Figure 8. The algorithm returns an arvay i wineh the i
position is set to rrUE if 718 a prime and o varse otherwise.
The algorithm works by initializing the array 4 to reie
and then setting to rarse all maddples of each prime it
finds. Justarts with the fivst prime, 2, and works up to V.
The algorithm only needs 1o go up o Vn, since all com-
posite numbers (non-primes) less than 2 must have a fac-
tor less or equal 1o \/;l [line 7 is implemented by looping
over the muliples, then the algorithm can be shown o
take O(n log log #) ume, and the constant is small. The
sieve ol Eratosthenes is not the theoretically best algo-
richima tor finding primes, but it is close, and we would be
Lappy to derive a parallel algorithm that is work-efficient
relative to it (i.e., does O log log #) work).

It turns out that the algorithm as described has some
casy parallelisin. In particular, line 7 can be implemented
in parallel. In Nest, the multiples of a value ¢ can be gen-
erated in parallel with the expression

[&*i:n:i)

and can be writen into the array A in parallel with the
write function. Using the rules for costs (see Figure 7),
the depth of these operations is constant and the work is
the number of multiples, which is the same as the time of
the sequential versian. Given the parallel implementation
of line 7, the totul work of the algorithm is the same as the
sequential algorithm, since it does the same number of
operations, and the depth of the algorithm is O(Vn), since

cach iteraton of the loop it lines 5-8 has constant depth

and the number of iterations is V. Note that thinking of

the algorithm in terms of work and deprh allows a simple
anatysis (assuming we know the running time of the se-
quential algonthm) withowt our having to worry about
how the parallelism maps onto a machine. In particular,
the amount of parallelisnn varies greatly from the Rrst iter-
ation, in which we have /2 mubtiples of 2 o knock our in
parallel, to the last iteration, where we have only Vi mul-
tiples. This varying parallelism would make it messy to
program and analyze on a processor-based model.

We now consider innproving rthe depth of the algorithm
withount giving up any work, We note that if we were given
all the primes from 2 up 10 Vn, we could then gencrate all
the multiples of these primes at once. The Nesi. code for
generating all the multiples is

{{(R+p:n:p!: p in sqr_primes};

where sqr_primes is 4 sequence containing all the primes
up to /3. This computation has nested parvallelism, since
there is parallelism across the sqr_primes (outer parallel-
s} and also in generating the multiples of cach prime
(inner paraliclism). The depth of the computadon is con-
stant, since each subeall has constant depth, and the work
is Q0 log log). since the total number of multiples when

summed across che subcealls 1s the same as the number of

multiples used by the sequential version.
We have assumed that sqroprimes was given, but to
generate these primes we can simply call the algorithm

Parallel Programming

recursively on 2 Figure 9 shows the full algorithm for
tfinding primes based on this idea. Insicad of returning a
sequence ol tlags, the algorithm retwrns a sequence with
the values of the primes. For example, primes(10)
woukd return the sequence [2,3,4,7]. 'The algorithm ve-
cursively calls itself on a problem of size Vn and termi-
nates when a problem of size 2 is reached. The work and
depth can be analvzed by looking at the piciure at the
botom of Figure 9. Clearly most of the work is done at the
top tevel of recursion, which does O(n log log 1) work. The
total work is therefore alse Q(n log log n). Now ler’s con-
sider the depth. Since each recursion level has constant
depth. the total depth is proportional o the number of
levels. To calculate this number, we note that the size of
the problem at level i is %'/ and that when the size is 2, the
algorithim terminates. This gives us the equation »'™ = 2,

Figure 9. The code for the primes algorithm, an
example of one level of the recursion, and a dia-
gram of the work and depth. In the code [] int indi-
cates an empty sequence of integers. The function
isqrt takes the square root of an integer. The func-
tion flatten takes a nested sequence and flattens it,
The function dist (a,n) distributes the valueatoa
sequence of length n. The expression {1 in [0:n] i1
in flags| f1} can beread as “'for eachifromoton
and each f1in flags return thei if the corresponding
flis true'. The function drop(a,n) drops the first n
elements of the sequence a.

function primes(n) =
if n ==2 then (|] int)
clse

flags
indices
in drop(indices, 2};

let sqr_primes = primes{isqri(n));

composites = {[2«p:n:pl: p in sqr_primesh;

flai_comps = flatten{composites);
= write (dist(true, n), {(i,false): i in flat_comps});
= [iin (0:inl; (1 in flags | {1}

Example for primes(20):
[2,3]

sqr_primes

[}

composiles

flat_comps
flags
indices
resull

[14,6,8,10,12,14,16,18] , [6,9,12,15,1811
[4,6,8,10,12,14,16,18,6,9,12,15,18]
fonGnnGE GE LG E et
[0,1,2,8,5,7,11,13,17,19]
[2.8,5,7,11,13,17,19]

[primesin) {

nlog log n I

primes(a'/?) I n'?log log n'"* I

Depth 4

primes(nlity D
prinic.‘&(?) D

COMMMICATHNNG GF THMB OIS Yaich 1996, Vobl39, Nu. 3

where d is the depth we scek. Solving for d, this method
gives d = log log n. The costs are therefore:

W= ()n log log n)
D= 0O(log log)

This algorithm remains work-efficient relative ro the se-
quential sieve of Evatosthenes and grealy improves the
depth.

Sparse Matrix Multiplication

Sparse matrices, which are common in scientific applica-
tions, are matrices in which most elemems are =zero. o
save space and running time it is eritical 10 store only the
nonzero elemenis. A standard representaion ol sparse
matrices in sequential fanguages is an array with one cle-
ment per row, each of which contains a linked-list of the
nonzero values in that row alony with thenr columm num-
ber, A similar representation can be used in parallel. In
Nest asparse matnx can he represented as a sequence of
rows. cach of which 1s a scquence of (eoclumn-number,
value) pairs of the nonzero values in the row. The mairix

24 —-1.0 0 4]

P 1.0 2.0 —1.0 0
’ 0 -0 20 —1.0
() 0 —-10 2.0

is represented in chis way as

A =[[(0, 2.0}, (1, —1.0)],
[0, —1.0), (1, 2.0), (8, ~1.0)1,
(€1, —1.09, €2, 2.0), (3, —~1.0)1,
(e, -1.0, (3, 3.001,

where A is a nesred sequence. This representation can be
used lor marrices with arbitriey parterns of nonzero ele-
ments, since each subsequence can be of o different size.

A common operation on sparse matvices is to muliply
themn by a dense vectar, In such an operation, the result is
the dot-product of cach sparse vow of the matrix with the
dense vector. The Nese code or takmg the dot-product of
a sparse row with a dense vector X is;

sum{{v=x[i] : (i,v) in row)

This code takes each index-value pair (,v) in the sparse
yow, multiplies v by the i vilue of x, and sums the re-
sults. The work and depth is easily calculated using the
performance vules. IF o is the number of nonzero ele-
ments in the row. then the depth of the computanion is the
depih of the sum, which is Olog), and the work is the
sum of the work across the elements, which is O(n).
The tull code for multiplying a sparse matrix A repre-

senied by a dense vectn X requires that we apply the code
to cach row in parallel, which gives

{sum{v=x({i} : (i,v) in row})

: rOW in A}
This example has nested parallehsm, since there 1s paral-
lelism both across the rows aind within cach row for the
dor products, The total depth of the code is the maximum

BMurch 1906/V0l. 3%, No, } COMISWNICATIONS OF THE ACM

of the depih of the dot products, which is the logarithm of
the size of the largest row. The total work is preportional
1o the total number of nonzere elements.

Planar Convex-Hull

Qur next example solves the plimar convex hull problem:
Given n points in a plane, tind which of them lie on the
pertmeter of the smallest convex region that comtains all
points. This example shows another use of nested paral-
lelism Tor divide-and-conquer algorithims. The algorithm
wese is a parallel Quickhull [207], so named becanse of'its
similarity to the Quicksort algorithm. As with Quicksont,
the strategy is 1o pick a “pivol” element, split the data
based on the pivot, and recurse on each of the splic sets,
Also as with Quicksort, the pivor element is not gnaran-
teed o split the data into equally sized sets, and i the
worst case the algorithin requires O work; however, in
practice the algorithm is ofien very cflicient.

Figure 10 shows the code and an example of the Quick-
hull aigorithm. The algorvithm is hased on the recursive
rourine hsplit. This funciion takes a set of points in the
plane ({x, ¥ coordinates} and two points pl and p& known
10 lie on the convex hull and veturns all the poins that lie
on the hull clockwise from pl o p&, inclusive of pl, but
notof p&. in Figure 10, given all the pointis (A, B, C, . . .,
Fl, pl = A, and pR = P, hsplit would return the se-
quence [A, B, J, 0]. In hsplit, the order of pl and pR
maitters, since if we switch A and P, hsplit would return
the hull along rhe other directon [P, N, Cl.

The hsplit lunction brst removes all the elements that
cannat he on the hull because they Lie below the line be-
tween Pl oand pd (which we denote by pl-pR). This s
done by removing elements whose eross product wich the
line hetween pl and p& is negative. In the case pl = A
and pR = P, the points [B, D, F, G, H, J, K, M, 0] would
remain and be placed in the sequence packed. The algo-
rithin now finds the point pm farthest from the line pl-
PA. The point pm must be on the hull, since as a line at
infnity parallel 10 p1-pR moves woward pl-p&, it must
first hit pm. The poini pm (J in the running example) is
found by taking the point with the maximum ¢ross prod-
uct. Once pm is found, hsplit calls itself twice recursively
using the pomnts (pl, pm) and (pmm, p&) (in the example,
(A, I) and (J, P}). When ihie recursive calls retnrn,
hsplit flaitens the result, thereby appending the two
subhulls,

The overall convex-hull algorithm works by {inding
the points with minimum and maximum x coordinates
{(these points must be on the hull) and then using hsplit to
find the upper and lower huli. Each recursive call has con-
stant depth and Q(} work., However, since many points
might be deleted on each step, the work could be signifi-
cantly less. As with Quicksort, the worst-case costs are W =
0{x%) and [= Ofn). For m hull points the best case times
are O(log m) depth and O@) work. 1t s hard to state the
average-case tine, since it depends on the distribntion of
the inputs. Other parallel algorithms for the convex-hull
problem run in = Olog n}, and W = Oti) in the worst
case [16], but have larger constants,

Three Other Algorithms
We conclude our examples with briet discussions of three
other algorithms: the fast Fourier transtorm (FF 1), the
scan operation (all prefix sums), and an algorithm for
finding the & smallest element of a set. All the code is
shown tn Figure 11, These algorithms further demon-
strate the condisencss of nested data-parallel constructs.
We use the standard recursive version for the FFT [11].
The second argument W is a sequence of the same length

function cross_product (o line) =
let (xo,ya) = o;
((xLy1).(x2,y2)) = line
in (x1-x0)*(v2-yo) - {yl-yo)={x2-x0};

function hsptit(points,pl,p2) =
let cross = {cross_product(p,(pl.p2}): p in pointsl;
packed = {p:p in points; ¢ in cross | pluspic)]
in il {#packed < 2) then [pl] ++ packed
clse
let pm = points[max_index(cross)]
in flatten (hsplit{packed,pl,p2):
plin lpl.pm}; p2 in lpm,p21i):

funciion convex_hull{points) =
let x = {x & {xy) in pointsk;
minx = points[min_index(x) 1.
maxx = points{max_index(x)]
in hsplit(points,minx,maxx} ++ hsplit(points,
MAXX, minx);

lJ

C N

[ABCDEFGHIJKLMNOP]
AIBDFGH|KMO]PICEITLN]
A[BFIJIOIPNICE]

ABJOPNC

Figure 10. Code and example of the Quickhult al-
gorithm. Each sequence in the example shows one
step of the algorithm. Since Aand Pare the two x
extrema, the line AP is the original splitline. Jand N
are the farthest points in each subspace from AP
and are, therefore, used for the next levei of splits.
The values outside the brackets are huil points that
have already been found.

Parallel Programming

as & containing all the complex 2" roots of unity, The FFT
is called recursively on the odd and even ctements of a.
The results are then combined using cadd and emult
(complex addinon and mulkiplicauon). Assuming that
cadd and emult take constant work and depth, then the
recursion gives us the costs:

W) = 2Wn/2) + kn = O(n log n)
Dy = D2y + &k = OQlog m).

The plus-scan operation (called all-prefix-sums) takes a
sequence of values and returns a sequence ol equal length
for which cach elementis the sum of all previous elements
in the arigingl sequence. For example. execuung a plus-
scan on the sequence [3, 8, 3, 1, 6] returns [0, 3, 8, 11,
12]. This can be implemented as shown in Figure 11, The
algorithm works by elementwise adding the add and even
clements and recursively solving the problem on these
sums. The result of the recursive call is then used to gen-
crate all the prelix sums. The costs are:

Winy = Wu/2) + kn = O)
Din) = Dn/2) + k = O(log n)
The particular code shown works only an sequences that

have a length equal to a power of rwo, but it s not hard to
generilize it 10 work on sequences of any lengih.

funcuion M{aw) =
if #fa ==l then a
else
et £ = {fft(h, even_elts{w)):
bin [even_chis{a),odd_clista)]} Wark = Olnilog)
in leadd{a, cmult(b, wl): Depile = (Hlog n)
ain (6] ++r[0];
hinrl(1] +4 f[1];

winwl;

function scan (a) =
if #a== 1 then (0]

else
Work = O(n)

Depth = Ollog n)

let e = even_clis(a);
o = odd_clts(a);
s=scanfle t ot ein e oinob)

in interleave(ss + e s in s e in el);

function kth_smallest(s, k) =
let pivot = s[#x/2],

lesser = {e in sl e < pivot);

Work = O(n)
{expected)

Depth = (X log n)
{expected)

greater = e in sl e > pivotl;
inif (k < #lesser) then
kth_smallest{lesser, k)
else if (k >= #s — #greater) then
kth_smallest{greater, k- (s — #greater))
else pivor;

Figure 11. Code for the fast Fourier transforms,
the scan operation, and for finding the k" smallest
element of a set

COMMMHNLATIONS OF THE 888 Mauch 1995/ Vol 39, No. 3 ’5

e demo ®L oL RO P R A S ST

A variation of Quicksort can be used to find the k'
smallest element of a sequence [11]. This algorithm calls
itself recursively only on the set of elements containing the
result. Here we consider a parallel version of this algo-
rithm. Atier selecting the lesser elements, il #lesser is
greater than K, then the k" smallest element must belong
to that set. In this case, rhe algorithm calls kth smallest
recursively on lesser using the same K. Otherwise, the
algorithm sclects the elements that are greater than rhe
pivot, and can similarly find if the kK™ element belongs in
greater. If it does belong in greater, the algorithm calls
itsell recursively but must now readjust X by subtracting

the number of elemens less than or equal w the pivot, If

the K™ clement belongs in neither lesser nor greater,
then it nuust be the pivor, and the algonthm returns this
value. For sequences ot leagth n, the expected work of this
algorithm is O(n), which is the same as the time of the
sevial version. The expected depth is G(loyg »), since the
expected depth ol recursion is Oflog n).

Summary

The Nesi language was designed to be useful for pro-
gramming and teaching parallel algorithms, For these
purpaoses, it was important that it allow simple descrip-
vons of algorithms rhat closely match our high-level inui-
tion, and also that it supply a well-delined model tor ana-
lyzing performance. We believe the langnage
successtully achieved these goals. There are many aspects
of Nesi, and the purposc of this article was to extract the
two teatures that are most important for programming
parallel algorithms. They are:

has

* A performance model based on work and depth. An
important aspect is that the model is delined directly in
terms ol language consiructs vather than frying to ap-
peal te any intuition ol a machine. As discussed, the
model is a virtual one tor which we give mappings onto
running thimes for varous physical machine madels.

® "The use of data-parallel constructs for expressing paral-
lelism and the ability to nest such constructs. We cer-
tainly do not mean to exclude any other parallet con-
structs, but having some way of mapping a function
over a set of values in parallel seems critical for express-
ing many parallel algorithms.

This article is suggesting a change in the nnderlying mod-
cls we use for analyzing parallel algorithms. Tn particular,
1t suggests that we move away from wsing theoretical per-
formance models based on machines to using models
hased on languages. As mentioned iu the article, some ref-
erence works already intormally analyze parallel algo-
rithms m terms of work and depth before mapping them
onto a PRAM [16, 17]. We suggest that the exira step be
taken of formalizing a model based on work and depth.
With this {formal model, the PRAM can be cur out of the
loop, dircctly mapping the model onto more realistic ma-
chines. We furthermore argue that anguage-based mod-
els seem 10 be the most reasonable way to define a pro-
gramming model hased on work and depth.

A full implementation ol Nest. is currently available on

Macch 1996Vl A, No 4 COMMUBMCATIONS OF TIE Al

the World-Wide Web. The compiler is based on a tech-
nique called flattening nested parallelism [4) and compiles
to an intermediate langnage called Veoor. Benchmark
results for this implementation for the Connection Ma-
chines CM-2 and CM-5 and the Cray C90 are described in
{8]. These results show thar Nest’s performance is com-
petitive with that of machine-specitic codes for those
benehmarks,

Acknowledgments

I would like to rhank Marco Zagha, Uzi Vishkin, Jav
Sipelsicin, Margaret Reid-Miller, Takis Meraxas, Bob
Harper, Jonathan Hardwick, John Greiner, Jacques
Cohen, and Siddhartha Chatterjee tor many helpful com-
ments on this arricle. Siddhartha Chatterjee, Jonathan
Hardwick, Jay Sipelstein, and Marco Zagha helped in the
design of Nest and did all the work implementing the
intermediate inguages VOCODE and CVL. This research
was sponsored in part by the Advanced Research Projecis
Agency (ARPA) under grant number F33615-93-1-1330,
and in part by an NSF Young Investigator Award.

References
1. Aho, AV, and Ullman, |.D. FPonadetions of Cempater Stience.

Computer Science Press, New York, 1992,

Ahao, AV, Hoperoft,) E., and Ullman, .5, The Desigan end

Anabysts of Computer Algovithns. Addison-Wesley, Reading,

Mass, 1974

3. Arvind, R Nkhil S, and Pingali, KUK. E-structures: Data
structures for parallel computing. ACM Trans, Program. fang.
Syt 11, 4 (Oct. 1989), 598-632.

4. Blelloch, G.E. Fector Models for Date-Paralle! Compraeting. MI'T
Press, Cambridge, Mass., 1090,

5. Blelloch, G.E. Nese: A nested data-pavallel langnage (version

2.G). Tech, Rep. CMU-CS-93-129, School of Computer Sci-

ence, Carnegie Mcllon Univ., 1093,

Bleltoch, G E., and Greiner,] Parallclism in sequential func-

tional anguages. In Proceedings of the Sympostan on Funciional

Programming and Comprier Avchitectie (June 1995),

Blelloch, G.E., and Hardwick, J.C. Class notes: Programming

parallel algorithms. Tech. Rep. CMU-CS-93-115, School of

Computer Science, Carnegre Mellon Univ,, 1993,

8. Blelloch, G.E., Chatterjee. 5., Hardwick, J.CC, Sipelstein, |,
and Zagha, M Implementation ob a portable nested data-
pavallel language. J. Parallel Disivih. Comprd, 2101 (Apr.
1994), 4-14,

9. Brent, R.P. The parallel evaluaion of general arithmetic

expressions. f. ACM 21, 2 (1974), 201-206.

Chandy, K. M., and Misrva, J. Pevalle! Program Pesign: A Foun-

dation. Addison-Wesley, Reading, Mass., 1988,

Cormen, T.H., Leiserson, C.F., and Rivest, R.L. Inliodvction

0 Algaritivns . Cambridge, Mass., 1990,

Feo, T, Cann, D.C., and Oldehoedt, R.RCA veport on the

Sisal language project. f. Paraltel Distvib, Comput. 10, 4 (Dec,

1990), 349-360.

13. Hatcher, P Tichy, W.E, and Philippsen, M. A critique of the
programming language C*, Cominur, ACM 35,6 (June 1992),
21-24.

14. High Performance Fortvan Foraum. High Performunce Fortran
FLunguage Specifrceation, May 1993,

15. Hillis, W.D.. and Steele, GE. 1. Data parvallel adgorithms.
Comanyn. ACM 29, 12 (Dec. 1986), 12,

2

&

~

10.

11

12

16. JaJa. |. An buvoduction to Parallel Algorithms. Addison-Wesley,
Reading, Mass,, 1992,

Karp, R M., and Ramachandran, V. Parallel algorithms tor
shared memory machines. In Handbook of Theoretical Comprter
Science—Volwme A: Algorithus and Conplesaty, |, Van Leeuwen,
Ed. MIT Press, Cambridge, Mass., 19,

Mills, P.H., Nyland, LS., Prins, | .F., Reif, JLH., and Wagner,
R.A. Prototyping parallel and distributed programs in I'ro-
teus. ‘tech. Rep. UNC-CH TR90-041, Computer Science
Dept., Univ. of North Carvalina, 1990.

Milner, R., Tofte, M., and Harper, R, The Definttion of Stun-
dard M1 MIT Press, Cambridge, Mass,, 1990,

17.

18.

19.

Parallel Programming

Flow algorithny. /. Algordons 3 (1982), 128-146.

Sipelsiein, J. and Blelloch, G.E. Collkection-oriented lan-
puages. In Praceedings of the (EEE 79, 4 (Apy. 19491}, pp. H504-
323,

Vishkin, U, Parallel-design distyibuted-implementation
(PDDL) general purpose computer. Theor, Comjrd. Sei. 32
(1954), pp. 157-172.

24.

25.

About the Author:

GUY E. BLELLOCH is an assuciate professor of Computer Sci-
ence at Carnegie Mellon University. Authar’s Present Address:
Department of Computer Science, Carnegic Mellon University,

20.

21

22.

23,

Preparata, F.P, and Shamos, M. Computational Geomeiry— Pittsburgh, PA 15213-3891; email: blelloch@cs.amuedu
Au Introdueetion. Springer-Verlag, New York, 1985,

Rose, |.R., and Stecle, G.L., Jr. C*: An extended C language
for data parallel programming. In Proceedmgs of the 2d Inter-
nattoned Conference on Supercompuling, Vol. 2 (May) 1987, pp.
2-16.

Schwartz, 1T Dewar, RB.K, Dubansky, E., and Schonberg,
K. Progiamming with Sets: An Intvoduction to SITL. Springer-
Verlag, New York, 1986,

Shiloach, Y., and Vishkin, U. An (_)('n"' log ») parallel Max-

Pernussion to make a digitalhard copy of part or all of this wotk for per-
satial or classom nse is granted without fee provided that copies e not
made or distributed lor protit or commercial advantage, the copyright
notice, the title of the publication and its cate appear. and nobce is given
that copying is by permission af ACM. Ine, To copy atherwise, to vepub-
lish, to post on servers, or to redistuibute o lists vequires prio specilic
pErIssion andrar a fee.

PAUM 0D0Z2-0782/965/0300 $3.50

CALL FOR 1997 ACM FELLOWS NOMINATIONS

The designation "ALM Fellow” may be conferred upon thase AGM Members who have distinguished themselves by
outstanding technical and prolessional achievements in information technology. who are current valing members of
ALM and have been vating members for the preceding five years. Any voting member of ALM may nominate anoth-
er member tor this distinction. Nommations must be recewved by the ACM Feltows Comm:tiee na later than August |
of each year and must he delivered to the Commuttee on forms provided for this purpnse (see helow].

Nomination information organized by o principal nominotor includes:

I} excerpts from the candidates current curriculum vitae, listing sefected publications. natents, technical
achievements. honors, and other awards

2) 2 description of the work of the nominee. drawing attention to the contributions which merit designation as Fellow,

3) supporting endarsements from five ACM Members.

ACM Fellows nomination forms and endorsement forms may be obtoined from ACM by writing to:
ACM Faliows Nomination Dommittze
ALM Headquarters
1313 Broadway
New York, New York 10036-5701

nominate-fellpws@acm arg

The forms can aiso be accessed on the following:
http://www.acm.org/awards/fellows/nomination_packet.html

Completed forms should be sent by August 1. 1395 to one of the follawing:

ACM Fellows Committee
ACM Headguarters
1515 Broadway
New York, New York 10036-5701
ar
nominate-fellows@acm.org
or
+1-212-869-0824 - fax

97

SOMMUNICATIONS OF THE &8M Morch 1990/ Val.38, Na. 3

