
E . 8 1 e l l o c [

P r o g r a m m i n g

A l g o r i t h m s

I n t h e p a s t 2 0 y e a r s t h e r e h a s b e e n t r e m e n -

d o u s p r o g r e s s i n d e v e l o p i n g a n d a n a l y z i n g

p a r a l l e l a l g o r i t h m s . P~esearchers have developed efficient
parallel algorithms to solve most problems for which efficient

sequential solutions are known. Although some of these algo-

rithms are ejficient only in a theoretical framework, many are

quite ~ficient in practice or have key ideas that have been used

in eJficient implementations. This research on parallel algo-

rithms has not only improved our general understanding of par-

allelism but in several cases has led to improvements in

sequential algorithms, u n f o ~ u n a t e l y t h e r e h a s

b e e n l e s s s u c c e s s i n d e v e l o p i n g g o o d l a n -

g u a g e s f o r p r o g r a m m i n g p a r a l l e l a l g o r i t h m s ,

particularly languages that are well suited for teaching and pro-

totyping algorithms. There has been a large gap between lan-

guages that are too low level, requiring specification of many

details that obscure the meaning of the al~'orithm, and languages

that are too high level, making the perjormance implications of
various constructs unclear. In sequential computing many stan-

dard lanLmages such as C or Pascal do a reasonable job of bridg-
ing this gap, but in parallel languages building such a bridge

has been siffnificantly more difficult.

8 S COlle414UNI~.JM[IOIHk~I~II~I~II'AIgM March 1996/Vol. 39, No. 3

O u r resealcl-i involves developing a parallel language
that is usefill fi)r teaching as well as |or in lp len len t ing par-
allel algoriihlns. -lk) achieve this, an impor tant goal has

been to develop a l a n g u a g e / h a t allows high-level descrip-
tions of paiallel algorithms I)nt also has a well-understood
nlal)piug o n t o a perlorlnance nl()del (i.e., hriitges ti le
gap). Based oil ou r research, we believe that the tollowiug
t.wo lealures are iu lpor ian t lor achieving this goal:

• A language-I)ased pe r lo r lnance model thai uses work
and depth rather than a ulachine-bascd model that uses
" r u n n i n g time."

• Suppor t tbr n,tsted dalrz-/)arallel COilStructs. This is the
ability io :tl)lily a fiUlCtion in parallel to each e lement of
a collection of data and the ability to nest such parallel
calls.

In this article we describe these I~aturcs and explain why
they are i lnpor tan t tot p r o g r a n l m i n g parallel algorithnls.
To nlake the ideas (:oucrete, We describe the i)rogiaul -
ruing larlguage Nicsi. 151, which we designed based on the
teatures, and go through several exanlples oJ" how to pro-
gl'ain and analyze parallel a lgori thnls iiSillg the langliage.
\Vc have beeu using Nr:sl tor three ycars in un i l c rg radu-
;lie and graduate courses on parallel algorithms 171. "l-he
algorithms we cover in this article ill'L" relatively.straight-
l i i rwaid. Mally nloi'e algorithnls can lie t(-liilld through
the Web version of this article (availablc at hitp://web.scan-
dal.cs.ciuu .ed u/wxvw/caclu.h tull).

I Shared M cmiory I

r "m
F i g u r e 1. A d i a g r a m of a Parallel R a n d o m Access
M a c h i n e (PRAM). It is a s s u m e d in th is m o d e l t h a t all
t h e processors can access m e m o r y locat ions in t h e
shared m e m o r y s i m u l t a n e o u s l y in u n i t t ime .

D e p t h W o r k

1 4

1

I I

4 Tota l Tota l 15

F i g u r e 2. S u m m i n g 16 n u m b e r s on a t ree . The to ta l
d e p t h (longes t cha in o f d e p e n d e n c i e s) is 4 a n d t h e
to ta l w o r k (n u m b e r of opera t ions) is 15.

W o r k a n d D e p t h
Analyzing l)e r ibrmance is a key part of s tudying algo-
rithms. Al though such analysis is not used to predict tile
exact r u n n i n g time of an algori thm on a part icular ma-
chine, it is impor tan t in de t e rmin ing how tile r u n n i n g
time grows as a fimction of the input size. To analyze per-
Ibrnlance, a fi)rmal model is needed to account Ibr the
costs, hi parallel COUlputing, tile most COUllllon mode l s
are based (m a set of processors conl lecled ei ther by a
shared memory, as in the Parallel Raridonl Access Ma-
chines (PRAM) (see Figure 1), or th rough a network, as
with the hypercube or grid nl()dels. In such processor-based
models, per lo rn lance is calculated in ler lns Of t he i i u n l b e r
of instruct ion cycles a con lpu la t ion takes (its r u n n i n g
time) and is usually expressed as a l h n d i o n of input size
and m u n b e r of processors.

All impor tant advance in parallel con lpu t ing was tilt"
in t roduct ion of the not ion of virtual models. ,,\ virtual
model is a pe r tb rmance model that does not attem]-)l to
represent any machine thai we would actually build but
ra ther is a higher-level model that can be tnapped onto
various real machines. For example, the PRAM is ofiten
viewed as a virtual nlodel 1~25]. From this viewpoint, it is
agreed that a PRAM cannot be I)uih directly, since in prac-
tice it is unreasonab le to assunle that every processor can
access a shared memory in uni t tiule. Instead, the PRAM
is Ireated as a virtual machine tha l can be nmpped onto
more realistic machines ctli(:iently by s imula t ing uluhil)le
processors of the PRAM on a single processor of a host
machine. ' l h i s s imulat ion imposes some slowdown K. btl!
requires a tactor of K tower processors, st) the total Cosl
(processor-tinle product) remains the same. The advan-
tage of virtual models over physical mach ine models is
Ihat they cau be easier to program.

\, 'irtual models can be taken a slep fi.u'ther and used t()
de i ine pe r tb rmance in more abstract measures than .just
r u n n i n g time on a part icular machine. A pair of such me;i-
sures are work and depth: Work is de t ined as tl3e total
n u m b e r of opera t ions executed t)y a computa t ion , and
deplh is de l ined as tile hmgest chain of sequential depen-
dencies in tile conlputa t ion. Consider , tot example , sunl-
ruing 16 n u m b e r s using a balanced biuary trec (see Figure
~). The work re(luired by lhis compula t ion is 15 opera t ions
(the 15 additions). T h e depth of the computa t ion is tbur
operat ions, since the longest chain of dependenc ies is the
depth of tile summat ion t r e e - - t h e sunls need to be calcu-
lated s tar l ing at the leaves aud going down one level at a
time. hi general , s u m m i n g n n u m b e r s on a balatlced tree
rt:(luires , - 1 work and Iog2u del)th. Work is usually
viewed as a nleaslire Of" lhe total cost of a coinpntatiol i
(integral of'needed iesoui+ces ovel iinle), and also specilies
Ihe r t inni i lg time i f lhe algorithin is executed on a seqtleu-
t ial proc(.~sS(ll. The d(:t)th repres(~ilts the bcsl I)()ssilJl¢ rul l -
uing thn¢ asstii l i i i lg an ideal nlachii le,with au unl i i l i i ted
nun|bet o1 plocessoi 's.

Work and depth have been used inlormal ly |or l i lai ly
)ears IO descril)e the pc i ' l () i i l i i i i l ce (i f parallel algorithins
[23 I, especially when teaching Ihcrn [16, 171. l l l C ciaini is
Ihat it is easier to describe, think alioul., and analyze algo-

8 6 M~,,<), 1,~,,;/Vol.:+!,, N,, s ~ , , M

Parallel Programming

Parallel Programming

i m m i n g

st)eci[~ what to rood|t\ ' . For ea(:h pair (i , v) , tile value v is
inser ted into i)osition i of tile dest inat ion sequen(:e. I:or
example ,

w r i t e ([O , O, O, O, O, O, O, 01, [(4 , - 2) , (2 , 5) , (5 , 9) 1) ;

inserts tile - 2 , 5, an(t 9 into the seqi lence al h)(:ali()ns 4,
2, au{I 5, respectively, r e tu rn ing

[0, O, 5, O, - 2 , 9 , O, 01.

i f an index is repeate(I, then one value is writ ten
nondeterministk:al ly. For readers thmiliar with tile vari-
;.lilts (.)t" tile PRAM model , we n()te that Ihe w r i t e filnction
iv allah}gous to iltl "a rb i t ra ry" c(}nCllll(211{ write. NESl. also
inclutles a lhnction e _ w r i t e that does n()t allow repeated
ill(liccS al/d is analogims Io an exclusive write. I[rei)calc'd
radices arc used with e_wr i t e , Ihe curren! iml) lemenla-
tion repor ls Jill CITf)I'.

Nested paralMisnl is supl)lied in N~:s[by,' a l lowing se-
quences Io t}e ncste(l and alh)wing l)arallel funclions to I)e
used in an apply-to-each. For example , we could apply !he
sum_ {hnction in parallel over a nested sc(tuence, as ill

{ s u m (a) : a tn [[2,31, [8 ,3 ,91 , ['711},

which would re turn [5, 2 0 , 71. l lore. there is parallelism
both within each stun and across the stHns. T h e Quicksort
a lgor i thm showed ano the r exanlp le of nested ca l l s - - the
a lgor i thm is itself used in an apply-t(}-each to invoke Iwo
r ecurs | r e calls in parallel.

The Performance Model
We now re lurn to the issue of l)erfi)rlnanct: models, this
t ime ill Ihe c()nlex[of NEsI...*\s i l lent i tmed earlier, NE:s[.
(tetincs work and depth in ternls o l l h e work and depth of
lhc pr im| l ive opera t ions and rules tiw c{m~l)osil~g die
measllres across expressions. Vv'e will use W(e) and D(e) t()
retkw (() the work an(I d{:pth o f evaluating an expression e.
Ill lnost cases, tile w(}rk alld dep th o f ;in expless ion ille
lhe Siil]lS o i t l] e work and deplI| o i t h e sul)expressions. S(},
tbr examph: , if we have an expvcssi(m el + e~, where el
and eL, are subexi)ressions, Ihe | l the work of tile • expres-
sion is

W(e~ + e ~) = 1 + W(ei) + W(e,_,),

Depth

Wlhct(n) =/)tact(n) = 5 n - 2

Work = | + sum(Wtact(3) , Wlact(1), Wl,,ct(5), Wla(l(2))
= ! + sum(13, 3, 23, 8)
= 48

Depth = 1 + max (l)f~,ct(3), Dfa,:t (I), l)f~,ct (5), l)f:,,:t (2))
= 1 + max(13, 3, 23, 8)
= 24

Figure 6. Calcu la t i ng t h e w o r k and d e p t h o f {fac-
t o r i a l (n) : n in [3, 1, 8, 21}

where the 1 is file cost of the add. A similar rule is used li)r
depth. T h e in le res tmg rules conce rn ing parallelism ave
the rules tbr an apply- to-each expression:

g,'({e~(a) : a i n e ~ }) = 1 + W(eu)+ ~ W(,:,(a)) (I)
,, in ,,._,

D({ei(a) : a in e~}) = I + D(e~) + max l)(ei(a)). (2)
,, t n ,,_,

Figure 7. List Of s o m e o f t h e s e q u e n c e f u n c t i o n s
s u p p l i e d by NESL. The work required for each funct i0n is
g i ven in t h e Work c o l u m n : L (v) re fe rs t o t h e l e n g t h
o f t h e s e q u e n c e v. The w o r k Of t h e w r i t e (d , a) func-
t i o n ac tua l l y d e p e n d s o n w h e t h e r t h e a r g u m e n t d
needs t o be c o p i e d o r no t , b u t in t h e e x a m p l e s in
th is a r t i c le t h e d i f f e r e n c e has no e f fec t .

dist(a,I)
#a

a[i]
Is:el
[s:c:d]
mum(a)
wriIe(d,a)
a + + b
drop(a ,n)
in terleave (a,b)
llatten (a)

Create a sequence of as of length 1.
l~turn leng,~h O['sequenc~e a.
Return element at position i (~a.
Return integer sequence f fom s to e.
Return integer sequence from s to e t~y d.
Return sum of sequence a.
Place elements a in d.
Append sequences a and b.

l)rop first n elements of sequence a.
Interleave elements of sequences a and b.
Flatten nested sequence a.

Nork Depll

I
1
1
(e - s)
(e - s) / d
L(a)
l.(a)
t.(a) + l_.(b)
L(resuh)
L(resuh)
L(resuh)

i
1
I
1
1
log l.(a)
!
I
1
1
I

91

Parallel Programming

..1
I p r o c e d u r e PRIMES(n) :
2 let A be an array o f length n
3 set all but the tirst e lement of A to TRUE
4 for i f r o m 2 to 4 n
5 b e g i n
6 i f A[i] is TRUE
7 then set all m u h i p l e s o f i tip Io n to FALSE
8 e n d

II~igUl'e 8. Pseudoc0c le fo r t h e sieve of Era tos the -
nes

"]he tirst rule specifies tha| the work is the sum of the
wo|k of each of the applications of el Io an e lement o f a,
phis the work (.)fe,2, phls 1 to accollllt ti)r overheads. T im
rule tor dep |h is similar, btu takes Ihe m a x i m u m of tim
depth o1" each applicat ion of el. This suppor ts our inlui-
t ion that the applicat ions are executed in i)arallel and that
tile evahiati(m of the apply-to-each (:nmpletes when the
last call conlpletes. Th e o ther in teres t ing rules ;ire the
rules f in an i f expression, which tor work is

W(if el t h e n e~ e l s e e:0 { l+'(e,_,) el = f ~ l L
= 1 + He(eL)+ (3)

W(e:0 olhe*vvise,

wilh a similar rllle t()r depth. "fhe work anti depth tbr a
thn(:tio|l call anti fi)r scalar i)ri| |litives ave each I. T h e costs
o f tile Nt..sl. ftmcliollS on sequences are sur |ullarized in
Figure 7. We note that the p e r i b rma n ce rules can be more
precisely def ined using an operat ional semantics [6].

As an ex;unple o fcon ipos ing work and depth , consider
ewduat ing the expression

e -- { f ac t 0 v i a l (n) : n i n a},

where a = [8 ,1 ,8 ,2] . Using tlae rules tot work and the
code lor f a c t o r i a l given earlier, we can write the tbllow-
ing equat ion f i) r work:

Wfact(n) = 1 + 1 + IV==
/ 0 n = 1

+

l,V. + W_ + Wfact(n - 1) n > I

where W==, W., aim W_ are die work Áhi - - , *, a | |d - ,
and arc all 1. T im two uni t constants come fro||l Ihe (:()st (.)f
the function (:;ill and the !t-theft-else rule. \ d d i n g tip tbe
terms and solving lhe recur rence gives Wf~dn) = 5n - 2.
Since there is no parallelism in the lactorial funct ion, the
(lel)tli is the same ;is the work. -1o calculate work and

depdl to | the full expression { f a 0 t o r i a l (n) : n i n a}, we
can use e(itmlions 1 and 2. This calculation is shmvn in
l"igure 6.

Examples o f Paral le l A l g o r i t h m s in NEst
Several parallel a lgori thms are (lescril)e(l and analyzed
here, provid ing examples of how to anah 'ze algori t lnns in

terms of work and depth and o | how to use nested data-
parallel constructs. They also iu t roduce some impor tan t
ideas conce rn ing parallel algori thms. Again, the main
goals are to have the code closely nmtch the high-level
intui t ion of the a lgor i thm and to make il easy to analyze
the asymptotic pe r to rmance f iom the code.

Primes
O u r tilst a lgor i thm finds all pr ime n u m b e r s less than n.
This example demons t ra tes a c o m m o n technique used in
parallel a lgor i thms--soh ' i r ig a smaller case o f tim same
prolfiem Io speed tim solu | ion of tim full problem. We also
use the example to in t roduce the not ion of work elti-
ciencv. An impor tan l asticct of developing a good parallel
a lgor i thm is des ign ing one whose work is ch)se to tile t ime
I o r a good sequential algori t lml thai soh'es the same prob-
lent. Without this condi t ion we (:annot hope to get good
sl)eedu I) of tl|e parallel a lgori thm over the sequential al-
gori thnL Parallel a lgor i t lnns are | e t e r | e d I() as work-q[fi-
cient relative to a sequential a lgori | lml if their work is
wit bin a constant tactor o f the t ime of the sequential algo-
rithn}. All the algori t luns we have discussed so flu are
work-efficient relative to the best sequential algori th |ns. In
part icular , s u m n i i n g n n u m b e r s took O(n) work al|(I paral-
lel Quicksort took O(n log n) expected work, both ofwhicl i
are the saine as requi red se(tuentially. For f inding primes,
ou r goal should again be to deveh)p a work-efficient algo-
Hilum We therelore start by looking at elIicient sequential
algorit bros.

The nlost c o m m o n se(luential a lgorMnn lot f inding
pr imes is the sieve o f Eratosthenes, whicll is specified in
l:'igure 8. -I"he a lgor i th |n r c tu ,n s an array in which the {h
p<)silion is set to rRctC ifi is a p r ime and to i...u.sl.: otherwise.
The a lgor i thm works by initializing the array A to rm:~:
and then sett ing to t:..u.s~: ;ill |nuhiplcs of each pr inle it
finds, h starts whh the first pr ime, 2, and works up to "V'~.
The algori thm only needs to go up to VT, since all com-
posite n u m b e r s (ni)f~)r imes) less Ihan n must have a flit:-
tot less or equal to Vn . If line 7 is iml) lcmented by lool)ing
over the muhiples , then tile a lgori thnl can be shown t()
take O(n log log n) time, and the constant is small. T h e
sieve of Eramsthenes is not the theoretically best algo-
r i thm lot f inding primes, but it is close, and we would be
happy to derive a parallel a lgorkhm tha| is work-eflicien|
relative to il (i.e., does O(n log log n) work).

h turns out fllat the algori thm as described has some
easy parallelis |n. In part icular , line 7 can be imp lemen ted
in parallel. In N ~:sL, the muhiples of a value i can be gen-
ermed in parallel with the expression

[2* i :n : i }

and can lie wr iuen into die array A in pa ra l ld with the
w r i t e tunct ion. Using tim rules tk)r CoStS (see Figure 7),
the depth of daese opera t ions is constant and the work is
file n u m l m r of multiples, which is the same as the t ime of
the sequential version. Given the parallel imp lemen ta l i on
of line 7, the total work of the a lgor i thm is flle same as the
scquenlial algorif lm|, since it does the same numl)ev of
operat ions, and the dep lh o t t h e a lgor i thm is O(VT), since

g 2 March | 99~/Vok 39, No. 3 ~ l m U ~ ' l ' ~ ~ ~ ~

each iteration of thc loop in lines 5-8 has constant depth
and the number of iterations is X/IT. Note that thinking of
the algorithnl in terms of work and del)th allows a simple
analysis (assuming ~e know the runn ing time of the se-
quential algorithm) without our having to worry about
how tile parallelism maps onto a machine. In particular,
the amount of parallelism varies greatly ti-onl the tirst iter-
ation, in which we have n/2 muhit)les of 2 to knock ()lit in
paralld, to the last iteration, where we have oulv ~ mul-
tiples. "lhis varying parallelism w()nhl make it messy to
program and analyze on a t)roccssor-based model.

We now cons ider i m l) r o v m g t i le d e p t h o f the a lg () r i [hm
withol l l g iv ing ii l) any work. We l)ote thai i f w e were g iven
all the primes t]om 2 up to V'17, we could then generate all
tile muhiples of these primes at once. "lhe NksL code fin.
generating all lice muhiples is

{[2*p:n:p]: p in sqr_primes};

where s q r _ p r i m e s is a sequence containing all the primes
u t) to V , . Ibis computation has nested t)arallelism, since
there is parallelism across the s q r _ p r i m e s (outer parallel-
ism) and also in generating Ihe muhiples of each l)rime
(inner parallelism). The depth o1" tile comptmltion is con-
stant, since each sul)call has constant depth, and the work
is ()0~ log log n), since the total number of mtdtiples when
summed actress the suhcalls is the same as tile number (4
muhiplcs used I)v the sequential version.

Wc have assumed that sq r_p r imes was given, b u t to
generate these primes we can simply call the algorithm

m i n i

recursively on X/n. Figure 9 shows the full algorithm tin
linding primes based on tiffs idea• Instead of re turning a
sequence of flags, the algorithm returns a sequence wid l
the values of the primes. For exalnple, p r i r n e s (1 0)
wonld r e t u r n the seqnence [2,3,4,7] . The algorithm re-
cursively calls itself on a problem of size X/77 an(l termi-
nates when a problem of size 2 is reached. l h e work and
depth can I)e analyzed by looking at the i)icture at the
bottonl o[+ Figure 9. Clearly most of the work is doltc at the
top level of recurs[on, which does O(n log log n) work. The
total work is thcretore also O(n log log n). Now let's con-
sider the depth. Since each recurs[on level has COllStalll
depth, the total depth is proportional to the number of
levels. To calculate this m.nnber, we note that Ihe size of
the problem at level i is n 1/2' and thai when {lie size is 2, the
alger[tirol terminates. This gives us the e qua t i on , ~,e" = 2,

F i g u r e 9. The code for t h e pr imes a lgor i thm, an
e x a m p l e o f o n e level o f t h e recurs lon, and a dia-
g r a m of t h e w o r k and d e p t h . In t h e code [] in[, indi-
cates an e m p t y s e q u e n c e of in tegers . The f u n c t i o n
isqrt takes t h e square r o o t of an in teger . The func -
t i o n f l a t t e n takes a n e s t e d s e q u e n c e and f l a t tens it.
The f u n c t i o n d_tst (a , n) d is t r ibutes t h e va lue a to a
s e q u e n c e o f l e n g t h n. The express ion { 1 in tO:n] i f l
In [lags I fl} can be read as " for each 1 f r o m o t o n
and each f l in f lags r e t u r n t h e i If t h e c o r r e s p o n d i n g
f l is t rue" . The f u n c t i o n d r o p (a , n) drOpS t h e f i rst n
e l e m e n t s of t h e s e q u e n c e a.

f u n c t i o n p r i m e s (n) =
i f n == 2 then ([] in t)
else

let sq r_p r imes = p r i m e s (i s q r t (n)) ;
compos i t e s = l [2 * p : n : p] : p in sqr_pr imes};
f l a t_comps = f la t ten (c ompos i t e s) ;
flags = w r i t e (d i s t (t r u e , n) , { ([, fa lse) : i in flat c o m p s }) ;
i nd ices = {i in tO:n]; fl in ['lags I t11

in d r o p (i n d i c e s , 2);

Example for primes(20):

sqr_primes =
composites =
flat_comps =
tlags =
indices =
result =

[2,3]
[[4 ,6 ,8 ,10 ,12 ,14 ,16 ,18] , [6 ,9 ,12 ,15 ,18]]
[4,6,8, 10,1 2,14, 16, 18,6,9, 12, 15, 18]
[t , t , t , t , f , t , f , t , f , f , f , t , f , t , f , f , f , t , f , t]
[0,1,2,3,5,7,1 1,13,17,19]
[2,3,5,7,1 ! ,13 ,17,19]

Depth

primes(n)

primes(n j'2)

pri mes (n I/4)

primes(2)

I
I nl/21°g log n I /2 I

EZI
Q

n log log n

~ ~ ' n ~ ~ 'ISm iklmlJ blar¢/a 1996/Vol sg,d,,It~ 3 " ~

. _ .~ ~ ~ • ~ :..- .. ~.:~!,.: , ~ .

Parallel Programming

7
where d is the del)th we seek. Soh, ing Ibr d, this method
gives d = h,g log ~. l h e costs are there |ore:

14' = O(n h)g log n)
D = O (I o g log n)

This algori thnl , emains work-eFfi(:ient rehttive to tile se-
quen | ia l sieve of Eralosthenes and greatly iJnproves the
del)th.

Sparse Matrix Mult ip l icat ion
Sparse matrices, which are conm]on in scientific ap|lli(:a-
dons, are matrices in whk'h most e lemenls arc zero. To
save space and r t u m i n g time it is critical to st(ire only the
iionzel 'o elemenls . A s t ; in (la rd r e p l e S e l l l a l i o n of si-);tl'Se
matrices in Se(luenli;ll lauguages is an array willl one ele-
ment per row, each of which contains u linked-list of the
nonzero values in thut row aloug with Iheir co lumn n u m -
ber. A sinfihlr representa t ion can tic used in parallel. In
~l(SI. ;l s l)al 'se n]aIl iX c a n he r e p r e s e r l l e d ;is ;I se(ltlerlee ()1
ro,.vs, each ()[which is a seqnence o f (C 0 k l l n n - n u m b e r ,
v a l u e) |) a i rs o | t h e no l lZe lO v a h l e s ill t i le toby. T h e lna l l iX

2.0 - 1.0 0 0
A = - 1 . 0 2.0 - 1 . 0 0

0 - I . 0 2.0 - 1 . 0
0 0 - 1.0 2.0

is represented in this way as

A = [[(0, 2 . 0) , (1 , - 1 . 0) 1 ,
{(0, - 1 . 0) , (1 , 2 . 0) , (2 , - 1 . 0) 1 ,
[(1, - 1 . 0) , (2 , 2 . 0) , (3 , - 1 . 0) l ,
[(2, - 1 . 0) , (3 , 2.0)11,

where A is a nested Se(lucnce. This representa th)n can lie
Ilscd I~)l" Illiltl'iCCS wi th a rb i t ra l) ' pat terns o f IlOllZel'o elc-
I]lelltS, s i nce e a d l s i l h s e q l l e n c e c a n he (if 11 (l i f l (' reu t size.

A c o m m o n ollerat ion ou sl)arse matrices is |o muhip ly
|hem by a dense vector. In such an operat ion, the restd| is
the dot-pro(lucl o t euch sparse row (if the mairix with the
deusc vector. The N~.:sl code Ibr taking Ihe do~-produc! of
a s l) a l s e rt)w with a del lSe vet : for X is:

sum({w:x[i] : (i , v) in row})

This code takes each index-yah , : I)air (i , v) in the sl)a]se
row, muhipl ies v by tilt.: i 'h v; l lue o f X, and stuns die re-
suhs. The work and depth is easily c:d(:ula|ed using the
pertbrman(:e rules. I f , is |lit: numl)er of nonzero ele-
ments ill the row. then the depth of the conll)utat ion is the
depth of |he sum, whicl-i is O(Iog n), and the work is the
sum ot the work across the elements , wllich is O(n).

r h e full code fin" muh ip ly ing a sparse matrix A rel)re-
senle(I by a dense vector x requires that we apply the code
t,) each row in parallel, wllich gives

{sum(tv*x[i] : (i , v) in row})
: row in A/.

This examl)le I~as u,us|ed l)arallelisnl, sit|(:(: there is paral-
lelism both across the rows mid widliu (:;l(:ll row Ibr the
d(.)I I)roducts. -I'he Iolul depth of the code is tilt: m a x i n u u n

of the deptl-i of tile dot i)roducls, which is the Iogarhhm of
the size of Ihe largest row. T h e total wozk is propor t ional
to |he to ta l ni t rnher o [r lonzero e l e m e n t s .

Planar C0nvex-Hull
Our next example solves the i)hlnar convex hull prol) lem:
Given ~ pob}ls in a phu~e, find wllk'h of d)enl lie on the
pe rhne le r of the smallest convex region thai conlahls all
points. This example shows ano the r use of nested paral-
lelism tot d iv ide -and-conquer algori lhms. The algori t lnn
we use is a parallel Quickhul l [20]. so Jlun]ed because o t u s
similarity to the Quicksort ulgorithm....-ks with Quicksort,
tile strategy is to pick a "pivol" e leineul , spill the thtla
base(I on tile pivot, and re(:urse on each of tile sl)lil sets.
Also ;is with Quicksor/ , the pivot e lement is n o t gu ; i r a l l -

teed to split the data into equally sized sets, and ill the
worst case the a lgor i thm requires O(n-') work: however, in
I)ractice the alg()rithln is often very etficient.

Figure l0 shows tile code and an cx;lulph: of the Quick-
hull ;dgorithm. l h e algori thnl is based on the recursive
rout ine h sp l i t . Tills Iiincli(.)n takes a set of points iu the
I)lane (Ix,y) coordinates) and two points p l and p2 knowrl
to lie on the convex hull and rel t l rns all tilt + t)oints [ha| lie
on the hull ch)ckwise from p l t() 132, inchlsive o f p l , but
not o f p2. In I"iglue 10, given ;ill the points [A.,]3, (2, . . . ,
P], p l = A, and p 2 = P, h s p l i t would r e lu rn lhe se-
(luence [A,]3, J , 01. In h sp l i t , the o rder of 131 anti p 2
matters, since if we swit(:h A and P, h s p l i t wouhl re tu rn
the hnll a long die oi l ier direct ion [P, N, (2].

The h s p l i t t imer |on tirst FeIII(IV(!S all the e lements that
t:;tllll()| lie (in the hidl because |hey lie below the line he-
hveen 131 and p 2 (whkh we denote hy 131-132). r i d s is
(lone by removing e lements wilose (:ross i)roducl with the
line he |ween p l :m(I p 2 is negative. Iu the case p l = A
and p 2 = P, ~lle points I/3, D, F, G, H, J , K, M, 01 wt)ultt
remain and lie phlced in the sequence p a c k e d . The algo-
r i thm now finds the pohat p m lhrthest h (nu tilt: l ine p l -
p2. T h e point p m must be on tile hull, since as a line at
iufinily parallel to p l - p 2 In(ires toward p l - p 2 , it must
Ihst hit pro. T h e pc |hi p m (J in the run/)b lg example) is
t bund hy taking the point ~vi|h the maxinatnn cross prod-
uct. ()uce p m is li)un(l, h s p l i t calls itself |wice recurs | re ly
using tile points (p l , p ro) and (pro, p 2) (in the examl)le,
(A, J) and (J , P)). When die recursive clllls re turn ,
h s p l i t t la |Iens |he)cslJh, therehy a p p e n d i n g Ihe two
sullhulls.

The overall c 0 n v e x - h u l l algori thnl works by f inding
the i)oints with min imtml and ,naxi lnuul x coordinates
(Ihcse points must lie on the hull) au(l then using h s p l i t to
find the u p p e r and lower hldl. Each recurs | re call has con-
stant (lep|h and O(n) work. However, shlce many i)oinls
might he deleted tin each step, the work (:ould he sig,ifi-
candy less. As widl Quicks(.)rt, tile worsl-case costs ;ire ff' =
()In ~) and D = O(n). I:or m hull poiuts the best case tinles
are O(Iog m) depth and O(n) work." It is hard to st;lie the
average-case tinle, since it de l lends on the (listrihution (if
IIte iuputs. () | he r parallel a lgori thms tot |he convex-hudl
p ,oh lem Fun ill D = ()(log Hi, and 14' = O(,) in the worst
(:asc [16], hut have huger constau|s .

i n Q

T h r e e O t h e r A l g o r i t h m s

We conclude our examples with br ie f discussions ill th ree
o lher algori thms: the last l :our ier i rans tbrm (FFI) , Ihc
scan opera t ion (all prefix sums), and an a lgor i thm for
t i nd ing the k m smallest e lemeut o f a set. All the code is
shown ill Figllre 11. These alg()rithnls t i l r ther demol l -
sir;tie the conciseness o f nested dam-paral le l conslrllcls.

We rise the suindard recursive version lot the F H ' [I I].
T h e second a rgunmnt w is a sequence of tile same length

tiinction cross_producl (o,line) =
let (x o , y o) = o;

((xl,yl),(x~2,y2)) = line
in (x 1- xo) * (y2-yo) - (y l -yo) * (x2-xo) ;

function hspl i t (points ,pl ,p2) =
let cross = Icross_product (p, (p l ,p2)) : p in points};

packed = {p:p in points; c in cross I plusp(c)}
in if (#packed < 2) then [pl] ++ packed

else
let p m = points[max index(cross) J
in llatten ({ h s p l i t (p a c k e d , p l , p 2) :

pl in [p l ,pm] ; p2 in {pm,p2]});

function convex_hull(points) =
let x = (x : (x ,y) in pointsl;

minx = points [rain_index(x) l ;
maxx = points [max_index(x)]

in hspl i t (poinls ,minx,maxx) ++ hsplit(points,
maxx,nlinx) ;

.I

A ~ P

[A B C D E F G H IJ K I , M N O P]

A I B D F (; H , I K M O] P [C E I I . N]
a tB FI.I [0] P N [C E1

A B J O P N C

F i g u r e I@. Code and e x a m p l e o f t h e Quickhul l al-
g o r i t h m . Each s e q u e n c e in t h e e x a m p l e s h o w s o n e
s tep of t h e a lgor i thm. Since A and P are t h e t w o x
ex t rema , t h e l ine AP is t h e or iginal spl i t line. J and N
are t h e f a r t h e s t po in ts in each subspace f r o m AP
and are, t h e r e f o r e , used for t h e n e x t level of splits.
The values o u t s i d e t h e brackets are hull po in ts t h a t
have a l ready b e e n f o u n d .

as & con tah l i ng all the c o m p l e x n m roots o f u n i l y . T h e H : i
is cal led recursively Oil lhe o d d and eVell {: lel i iel i lS o f &.
T h e results are Ihen combh led i.ising 0&dd and 0mu l l ;
(complex add i i i ou a i ld inu l t ip l i ca t ion) , ass t l i i l i l l g Ihat
0&clcl a i id 0mu.lt, lake col is tant w o r k a i ld dep th , then tht'
rec i l rs ion gives us the CoSls:

W(n) = 2W(n/2) + kn = O(n log ,)
D(n) = D(n/_ 9) + h = f) (Iog n).

T h e phls-scan opera t i on (cal led a l l -pret ix-su ins) lakes a
seqtlellCe o1 rallies alld re turns a se(llle[ice of equal lellgl h
lor which each e lc lnent is the sum of all previous elenlcnis
in the original sequence. For exaniple , execu l ing a phls-
scan on tile sequence [3, 5, 3, 1, 6] re lurns [0, 3, 8, I 1,
12]. This can be imp lemen ted :is shown in Figure 1 I. T h e
algori thni works by e icmenlwise add ing the odd and even
e lements and recursively solving die p rob lem on these
sums. T h e resuh of tile recursive call is then used to gen-
erate ;ill the pretix sulns. T h e costs arc:

II'(n) = W(n/2) + ku = O(n)
D(n) = D(nl2) + k = O(Iog n)

T h e part icular code shown works only on sequences thai
have a leng lh equal to a power o l t w o , but il is not hard to
general ize il I() work o n sequences o f tiny length.

l i inction tl't(a,w) :
i f#a == l then a

I else
let r = {ffi (b, even_ehs(w)):

b in [even_ehs(a),o(l(l_(:hs(a)]}
in {cadd(a, cmuh(b, w)):

a in riO] ++ riO];
b i n r [l] ++ r [l l ;

w in w};

function s(:an (a) =
if#a== I then [0]
else

let e = even ells(a);
o = odd_ells(a) ;
s = seall({e t o: e in e; o ill ol)

in inierleave(s,ls + c: s in s; e in el);

function kth_smallest(s, k) =
let pivot = s[#s/~2];

lesser = {c in sl e < pivot};
greater = {e in sl e >pivot};

in if" (k < #lesser) then
kth_smallcst (lesser, k)

else if (k >= #s - #greater) then
kth_smalh:sl (greater, k - (#s- #greater))

else piw+t;

Work = O(n I(g n)
Oq2th = O(h,g n)

Work = 0 (n)

Depth = O(Iog n)

14brk = O(n)
(expccu:d)

Depth = O(Iog n)
(expected)

F i g u r e 1 1. Code for t h e fast Four ie r t rans forms,
t h e scan opera t ion , and for f i n d i n g t h e k m smal lest
e l e m e n t of a set

~ Ul~.i'il.l~ ~ ~ ~ Malch I~..~1 VoI.39, No. 3

.... ,-:."~ ":: ..,:. : :~ ~.~'~>? ~:~'-~", ,.

Parallel Programming

A variation of Quicksort can be used to l ind the k 'i'
smallest e lemeni of a sequence [11]. This algori thni calls
itself recursively only on the set of elements containing the
result. Here we consider a parallel version of this algo-
rithm. Atier selecting the l e s s e r elements, if # l e s s e r is
greater than R, then the k 'l' smallesl element must belong
to that set. In this case, tile algorithm calls k th s m a l l e s t
re(:ursively on l e s s e r using the same k. Otherwise, the
algor i thm selects the e lements that are greater than the
pivot, aud can sinli larlv l ind i f the k TM elentenl belongs in
g rea ter . I f it does behnig in g'Pe&tee, the algor i thm calls
itself recursively but niusi llOW rea{!just k by subtracting
the number of elements less than or equal to the pivot. If
the k 't' element behmgs in neither l e s s e r nor greater ,
allen it lnusl be the pivot, and the algori thm re turns this
vahie. For sequences of length , , the expected work of this
a lgori t lun is O(n), which is the same as the t ime of the
serial version. The expected deplh is ()(log n), since the
expecled depth of recursion is O(Iog n).

Summary
The Nl.:si. language was designed to lie uselul fiJr pro-
grammi,~g and teaching parallel algoridmis. For these
purposes, it ~viis impor tan t that it allow simple descrip-
tions o fa lgor i lhn l s that closely match our high-level intui-
tion, and also that il supply a well-del ined model Ior ana-
lyzing per tornlance . We believe the language has
successfully achieved these goals. Th e re are inany aspects
of N~:sl., and the purpose of this article was Io exlract the
two ti_'atures that are utost i inportanl for prograntming
parallel algorithms. They are:

• A perlorutauce model based on work and del)th. An
i inportant aspect is tltat Ihe niodel is del ined directly in
ternls of language COilSlrUCtS rather thari t rying to ap-
peal to ally intui t ion of a machine. As discussed, the
inode] is a virtual one tor which we give inappings onto
running iinles for vaiiotis physical inachii ie models.

• The use o f data-parallel COliStrucis tot expressing paral-
lelism and the ability iO nesl such cOnSlI'tiClS, llkl;e cer-
t a in l y (Io nol i l leall Io exclude ailv other parallel coil-
sti'il(:ts, bUl having some way of mappi i ig a funcl ion
over a set o | vahies in parallel seeins critical 10r express-
ing inai iy parallel algorhhins.

This article is stiggestiilg a change in ihe un(ler ly ing mod-
els we use tot analyzing parallel algoi i lhuts. !11 particular,
it suggests t|iai we move away t}oin tlshtg theoretical per-
li)l'nlance ntodels based on u lach i i l es to using nlodels
based on langt iages. /\s i n e i l l i o n e d in Ihe article, settle re|'-
e r e n c e w o r k s aheady i l l | i) l ' l i l a l l y a l ia l vze parallel algo-
l ' i lh l l lS i l l ICI'IIIS o f work a l l d depth I)el i) l 'e Ill;tpfJhl<~ Ih(: ln
onto a PI,U\M 116, 17]. We suggest lhat the eXtla step be
taken of lormal iz ing a model based on work and depth .
With this Iormal model, the PRAM can be cut out o[Ihe
loop, dilecily m a p p i n g the model onto more realislic ma-
chilies. \Ve l i l r therln(u'e argue lhal languagc-I)ased Illo(l-
els seem to I)e the nlosl reasonable way to del ine a pro-
grani i i i i i ig niodel based Oil work and deplh.

,4 tttll inip]einentat ion of NEsi is ct irrently available oi l

the World-Wide Web. The compiler is based on a tech-
n ique called thi t tening nested parallelism 141 and compiles
to :in in tern iedia te language called \"com.:. Beric |unark
restihs |br this implementa t ion lot the Connec t ion Ma-
chines CM-7 and CM-5 and the Crav C90 are described in
[81. These results show that Nesi.'s pe r t b rm ance is con>
petitive with that of machine-specit ic codes te l those
benchmarks .

Acknowledgments
1 would like to ihank Marco Zagha, Uzi Vishkin, Jay
Sipelstein, Margaret Reid-Miller, "l'akis Metaxas, Bob
Harper , J o n a t h a n Hardwick, ,Iohn (; te ther , Jacques
(:ohen, and Sid(lhartha Chattei jee tor utan 7 hclpt i i l conl-
inents on this article. Siddhariha Chatteijee, .]ol lathan
l lardwick, Jay Sipelstein, and Malc(i Zagha helped in the
design of N~:Sl. anti did all the work in lp lerneni ing ti le
in lernlediate langnages V(:ODI- and (:Vl_.. This research
was sponsol'ed in pal't II)" Ihc Advanced Researdl Prqjects
Agency (ARPA) under gram mmfl)er 1:33615-93-1-1 '.330,
and in par! by an NSF Young htvestigator Award.

References
1. Aho, ..\.V., and Ulhnan. J.l). Frm,dalion~ o/ Cr,,p,ler Srieme.

(:om[)uter Scien(;c Press, Ne~ ~ork, 1992.
2. Aim. A.V., Hol)crofi, J.E., and IjIhmu], .J.I). The l)e.%,, ,ml

,4,ah.~is of Comp,ler .41go~itlmt~. Addison-Wesley, Reading,
Mass., 1974.

3. Arvind, R.. Nikhil. S., and t'ingali, K.K. I-struclurcs: Data
structures t0r i)arallcl computing..4CAI 7)'an.~. I'~ogmm. Lang.
Syst. 11, 4 (Oct. 1989), 598-632.

4. Blelloch, G.E.I.'Tector a'lodd~ tot l)ala-I'arallel Computi.g. M F I
Press, (:ambridge. Mass., 1990.

5. lllelhlch, G.E. NESi.: A nested dala-i):u'allel]angllagC 0,'Clsion
2.6). Tech. Rep. CM U-CS-93-129, School of (:on lp i l tC l .~ci-
elite, Carnegie MclhJn Univ., 1993.

6. Blcllodl, G.E., illld (;l'einci',.I. I'arallelism ill Se(luenlial func-
tional lallgtla~Cs. I n Proceeding.~ o/the ,~$TIlt}O.$1lll#l 017 ["uTlclional
Progrramming and (;ompule~ ,4 rchttectu~e (] title I~.tl,).r~).

7, Bldloch, ($.E., alid Hardwick,J.C. (:lass lii)l('y,: Pro graninlhlg
parallel algorilhlns. Tech. Rep. (]M U-CS-93- l 15, School of
(.:Olllplli¢:r Scit:ll('e, Cal'l l i:~ie]\JeHoll Univ.,] 99~{.

8. Bldhx:h, G.E., (:hatteijec. S., I|ardwick, .J.(:., Sipelstcm, J.,
and Zagha, M. hnl)lemcntalion ol a portable Ilesled (lala-
parallel language../. Parallel I)islrib. Comp.I. 21.] (Apr.
]994), 4-14.

9.]~rent, R.p. The parallel evalualion of general arithmetic
expressions../. A('M 21, 2 (1974), 201-206.

1O. (;handy, K.M., and Misl'a, .]. Parallel Pro<ltram Ih,.siKn:/I l.'oun-
dalton. Addis~m-Wcsle)', Readhlg, Mass., 1988.

11. (:Ol'iileli, r . l l . , I.eiserson, 15.E., and Rivcst, R.L Inl#oduct,m
lo tllgorilhms. (;allltll'id<ge, Mass.,] .tit)0.

12. Feo,.I.T., Cann, D.C., and ()ldehocti, R.R. A report on die
Sisal language I)rtkject./. I>amllel DLslrih. Compul. 10, 4 (l)ec.
1990), 349-366.

13. Hatcher, P., Tichy, W.F., and I>hiliplJsen, M. A critique oflhe
pi'ogranlliiillg language C*. Commu,..4CM 35. 6 (,]tllie 1992),
21-24.

14. High llel'l~JrnialiCl: Forlrall Porlllll. linch Pe~ibrmance I'brlran
Iszng.age SpeciJTcati.n, May 1993.

15. Hillis, W.I).. and Steele, (;.I...]l. Data parallel al<12,(iriilinls.
(d'Ol#1l#1llll. ACM 29, 12 (Dec. 1986), 12.

ill ill

16..Jli.]a1, j . A n Introduction to I'arallel Algorithms. Addison-Wesley,
Reading, Mass., 1992.

17. Karp, R.M., and Raniachandran , V. Parallel a lgori thms toe
shared l l le l l lOl 'y machines. In Handbook n/7"heotetical Computer
ScJellce i VfJ/llme/1: Algarithms fetid Complexity, .i. Vail 1 .ceuweli,
l id . M I I Press. (]a l l i l l l ' i dge, Mass., 1990.

10. Mi l ls , P H . , N) ' land, I..S., Prins, J.i:., ReiL.].I I., and \Vagnc l ,
R.A. P ro to t yp i i i g para l le l and d i s t l i b u t e d i) i 'ograi i lS in |>ro-
lei is. Tech . Rep. U N C - C H T R g 0 - 0 4 1 , Co l i l }) i l l t ' l Science
Dept . , L 'n iv. o f N o r t h Carol i l~a, 199(.).

19. M i h i e r , R., To t tc , M., i l l id Hi i l ' l)e l ' , R. "/'tie I)eJTnition o[Stan-
dard ML. MIT Press, (;ainbrid<ge, Mass., 1990.

20. Pveparala, F.P., and Stiamos, M.l. Computational Gemnelo'--
An hltroduclion. Springer-Verlag, New York, 1985.

21. Rose , JR . , and Steele, G.I. . ,Jr . C*: An ex tended C language
toe data pltral[el p rogramming . In P)vceedmff.s o[the 2d Inter-
~mtional Conikrence on supercomputing, Vol. 2 (May) 1987, pp.
2 - 1 6 .

72. Schwartz , J.T., l)c~,~iii', R .B.K. , Dul f insk) ' , F., nnd Schonberg,
F. Programming wild 5"el.s: All lltlroduclion lo SFTL. Sl i r i l l ge r -
Verlag, New York, 1986.

23. Shiloach, Y., and Vishkin, U. All O(n <-' log n) parallel Max-

How a lgo r i t hn i .]. Algorithms 3 (1982), 128-146.
24. Sipelslein, J. and Blelloch, G.E. ('o l lcct ion-oriented lan-

guages. In Proceedings of the IEEE 79, 4 (:\pr. 1991), pp. 5114-
523.

25. V ishk in , U. Parallel-desigli d is l r i l) t l t cd - i i) l t~ lemc l l l a l i o i l
(P I) I) I) g l : l le l i i l pt l ipOSe c(in l l } lJ ier . 7'l/e01. cnmpul. ,~'ti. 72
(1 9 & t) > tit), i 5 7 - 1 7 2 .

A b o u t the A u t h o r :
G U Y E. B L E L L O C H is an associate prot~ssor o f (.]om|) i l tc l S(i-
ewce at (:av'negie Mellon Universily. A u t h o r ' s P r e s e n t Address :
l) e p a r t l n c l] t o f C i m i p u t e r Science, C a r n e g i e M e l l o n Un ive rs i t y ,
P i t t sburgh . PA 15213-3891 ; emai] : I)lello(:h((~l;:s.ciii l i.echi

}>cinli~il~n to lllil~t" il digii; i l /hlird i:c~t)) o f p;ir[or all o t Iliis w¢llk |01 per-
sol|ill o f c:llisSll>oiii iis~ i~ gllllit~fd WilllOlil [72c l)rovided lhll i <opies lift" iI(ll
lillide' i) l d is l l ib t i led It>l t)rol i t o r {:olYil]lCi~;i~l[ild~ili]l~t~¢', I l ic COl3) l i~ l i l
liolicl:, Ihce li l le ot the l)llt]lil:;llioii i l l ld ils dale ~it)lJCdlll. il l ld liOli¢ ¢ is ,~i~ (:It
that ccipyiiig i~ liy |Jerlliissioli o f ACM. In<:. "1"o coil% ~llllct~i~c. to le|}tll)-
lish, to 7osl o11 ~;t'l%'fl~, Ol 1o ledistrit]ulc to lists ie(luirc~ IJl'ilJr stJecilk
t]~.,l'lni~ib;iOll | | l i d / i l l it 170.

,~ACM 0002-l)782/91i/0300 $3.50

cilia II liel I l i l l l l i l i l i l ~ vim llll l i l N ~rr.ii 199G/V~.I.39, No, S 9 7
. , ~ . = , ~ . l w , i . ~ - ~ ~ ,

Parallel Programming

