Lecture 4:

Transforms

Computer Graphics CMU 15-462/15-662, Spring 2016

Notes

■ The web page is up:

http://www.cs.cmu.edu/~15462/

Assignment 1 is out:

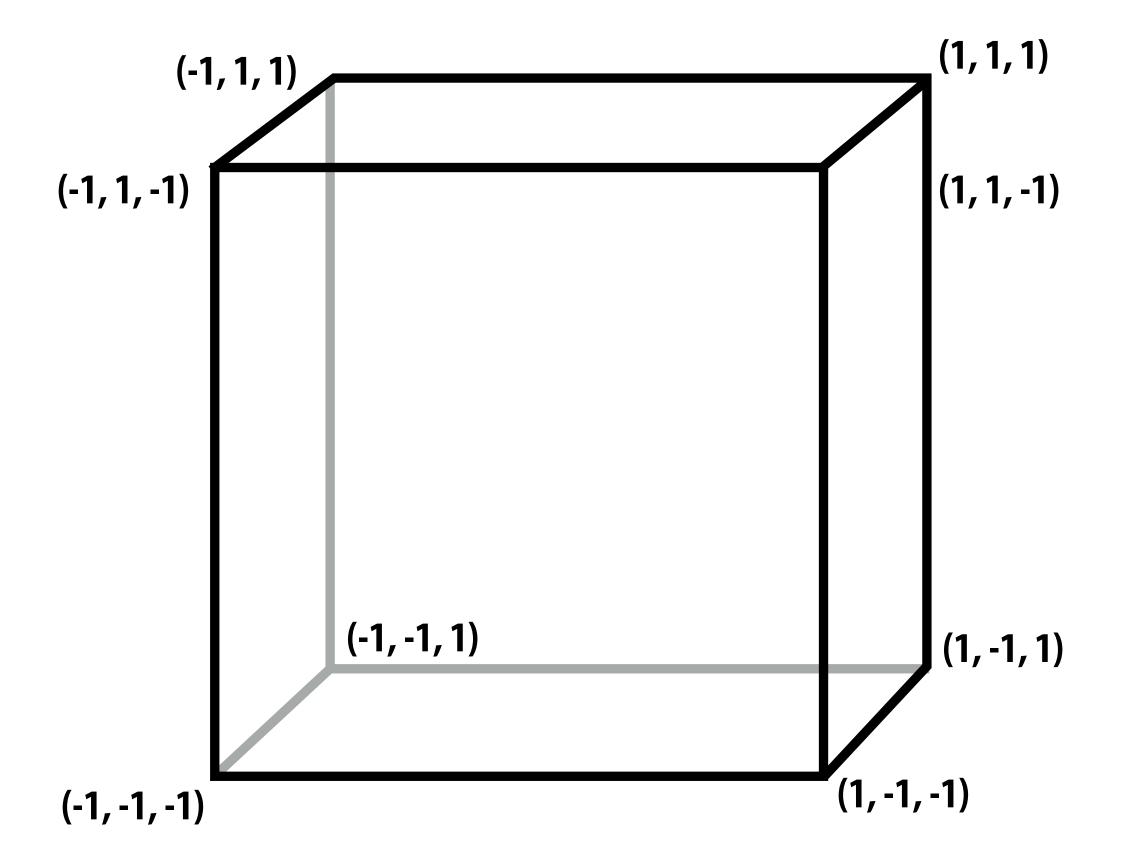
http://462cmu.github.io/asst1_drawsvg/

If you are not on piazza, please add yourself or talk to me or a TA!

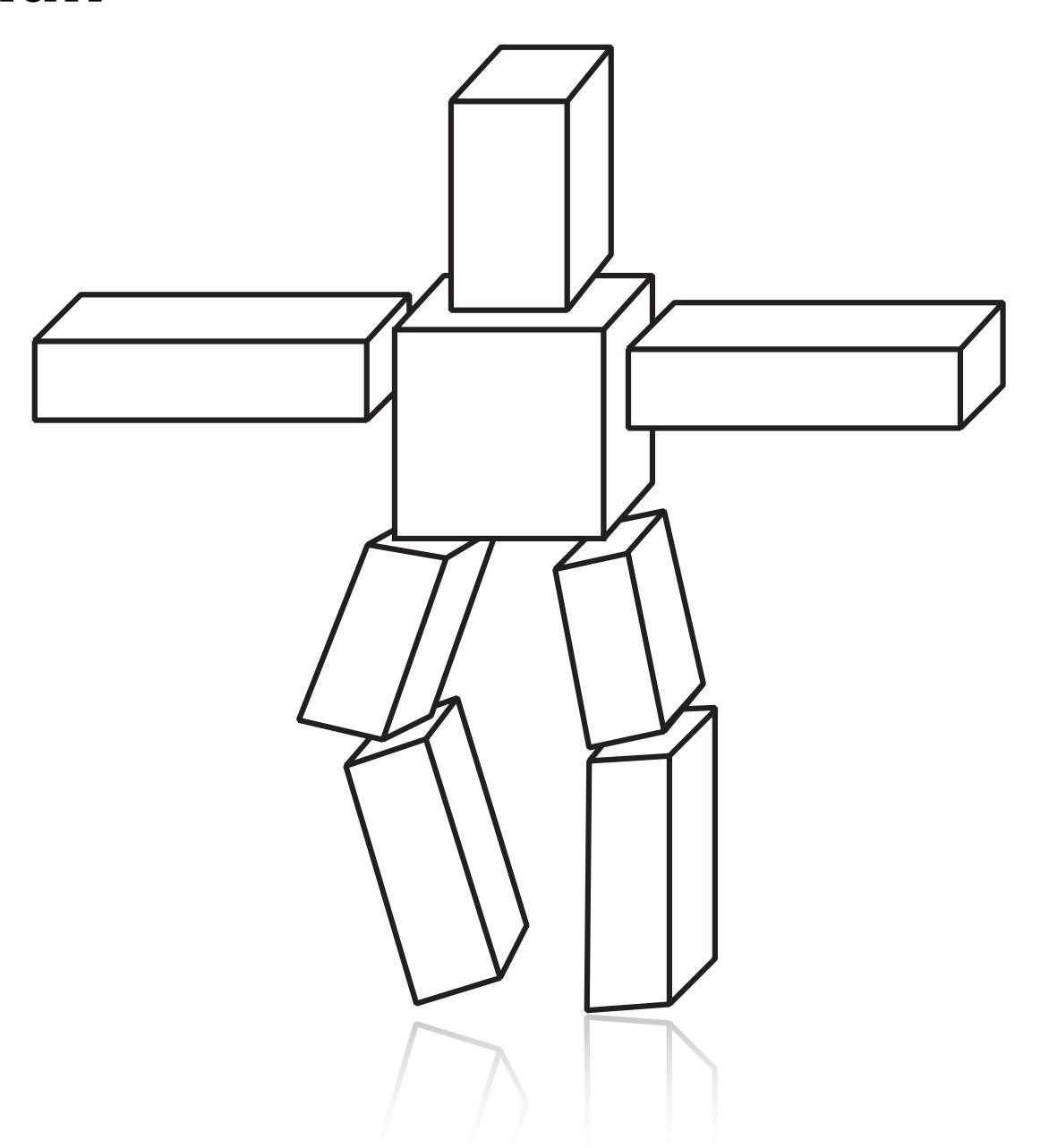
https://piazza.com/class/ijeillqemgr2l2

Review from last time

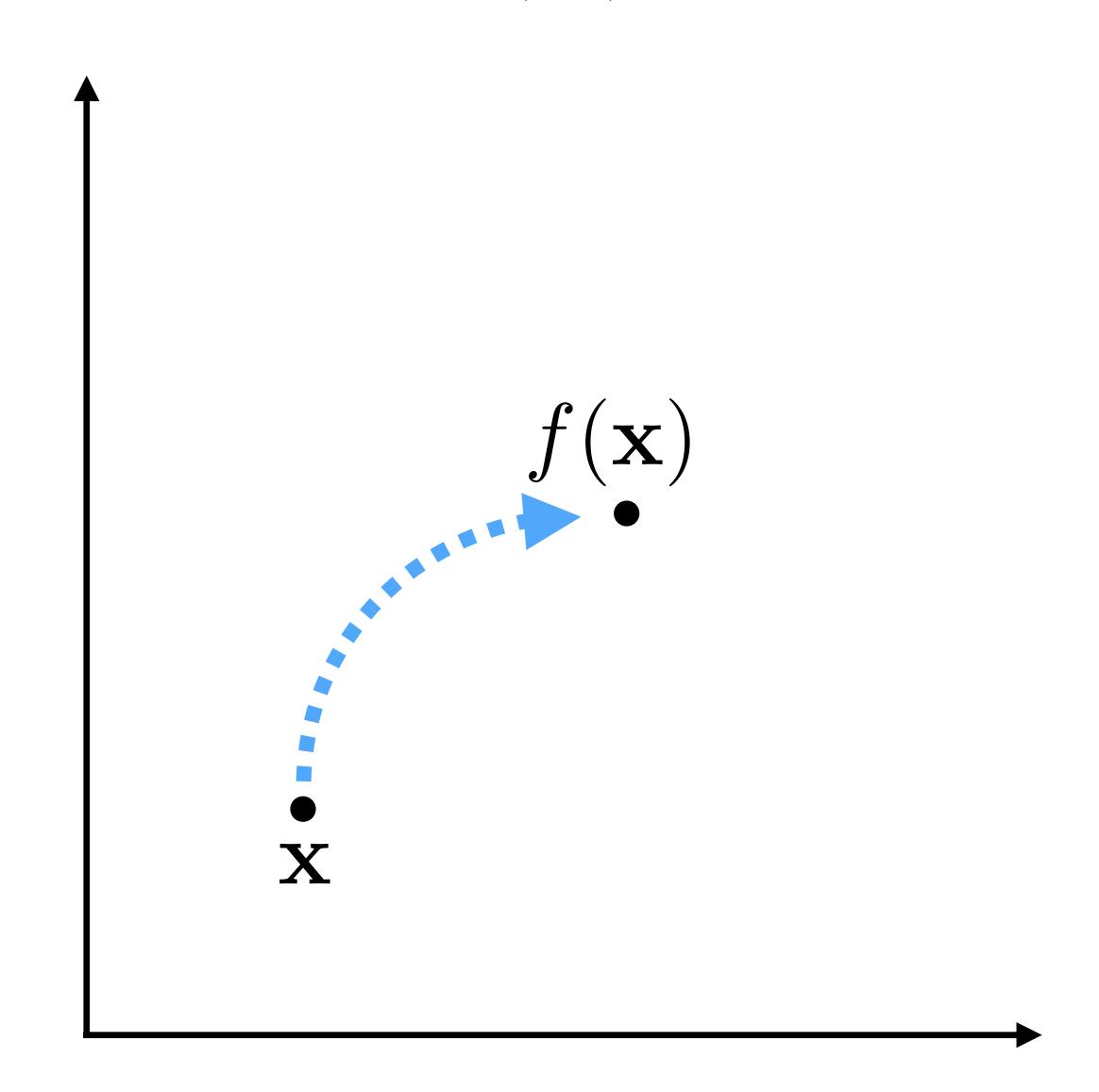
Cube



Cube man



f transforms x to f(x)



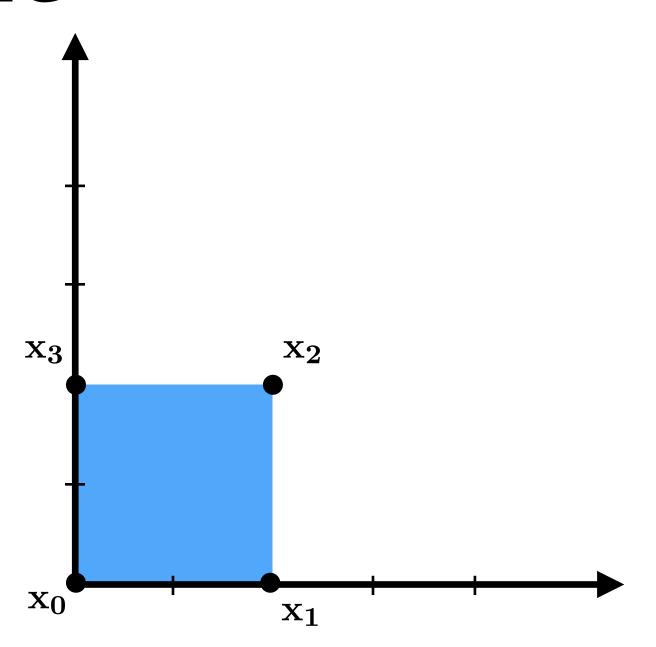
Linear transforms

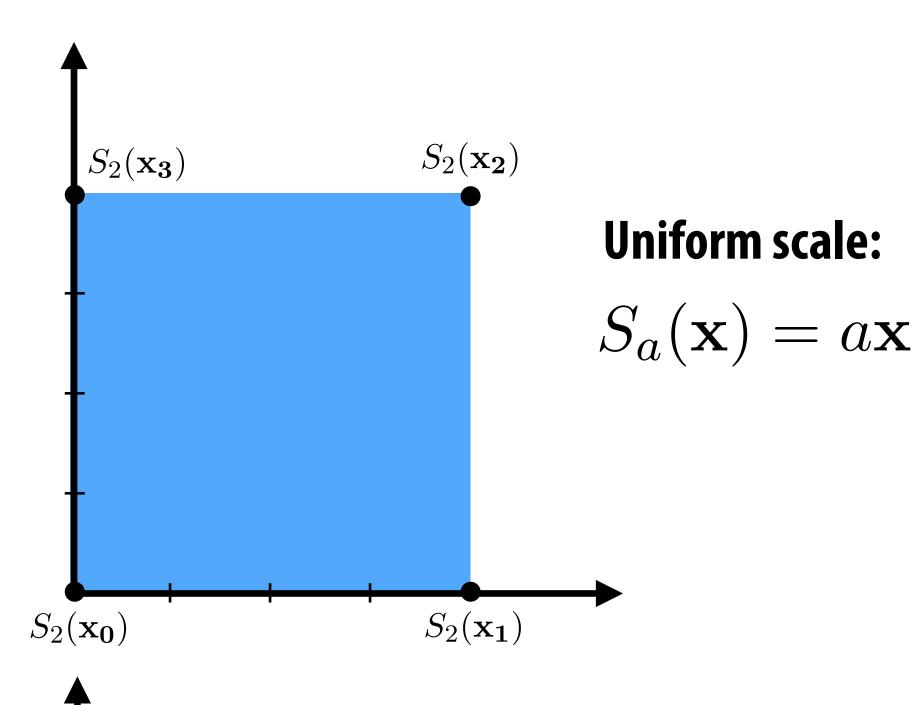
Transform *f* is linear if and only if:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

$$f(a\mathbf{x}) = af(\mathbf{x})$$

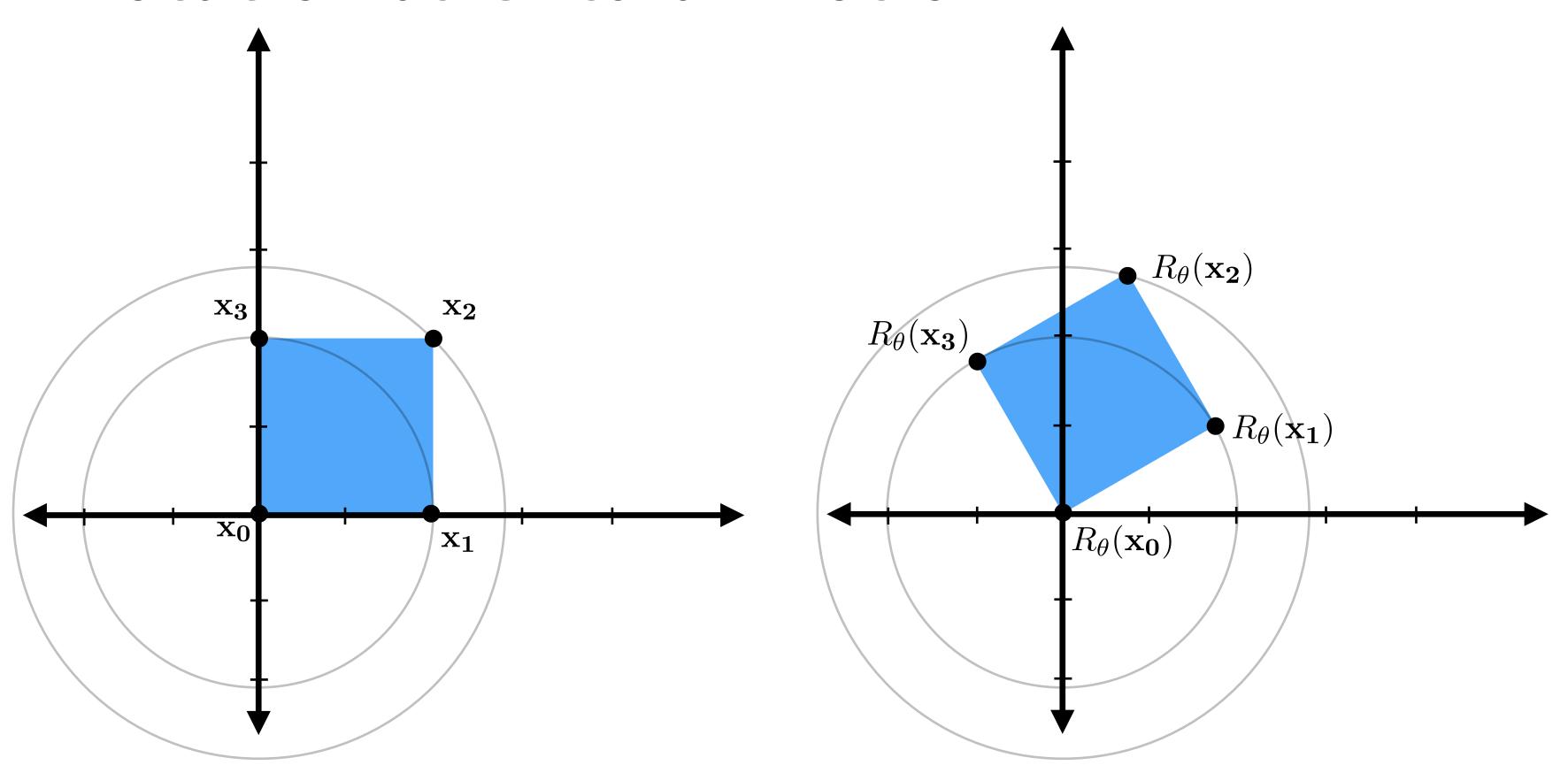
Scale





Non-uniform scale??

Rotation as Circular Motion

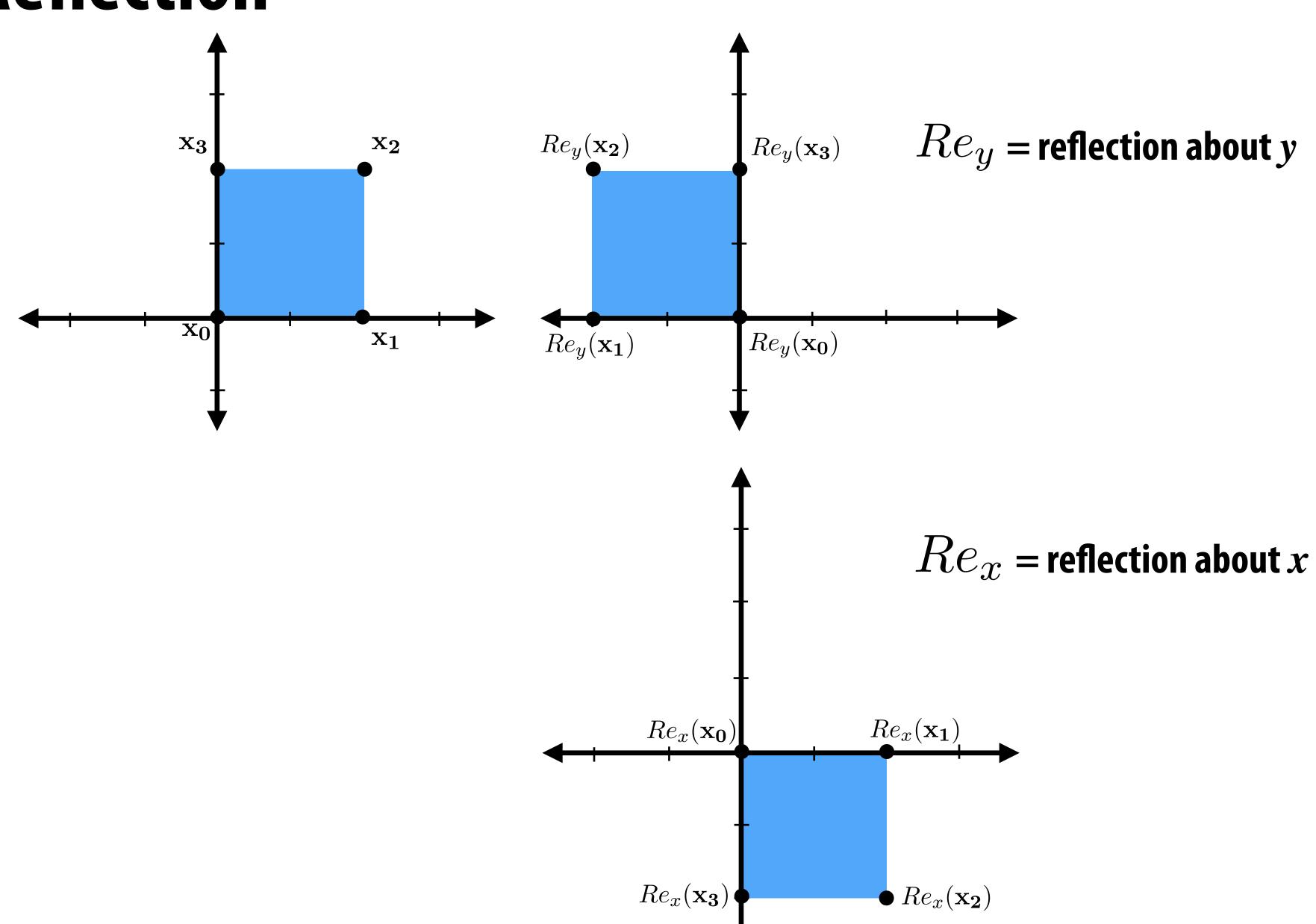


 $R_{ heta}$ = rotate counter-clockwise by heta

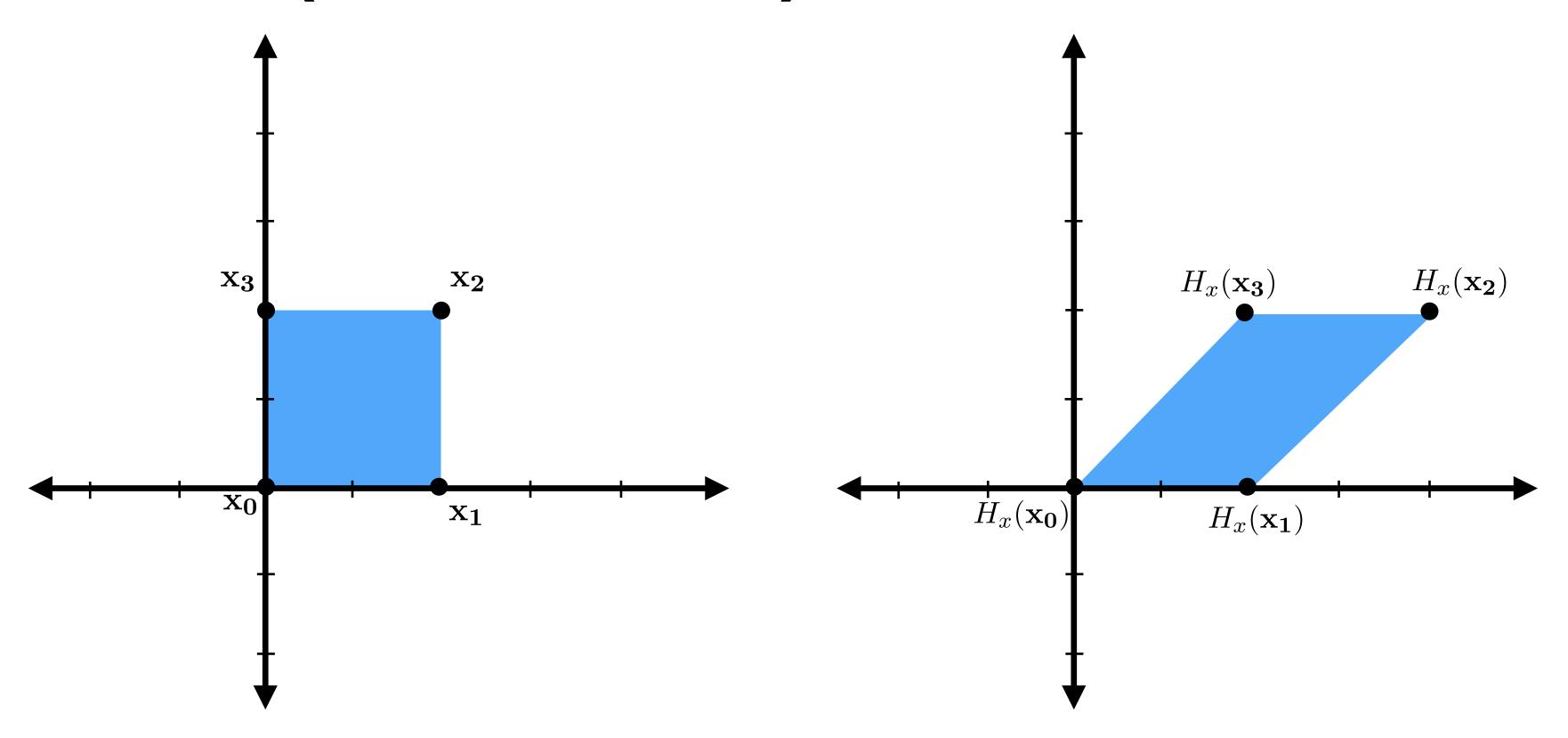
As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: $|R_{ heta}(\mathbf{x})| = |\mathbf{x}|$

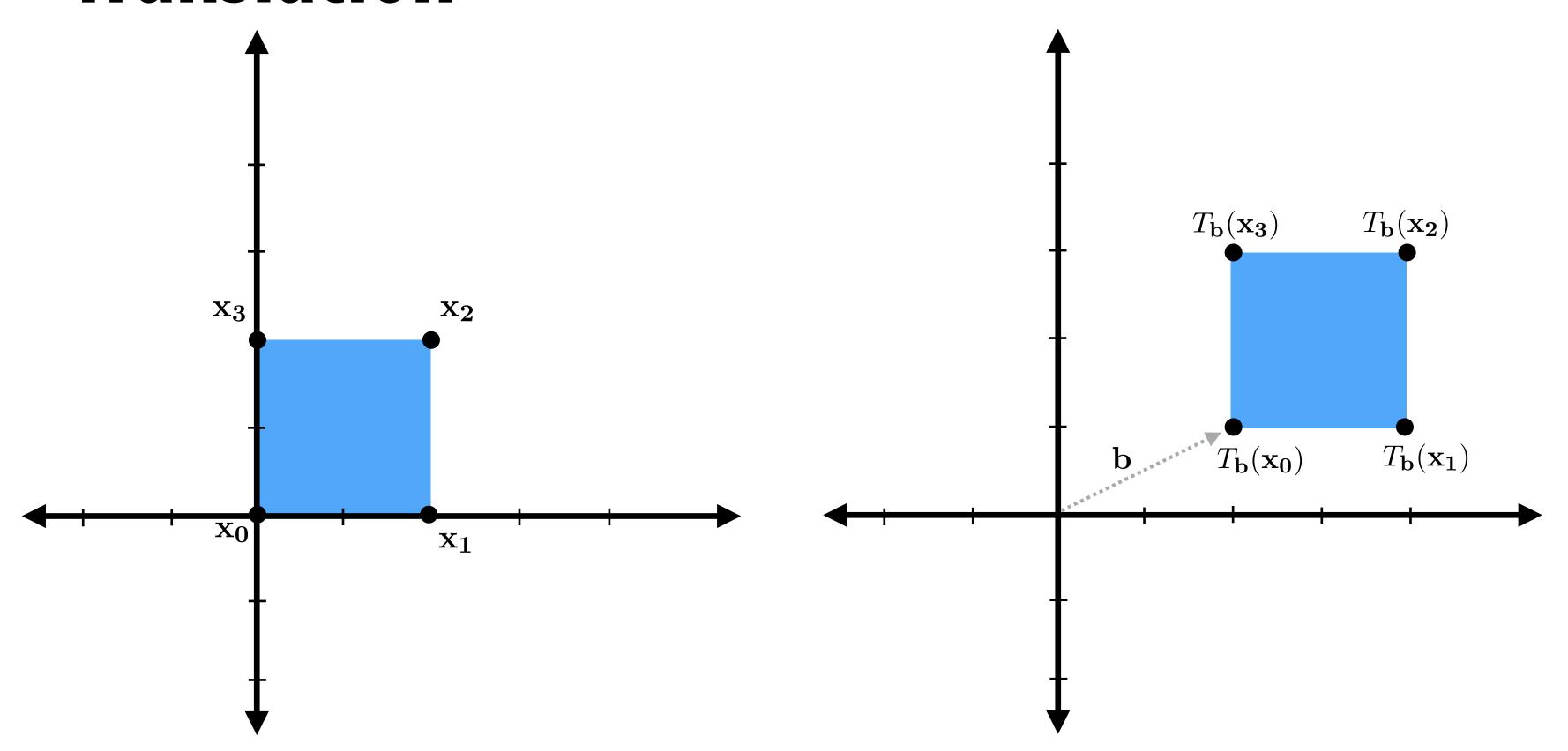
Reflection



Shear (in x direction)



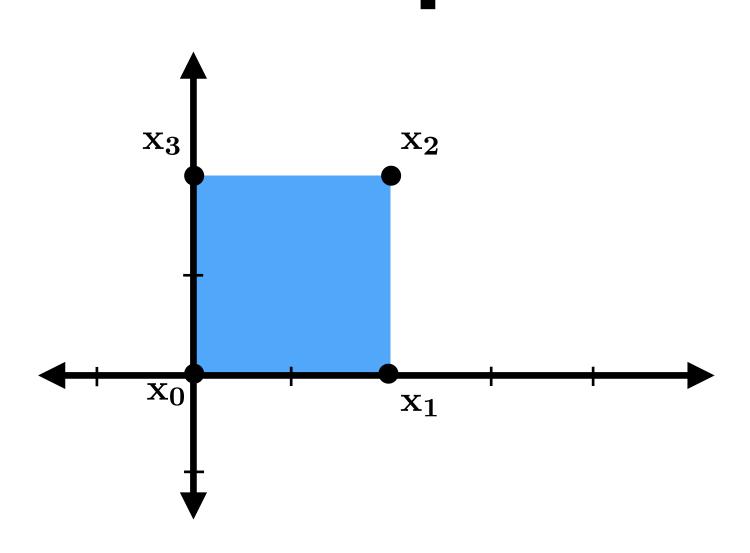
Translation



$$T_{\mathbf{b}}(\mathbf{x}) = \text{translate by } \mathbf{b}$$

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

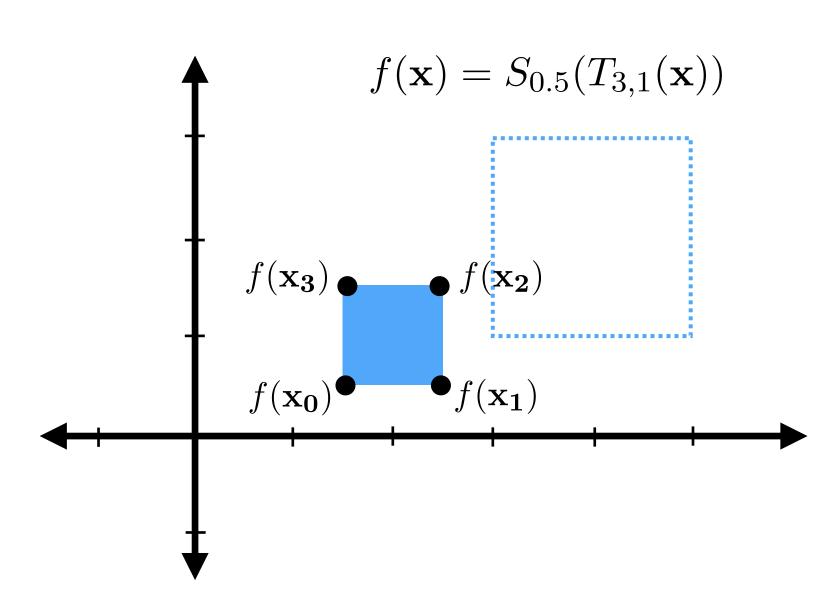
Compose basic transforms to construct more complex transforms



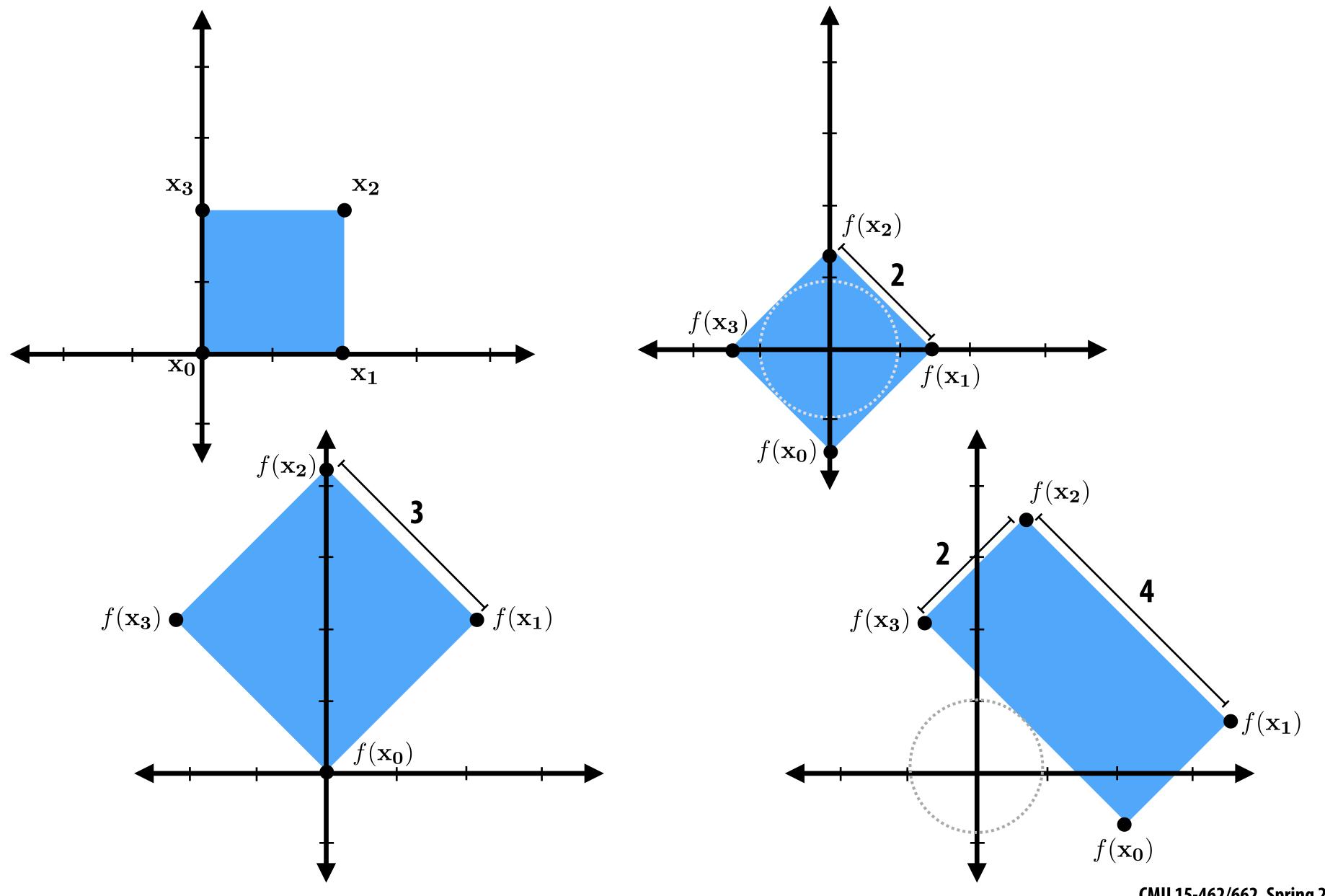
 $f(\mathbf{x}) = T_{3,1}(S_{0.5}(\mathbf{x}))$ $f(\mathbf{x_3}) \qquad f(\mathbf{x_2})$ $f(\mathbf{x_0}) \qquad f(\mathbf{x_1})$

Note: order of composition matters

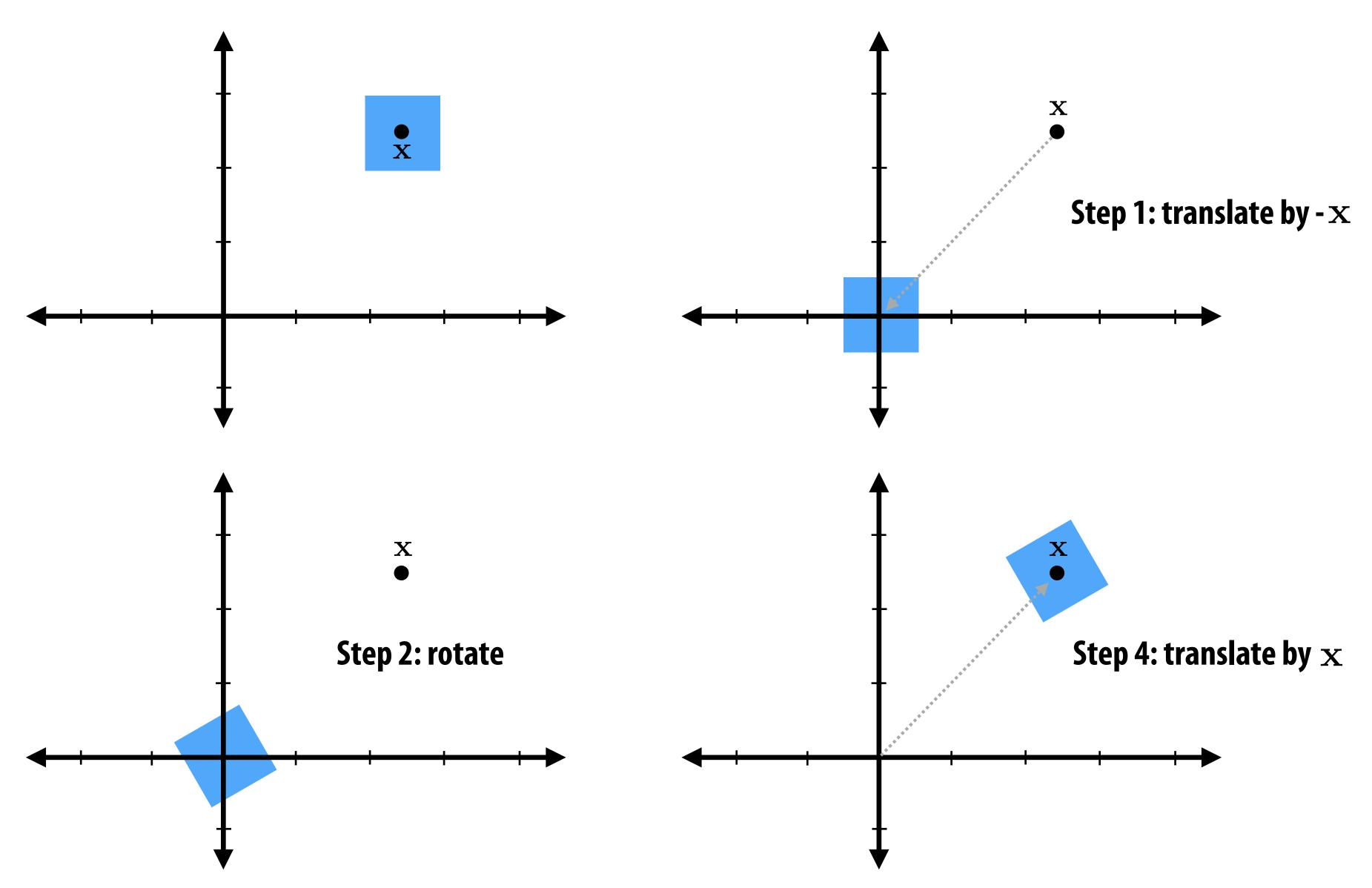
Top-right: scale, then translate Bottom-right: translate, then scale



How would you perform these transformations?



Common pattern: rotation about point x



Summary of basic transforms

Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale

Rotation

Reflection

Shear

Not linear:

Translation

Affine:

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Translation

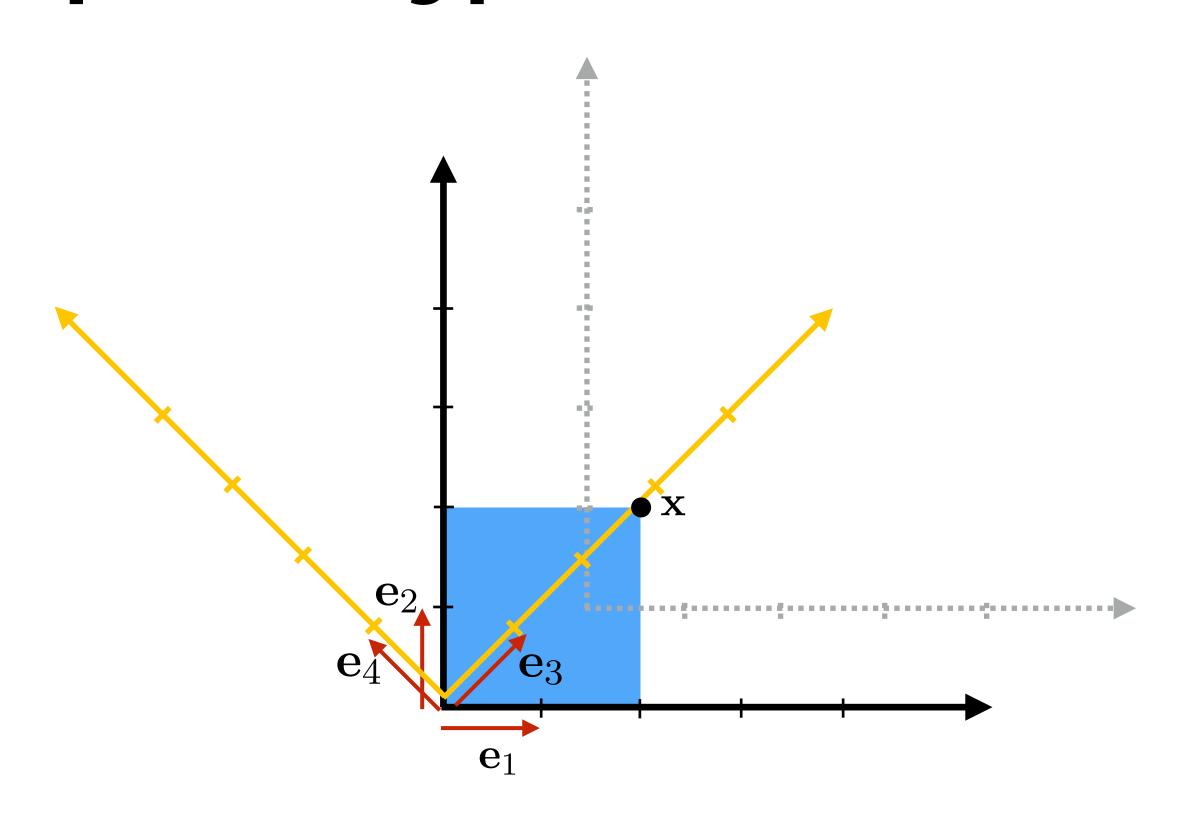
Rotation

Reflection

"Rigid body" transforms are Euclidean transforms that also preserve "winding" (does not include reflection)

Representing Transforms

Review: representing points in a coordinate space



Consider coordinate space defined by orthogonal vectors e_1 and e_2

$$\mathbf{x} = 2\mathbf{e}_1 + 2\mathbf{e}_2$$

$$\mathbf{x} = \begin{bmatrix} 2 & 2 \end{bmatrix}$$

 $\mathbf{x} = \begin{bmatrix} 0.5 & 1 \end{bmatrix}$ in coordinate space defined by \mathbf{e}_1 and \mathbf{e}_2 , with origin at (1.5, 1)

 ${f x}=\begin{bmatrix}\sqrt{8}&0\end{bmatrix}$ in coordinate space defined by ${f e}_3$ and ${f e}_4$, with origin at (0, 0)

Review: 2D matrix multiplication

$$\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

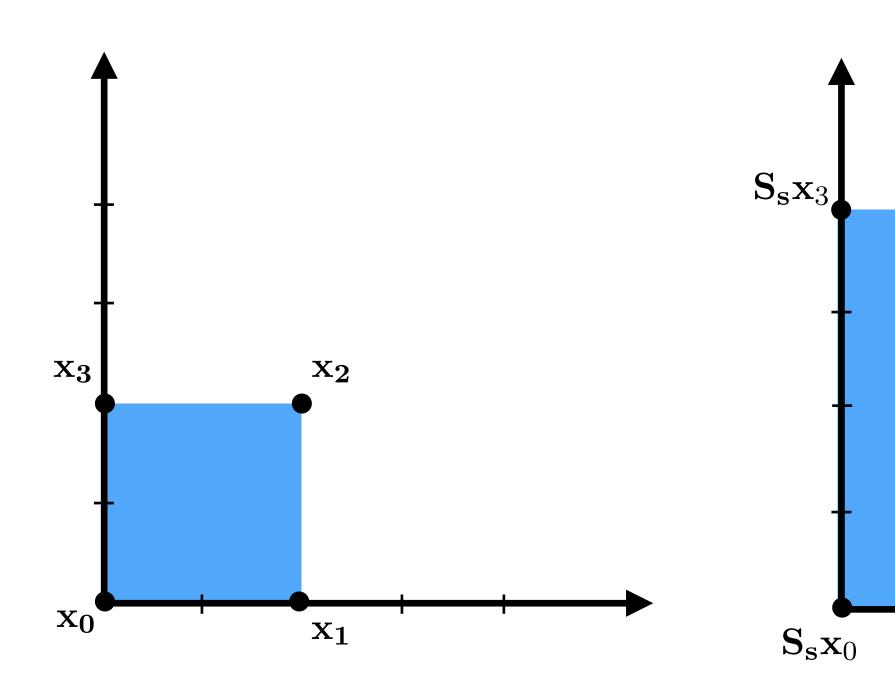
$$x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} =$$

Linear transforms in 2D can be represented as 2x2 matrices

- Scale
- Shear
- Rotation
- **■** Translation?

Linear transforms in 2D can be represented as 2x2 matrices

Consider non-uniform scale: $\mathbf{S_s} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix}$



Scaling amounts in each direction:

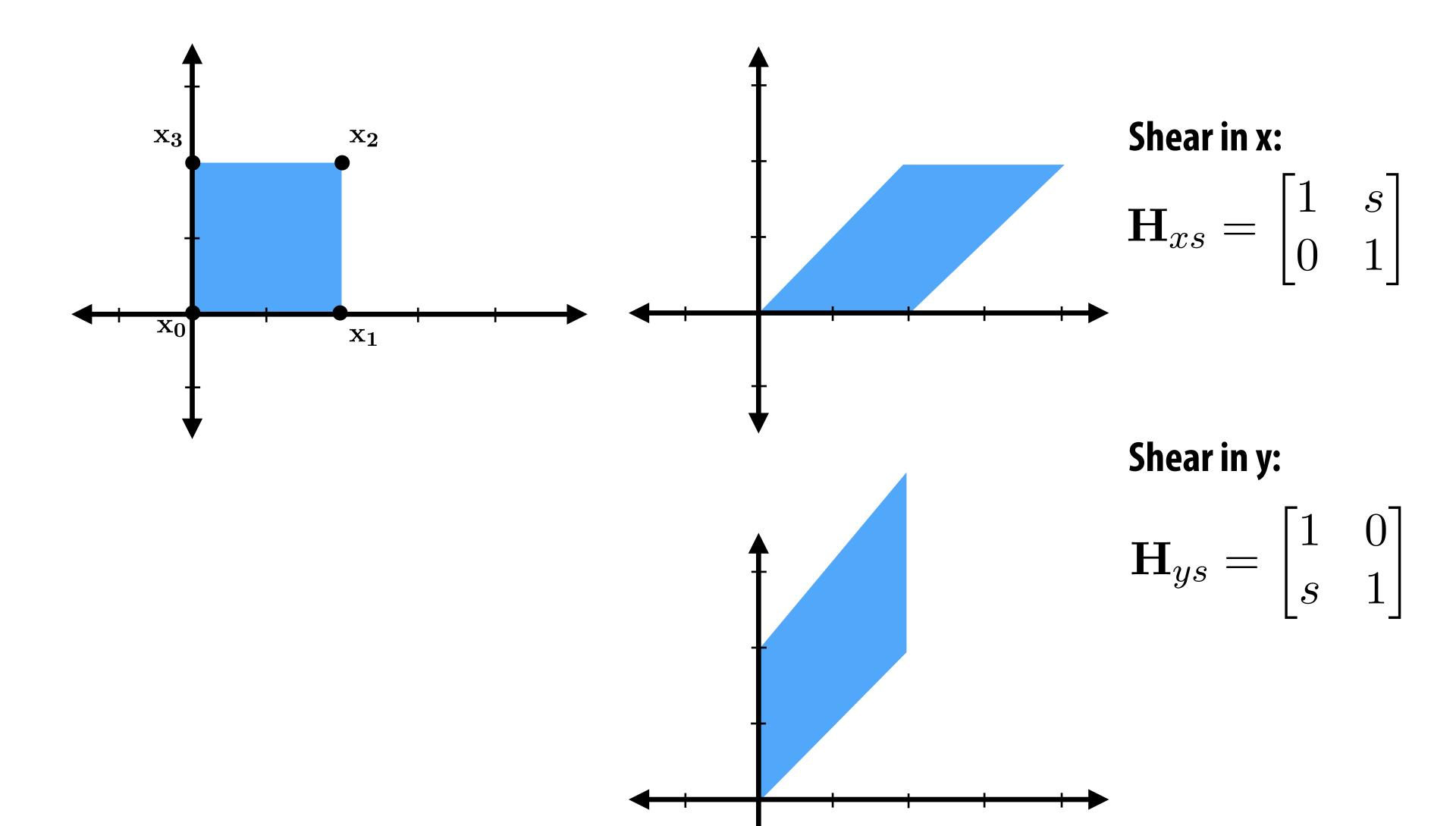
$$\mathbf{s} = \begin{bmatrix} 0.5 & 2 \end{bmatrix}^T$$

Matrix representing scale transform:

$$\mathbf{S_s} = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix}$$

 $S_s x_1$

Shear



Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by θ ?

Reminder: rotation moves points along circular trajectories.

(Recall that $\cos heta$ and $\sin heta$ are the coordinates of a point on the unit circle.)



Answer:

$$R_{\theta}(1,0) = (\cos(\theta), \sin(\theta))$$

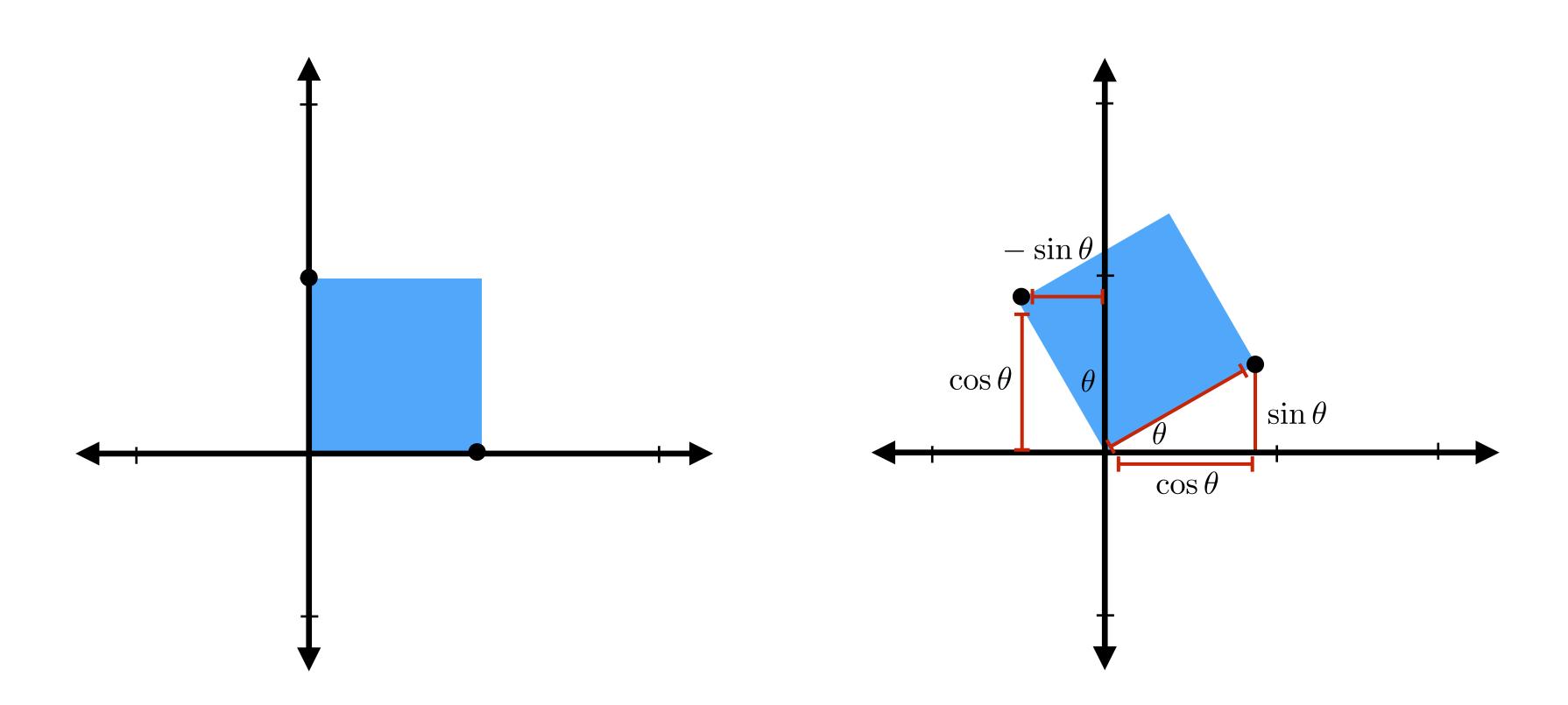
$$R_{\theta}(0,1) = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))$$

Which means the matrix must look like:

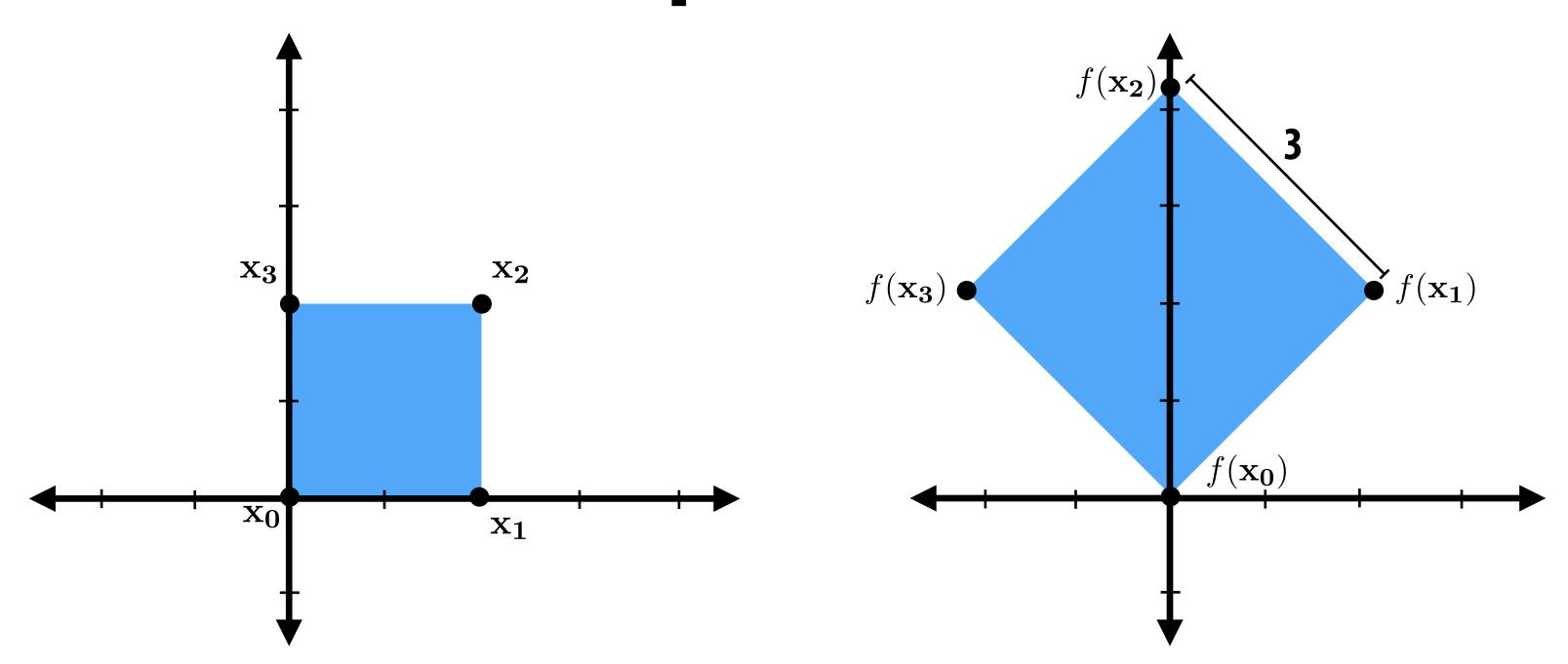
$$R_{\theta} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotation matrix (2D): another way...

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$



How do we compose linear transforms?



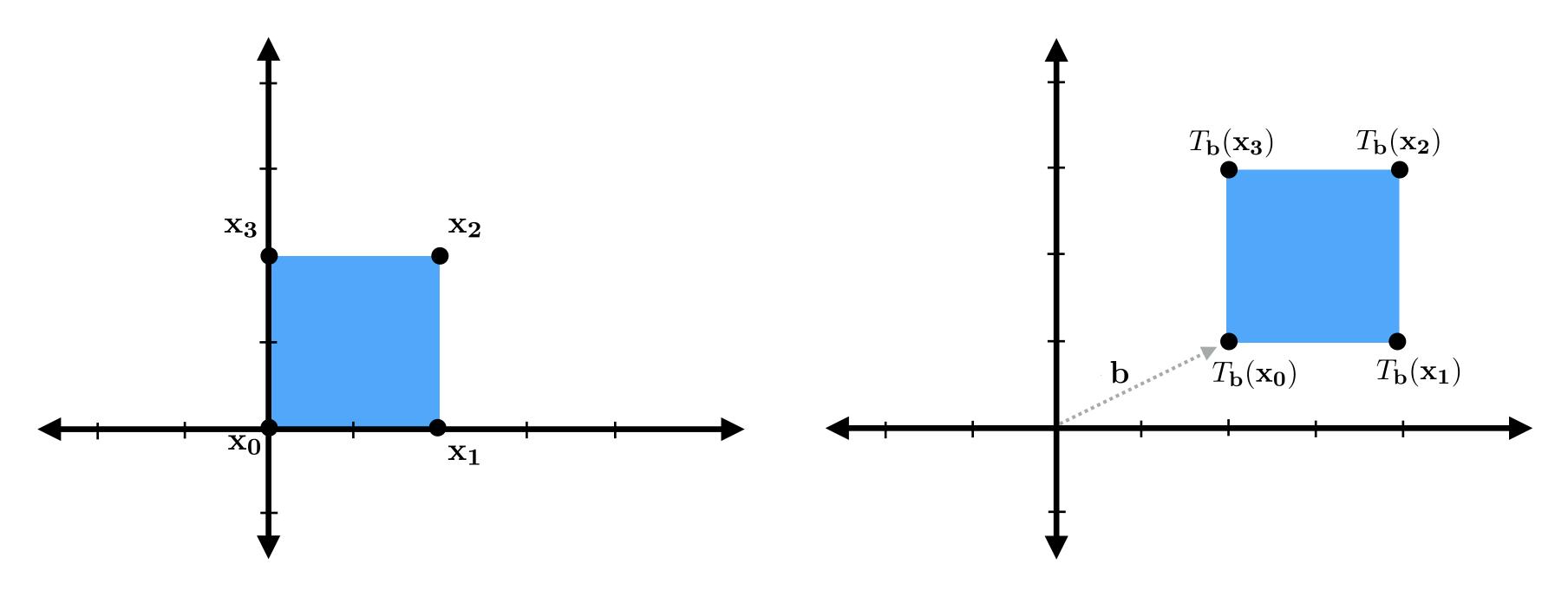
Compose linear transforms via matrix multiplication. This example: uniform scale, followed by rotation

$$f(\mathbf{x}) = R_{\pi/4} \mathbf{S}_{[1.5, 1.5]} \mathbf{x}$$

Enables simple, efficient implementation: reduce complex chain of transforms to a single matrix multiplication.

Translation?

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$



Recall: translation is not a linear transform

- → Output coefficients are not a linear combination of input coefficients
- → Translation operation cannot be represented by a 2x2 matrix

$$\mathbf{x}_{\mathbf{out}x} = \mathbf{x}_x + \mathbf{b}_x$$

$$\mathbf{x}_{\mathbf{out}y} = \mathbf{x}_y + \mathbf{b}_y$$

Translation math

2D homogeneous coordinates (2D-H)

Key idea: represent 2D points in 3D coordinate space

So the point (x,y) is represented as the 3-vector: $\begin{bmatrix} x & y & 1 \end{bmatrix}^T$

And transforms are represented a 3x3 matrices that transform these vectors.

For example: here are 2D scale and rotation transforms written in 2D homogeneous form:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Observe:

In these examples, the last row just propagates third coordinate of input to output.

Expressing transformations in 2D-H coords

Translation expressed as 3x3 matrix multiplication:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix}$$

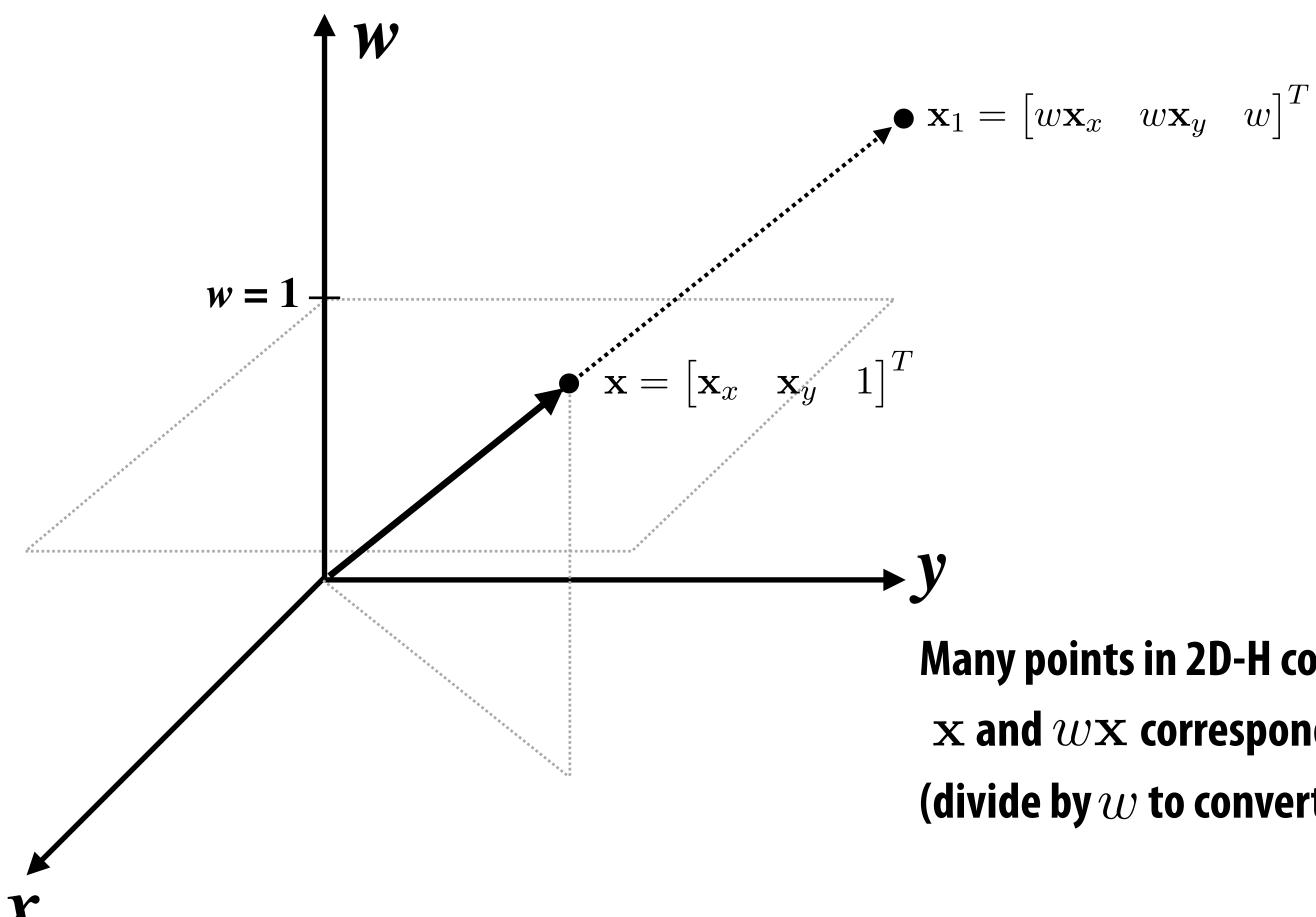
$$\mathbf{T_b}\mathbf{x} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_x \\ \mathbf{x}_y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_x + \mathbf{b}_x \\ \mathbf{x}_y + \mathbf{b}_y \\ 1 \end{bmatrix}$$

Homogeneous representation enables composition of affine transforms!

Example: rotation about point b

$$\mathbf{T_b}\mathbf{R}_{ heta}\mathbf{T_{-b}}$$

Homogeneous coordinates: some intuition



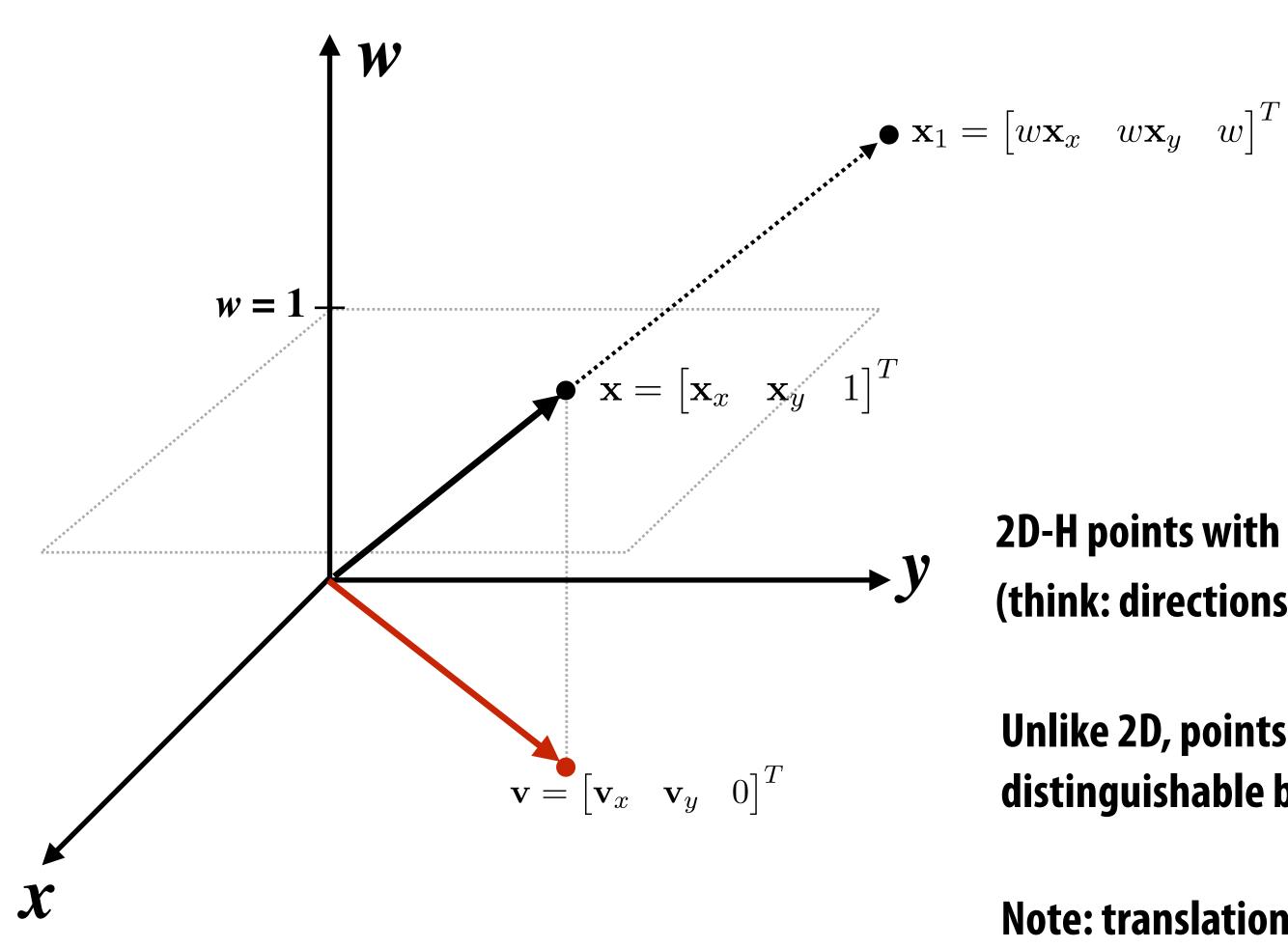
Many points in 2D-H correspond to same point in 2D

 ${f x}$ and $w{f x}$ correspond to the same 2D point (divide by $oldsymbol{w}$ to convert 2D-H back to 2D)

Translation is a shear in x and y in 2D-H space

$$\mathbf{T_bx} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w\mathbf{x}_x \\ w\mathbf{x}_y \\ w \end{bmatrix} = \begin{bmatrix} w\mathbf{x}_x + w\mathbf{b}_x \\ w\mathbf{x}_y + w\mathbf{b}_y \\ w \end{bmatrix}$$

Homogeneous coordinates: points vs. vectors



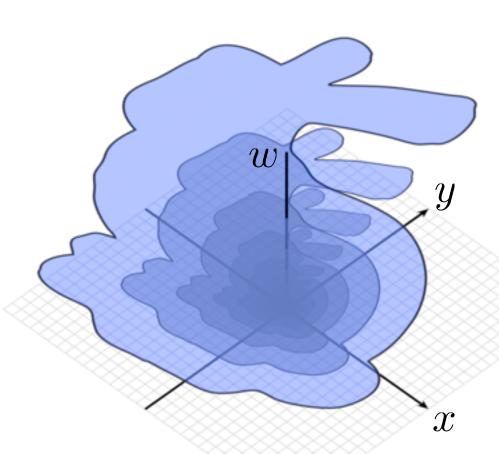
2D-H points with w=0 represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

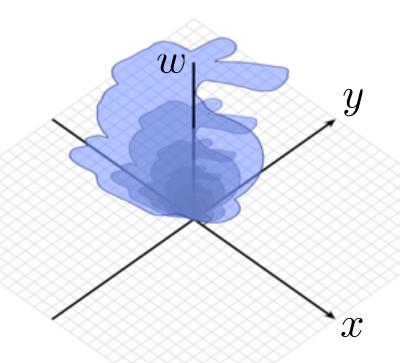
Note: translation does not modify directions:

$$\mathbf{T_bv} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix}$$

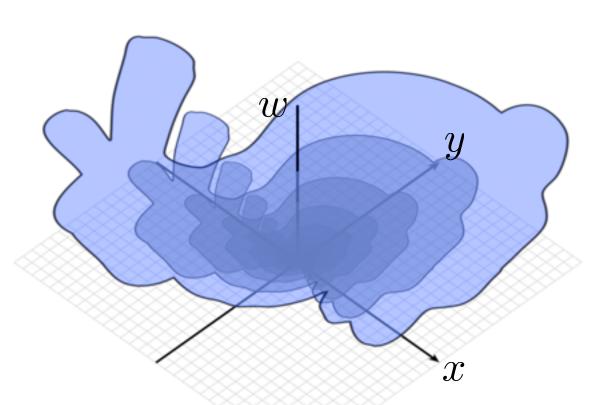
Visualizing 2D transformations in 2D-H



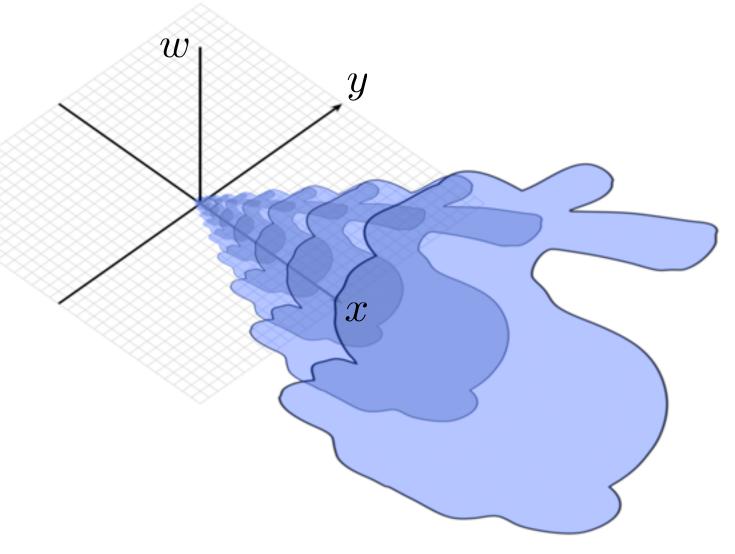
Original shape in 2D can be viewed as many copies, uniformly scaled by w.



2D scale ↔ scale x and y; preserve w (Question: what happens to 2D shape if you scale x, y, and w



2D rotation ↔ rotate around w



2D translate ↔ shear in xy

Moving to 3D (and 3D-H)

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & \mathbf{S}_z \end{bmatrix} \quad \mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 & 0 \\ 0 & \mathbf{S}_y & 0 & 0 \\ 0 & 0 & \mathbf{S}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear (in x, based on y,z position):

$$\mathbf{H}_{x,\mathbf{d}} = egin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = egin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translate:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{b}_x \\ 0 & 1 & 0 & \mathbf{b}_y \\ 0 & 0 & 1 & \mathbf{b}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D

Rotation about x axis:

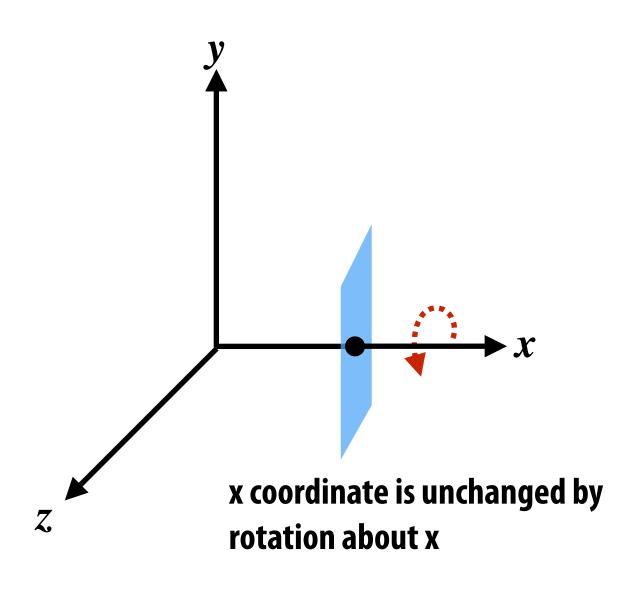
$$\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

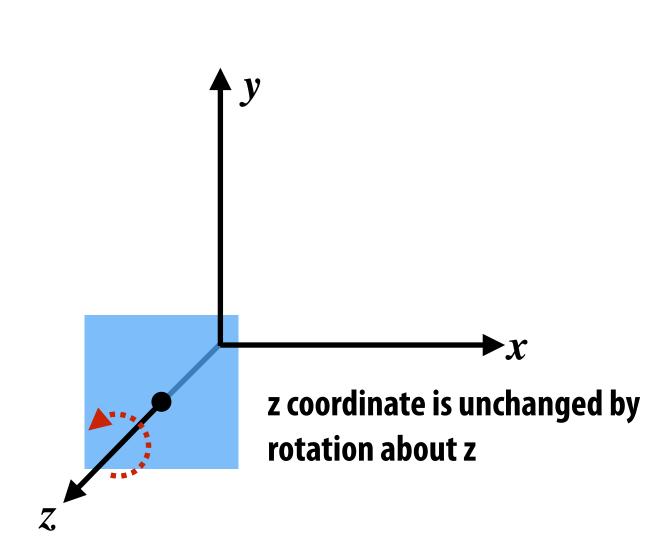
Rotation about y axis:

$$\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

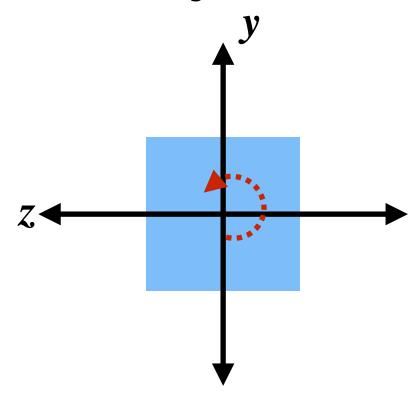
Rotation about z axis:

$$\mathbf{R}_{z, heta} = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

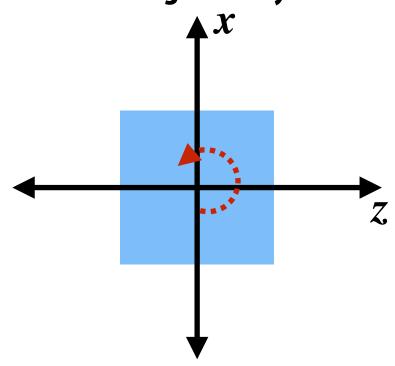




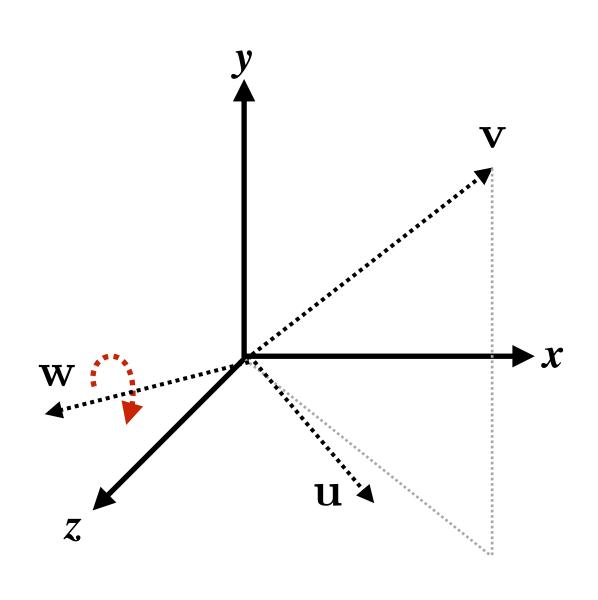
View looking down -x axis:



View looking down -y axis:



Rotation about an arbitrary axis



To rotate by θ about \mathbf{w} :

- 1. Form orthonormal basis around w (see u and v in figure)
- 2. Rotate to map w to [0 0 1] (change in coordinate space)

$$\mathbf{R}_{uvw} = egin{bmatrix} \mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_z \ \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z \ \mathbf{w}_x & \mathbf{w}_y & \mathbf{w}_z \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{w} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

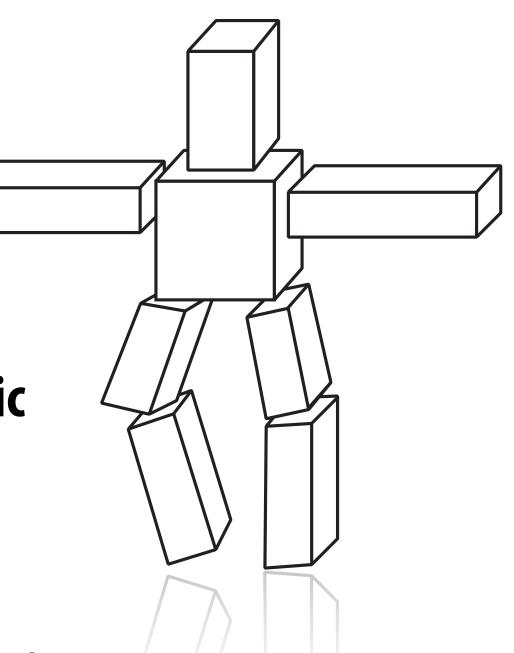
- 3. Perform rotation about z: $\mathbf{R}_{z,\theta}$
- 4. Rotate back to original coordinate space: $\mathbf{R}_{uvw}^{\mathbf{T}}$

$$\mathbf{R}_{uvw}^{-1} = \mathbf{R}_{uvw}^T = egin{bmatrix} \mathbf{u}_x & \mathbf{v}_x & \mathbf{w}_x \ \mathbf{u}_y & \mathbf{v}_y & \mathbf{w}_y \ \mathbf{u}_z & \mathbf{v}_x & \mathbf{w}_z \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{w}, heta} = \mathbf{R}_{\mathbf{u}\mathbf{v}\mathbf{w}}^{\mathbf{T}} \mathbf{R}_{z, heta} \mathbf{R}_{\mathbf{u}\mathbf{v}\mathbf{w}}$$

Tranformations summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation
- Or as a change of coordinate system
 - e.g., screen and view transforms
- Construct complex transformations as compositions of basic transforms
- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., affine, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation and efficient composition



Further Reading

Basic transforms are nicely covered here (<u>Real Time</u> <u>Rendering</u> -- Chapter 4. by T. Akenine Moller, E. Haines, N. Hoffman)

What you should know

- Create 2D and 3D transformation matrices to perform specific scale, shear, rotation, reflection, and translation operations
- Compose transformations to achieve compound effects
- Rotate an object about a fixed point
- Rotate an object about a given axis
- Create an orthonormal basis given a single vector
- Understand the equivalence of [x y 1] and [wx wy w] vectors
- Explain/illustrate how translations in 2D (x, y) are a shear operation in the homogeneous coordinate space (x, y, w)