Lecture 5:

3D Rotations and
Projection

Computer Graphics
CMU 15-462/15-662, Spring 2016

Rotationsin 3D

Rotation about x axis:

View looking down -x axis:

y

1 0 0
R;p= (0 cosf —sinb
0 sinf cosf |

.) X coordinate is unchanged by
Rotation about y axis: ¢ rotation about x

View looking down -y axis:

- cosf® O sinf *

R,p= 0 1 0
—sinf 0 cos6

Rotation about z axis:

cosf) —sinf O
R.,9p= [sinf cosf O X
0 0 1 z coordinate is unchanged by

rotation about z

(MU 15-462/662, Spring 2016

Rotation about an arbitrary axis

To rotate by) about w:
1. Form orthonormal basis around W (see u and V in figure)

2. Rotatetomap w to [001] (change in coordinate space)

u; u, u,
Ruvw — |V Vy Vg
W, W, W,

Ruwu=1[1 0 0
R, ,,VvV = :O 1 O:
Ryvww =0 0 1]

3. Perform rotation aboutz: R, ¢

4. Rotate back to original coordinate space: R T

uvw

R —R!

uvw uvw

Rw,@ — RT RZ,QRUVW

uvw

(MU 15-462/662, Spring 2016

Alternative representation for rotations:

complex numbers
Im ¢ = —1
,, Z:%Hﬁ (a + bi)(c + di) = (ac — bd) + (be + ad)i

' Re
b a
iz =1(a+ bi) = —b+ ai
(multiplicationby 7 — rotationby /2)
—Z

i(1z2) = —a — bi = —2

(multiplication by i° = rotation by)

Ry = e’ = cosh + isin @

(MU 15-462/662, Spring 2016

Alternative representation for rotations:

complex numbers
Im
z=a -+ b
| b ®

Re

Quaternions are a representation of 3D
_ 2 rotations based on complex numbers

Q = (dv, Qw) =19z + jay + kq. + qy

(MU 15-462/662, Spring 2016

Another way to think about transformations:
change in coordinate space

Interpretation of transforms so far in
this lecture: transforms move points

Point x moved to new position f (x)

ok

Alternative interpretation:

Transformations induce of change of coordinate space:
Representation of x changes since point is now
described in a new coordinate space

(MU 15-462/662, Spring 2016

Review from last time: screen transform *

Convert points in normalized coordinate space to screen pixel coordinates
Example:

All points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space: Screen (W x H output image) coordinate space:
(0,0) W

H (W,H)

Step 1: reflect about x
Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

* Adopting convention that top-left of screen is (0,0) to match SVG convention in Assignment 1.
Many 3D graphics systems like OpenGL place (0,0) in bottom-left. In this case what would the transform be? (MU 15-462/662, Spring 2016

Example: simple camera transform

® (onsider objectin world at (10, 2, 0)

® (Consider camera at (4, 2, 0), looking down x axis

y

X

4

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera.
B Rotation about y by — 77 /2 gives position of object in coordinate system where
camera’s view direction is aligned with the z axis *

* The convenience of such a coordinate system will become clear on the next slide! ,
(MU 15-462/662, Spring 2016

Basic perspective projection

Desired perspective projected result (2D point):
T
P2D = [XLU/XZ Xy/Xz]

X
= 1 0 0 O
- 0O 1 0 O
5 P2D P = |
5 0 O 0
‘ %z 0 0 0
Pinhole
Camera
0.0 Input: pointin 3D-H X=Xz Xy Xy 1]
- T
After applying P: pointin 3D-H Px = |x, x;, X, {z}
— T
Pointin 2D-H (dropzcoord) P2D-H = [Xz Xy Xz
- T
Point in 2D (homogeneous divide) P2D = | Xz /X, Xy/ Xz]

Assumption:

Pinhole camera at (0,0) looking down z
(MU 15-462/662, Spring 2016

Camera with arbitrary orientation

Consider camera looking in direction W

What transform places in the object in a coordinate space where the camera is at the origin and the
camera is looking directly down the -z axis?

Z
Form orthonormal basis around wW: (see 1 and v) T u w.
Consider rotation matrix: R R -—RT — v, v, v,
_ux VCU _Waj_ __Wx _Wy _WZ_
u, v, —-w, Ru:_u-u V-u —W-u} :[1 0 O}
Riv=[u-v v v —W-V}T:[O 1 O]T
R maps x-axis to u, y-axis to v, z axis to -w - I - -
RW:_u-w VW —W-W} :[O 0 —1]

(MU 15-462/662, Spring 2015

Perspective projection

(MU 15-462/662, Spring 2015

Early painting: incorrect perspective

8-9th century painting

(MU 15-462/662, Spring 2015

Geometrically correct perspective in art

. Ambrogio Lorenzetti
%" | Annunciation, 1344

Brunelleschi, elevation of Santo Spirito, Masaccio — The Tribute Money ¢.1426-27

1434-83, Florence Fresco, The Brancacci Chapel, Florence
(MU 15-462/662, Spring 2015

Later. .. rejection of proper perspective projection

.

(MU 15-462/662, Spring 2015

Basic perspective projection

Input pointin 3D-H: X = [Xm Xy X 1}T
Perspective projected result (2D point): Xop = [Xm /=X, Xy / —XZ}T

ax
X
E X2D = XaoD
4 -1 Xz
X Pinhole
Camera
(0,0)
Assumption:

Pinhole camera at (0,0) looking down -z
(MU 15-462/662, Spring 2015

Review: homogeneous coordinates

*
*
*
*
*
*
*
*
*
‘Q
*

*
*
*
*
*
*
*
*
*
*
.
*
*
*
’0
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

Many points in 2D-H correspond to same point in 2D
X and wxX correspond to the same 2D point
(divide by wv to convert 2D-H back to 2D)

(MU 15-462/662, Spring 2015

Basic perspective projection

e T

Input point in 3D-H: X = [Xa; Xy Xz 1}
T

Perspective projected result (2D point): Xop = |Xg/—X. X,/—X|

| X
10 0 O
: O 1 0 O
H X9oD P p—
= O 0 1 O
Z -1 XZ _O O _]. O_
X Pinhole
Camera
(0.0) _ T
After applying P (point in 3D-H): Px = |x, x;, X, —XZ]
Pointin 2D-H (dropzcoord): xop.p = :Xx Xy —XZ]T
Point in 2D (after homogeneous divide): Xop = [Xa; /=%, %X,/ —XZ]T
Assumption:

Pinhole camera at (0,0) looking down -z
(MU 15-462/662, Spring 2015

Projecting view frustum to unit cube

Shaded volume of world in 3D maps to unit cube aspect = screen width / screen height

Top of screen at projection plane (z=-1): tan(6/2)

Left of screen at projection plane: aspect x tan(6/2)

Pinhole
Camera
(0,0)
zfar
X8
- -
aspect 0 0 0
b_ | 0 f 0 0
X7 : — zfar4+znear 2xzfarXznear
(1,11 0 0 znear—zfar znear—zfar
00 -1 0o

where: f = cot(6/2)

Note treatment of z by P:
Z=-zZnear mapsto-z
z=-Zfar mapsto z

X2

(MU 15-462/662, Spring 2015

Tranformations summary

®m Transformations can be interpreted as operations that move
points in space

- e.g., for modeling, animation

® (Oras achange of coordinate system
- e.g., screen and view transforms

m (Construct complex transformations as compositions of basic
transforms

B Homogeneous coordinate representation allows for
expression of non-linear transforms (e.g., affine, perspective
projection) as matrix operations (linear transforms) in
higher-dimensional space

- Matrix representation affords simple implementation
and efficient composition

(MU 15-462/662, Spring 2016

Transformations recap
&

ﬁﬂ%ﬁ (1,1,7)

(-1,-1,-1) W

(i)
i T |

Modeling transforms: Viewing (camera) transform: » Projection transform +
Position object in scene » positions objects in coordinate homogeneous divide:
space relative to camera Performs perspective

Canonical form: camera at origin projection
looking down -z Canonical form: visible

region of scene contained
within unit cube

(w, h)

(0,0)
Screen transform:
objects now in 2D screen coordinates

(MU 15-462/662, Spring 2015

Transformations recap
&

ﬁﬂ%ﬁ (1,1,7)

(-1,-1,-1) W

(i)
i T |

Modeling transforms: Viewing (camera) transform: » Projection transform +
Position object in scene » positions objects in coordinate homogeneous divide:
space relative to camera Performs perspective

Canonical form: camera at origin projection
looking down -z Canonical form: visible

region of scene contained
within unit cube

(w, h)

Compute «
screen coverage from
2D object position
(0,0)

Screen transform:
objects now in 2D screen coordinates

(MU 15-462/662, Spring 2015

Further Reading

m Basic transforms and quaternions are nicely covered here

(Real Time Rendering -- Chapter 4. by T. Akenine Moller, E.
Haines, N. Hoffman)

m Fora clean description of Euler Angles, the gimbal lock
problem, and quaternions and how to use them, check out

this textbook chapter (excerpt from Ch. 15 of Advanced
Animation and Rendering Techniques. by A. Watt, M. Watt)

(MU 15-462/662, Spring 2016

https://books.google.com/books?id=g_PRBQAAQBAJ&pg=PA53&source=gbs_toc_r&cad=4#v=onepage&q&f=false
http://www.cs.cmu.edu/afs/cs/academic/class/15462-s15/www/lec_slides/3DRotationNotes.pdf

What you should know:

B Form an orthonormal basis

B (reate arotation matrix to rotate any coordinate frame to xyz

B (reate the rotation matrix to rotate the xyz coordinate frame to any other frame

B Rotate about axis w by amount theta

B Know basic facts about rotation matrices / how to recognize a rotation matrix

Rows (also columns) are unit vectors
Rows (also columns) are orthogonal to one another
If our rows (or columns) are u, v, and w, then uXv=w

The inverse of a rotation matrix is its transpose

B (reate a projection matrix that projects all points onto an image plane at z=1

B Propose a projection matrix that maintains some depth information

B Understand the motivation behind the projection matrix that projects the view
frustum to a unit cube

B Beabletodraw/ discuss the details of the view frustum

(MU 15-462/662, Spring 2016

