Lecture 3:

Math for Graphics and
Transforms

Computer Graphics
CMU 15-462/15-662, Spring 2016



Notes

m Use piazza to communicate with instructors and class
- https://piazza.com/class/ijeillqemqr2i2

m Slides will have:
- Things you should know
- Practice questions

m Web page, office hours, and Assignment 1 coming soon
- (hopefully later today — watch piazza for the links)
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https://piazza.com/class/ijeillqemgr2l2

Do you remember the secret to rasterizing
a triangle?
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Point-in-triangle test

Compute triangle edge equations from projected positions of vertices

P>

Pi:()(i,Yi) o (o | o | o | 0| o | o o | o
°

dXi = Xi+1 - Xi

dYi = Yi+1 - Y °

Ei(x,y) =(x-X)dY: -(y-Y)dX

=Aix +Biy + Ci

Ei(x, y) = 0 :point on edge .

> () : outside edge

< 0 :1nside edge
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Point-in-triangle test
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Point-in-triangle test

Sample point s = (sx, sy) isinside the °
triangle if it is inside all three edges. .
inside(sx, sy) = ¢
Eo(sx, sy) < 0 && o
E;(sx,sy) < 0 && .
E> (sx, sy) < 0,
®
®
®
Note: actual implementation of
inside(sx,sy) involves < checks based on ¢
the triangle coverage edge rules (see °

beginning of lecture)

Sample points inside triangle are highlighted red.
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Incremental triangle traversal

Pi=(X,Y) °
dXi = Xi+1 - Xi °
dYi=Yiy1-Yi °
Ei(x,y) = (x-X)dY: - (y-Y)dX; *
:Aix+B,-y+Ci ®

°

Ei(x,y) =0 :point on edge
> () : outside edge o
< 0 :1nside edge

®
Efficient incremental update: .
dE; (x+1,y) = E;(x,y) + dYi = Ei(x,y) + A;

®

dE; (x,y+1) = E; (x,y) + dX; = E; (x,y) + B;

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Math for Computer Graphics

Points vs. vectors
Homogeneous coordinates
Dot product

Cross product

Matrix multiplication
Parametric line / surface

Implicit line / surface
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Points vs. Vectors

m Apointisalocation in space. We might write it casually as

Pi=(X,Y)

Pj= (X, Y} Z))

m Avector has magnitude and direction. We might write it
casually in a similar way

Vi=(Xi Yi)

Vi= (X, Y, 2)
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Homogeneous Coordinates

m For graphics operations, we will often represent points and
vectors in homogeneous coordinates. (We will soon see why
this is useful.*)

£z £j
2 Zq
1 0
3D point 3D vector

*Looking ahead — lifting points and vectors into homogeneous coordinate space allows us to perform
affine operations as linear transforms.
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Dot Product

m Dot products are required for many operations in graphics,
including projection

p-a=[ps py Pz |

N\

m If ¢ isaunitvector, D - U
gives the magnitude of the
projection of » onto U
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Cross Product

m The cross product is also important for graphics operations.
Examples are to compute a surface normal or to form an
orthonormal coordinate system

P,
= (Pl — P())
b= (Pz — P())

a:'ybz T azby
n = a X b —_ azba: T bg_jaz b
30y — ayby

|n|| = 4/n2 + n;-’; + n?2

P;
+ TL
n = 7| /

Po
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Matrix Multiplication

B We will use matrix multiplication to compose transforms

together, to transform points and vectors, and to do
perspective projection

m What do you think this matrix operation accomplishes?

-

Up L s

+uy Py +u P, + t,

Vo Pr + vy Py -
We Py +wy Py +w, P, + ¢,

1

- v, P, + t,
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Parametric representation of a line

m Aline can be expressed as a function of a single parameter

P(t) =a+tb— a)
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Implicit representation of a line

m Aline can also be expressed implicitly, with an expression
that evaluates to zero only for points that are exactly on the
line

v=(b—a) q . .
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Now, it should be easy to derive and
understand this edge equation

Pi=(X:Y)

dXi = Xi+1 - Xi .
in = Yi+1 - Yi

Ei(x,y) =(x-X)dYi -(y-Y)dX; | ®
:Aix+Biy‘|—Ci °

Ei(x, y) = 0 :pointon edge
> () : outside edge ¢
< 0 :1side edge o
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Next topic: Transforms
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-1,1,1) (1,1,1)

('1111'1) (1111'1)

(11'111)

(-1,-1,-1) 1,-1,-1)
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Cube man



f transforms x to f(x)




Linear transforms

Transform f'is linear if and only if:

fx+y)=f(x)+ f(y)
flax) = af(x)
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Uniform scale:

Sq(X) = ax

Non-uniform scale??
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Is scale a linear transform?
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Rotation

Ry =rotate counter-clockwise by
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Rotation as Circular Motion

Ry =rotate counter-clockwise by ¢/

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: | Ry (X) | — |X‘
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Is rotation linear?
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Translation

Ty (x) =translate by b
Th(x) =x+Db
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|s translation linear?

......... v®
Tp(x) e
b " ve
> X + y Tp(x+y)
......... v ®
.................. Ty (y)
............... ;

No. Translation is affine.
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Reflection

Rey (x2) Re,(xs) e, =reflection about y

Rey(x1) Rey(x0)

Re.. =reflection about x

Re.(x0) Re,(X1)

Rem (X3) Rew (Xz)
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Shear (in x direction)
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Compose basic transforms to construct
more complex transforms

Note: order of composition matters

Top-right: scale, then translate
Bottom-right: translate, then scale
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How would you perform these transformations?
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Common pattern: rotation about point x

X
® o
X
Step 1: translate by - x
X X
® ®
Step 2: rotate Step 4: translate by x
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Summary of basic transforms

Linear: Affine:
f(x+y) = f(x)+ f(¥) Composition of linear transform + translation
flax) = af(x) (all examples on previous two slides)
Scale f(x)=g(x)+b
Rotation Not affine: perspective projection (will discuss later)
Reflection
Shear

Euclidean: (Isometries)
Preserve distance between points (preserves length)

Not linear: f(x) = f(y) =[x~y
Translation Translation
Rotation
Reflection

“Rigid body” transforms are Euclidean transforms that
also preserve “winding” (does not include reflection)
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What you should know

1. Express points and vectors using homogeneous coordinates.

g

Perform a dot product and demonstrate how to use the dot product for projection (e.qg.,
projection of a point onto a coordinate axis).

Perform a cross product and demonstrate how to use it to compute a surface normal.
Perform matrix multiplication.

Derive a parametric expression for a line hetween two points.

Prove that your parametric expression is correct. Discuss whether it is unique.
Derive an implicit expression for an edge between two points.

Prove that your implicit expression is correct. Discuss whether it is unique.

S - o

Use an implicit edge expression to determine whether a (2D) point is inside a (projected)
triangle.

10. Create an algorithm to rasterize a triangle from a set of “inside-triangle” tests.
11. Make that algorithm efficient so that not every pixel needs to be tested.
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