Lecture 3:

Math for Graphics and
Transforms

Computer Graphics
CMU 15-462/15-662, Spring 2016

Notes

m Use piazza to communicate with instructors and class
- https://piazza.com/class/ijeillqemqr2i2

m Slides will have:
- Things you should know
- Practice questions

m Web page, office hours, and Assignment 1 coming soon
- (hopefully later today — watch piazza for the links)

(MU 15-462/662, Spring 2016

https://piazza.com/class/ijeillqemgr2l2

Do you remember the secret to rasterizing
a triangle?

(MU 15-462/662, Spring 2016

Point-in-triangle test

Compute triangle edge equations from projected positions of vertices

P>

Pi:()(i,Yi) o (o | o | o | 0| o | o o | o
°

dXi = Xi+1 - Xi

dYi = Yi+1 - Y °

Ei(x,y) =(x-X)dY: -(y-Y)dX

=Aix +Biy + Ci

Ei(x, y) = 0 :point on edge .

> () : outside edge

< 0 :1nside edge

(MU 15-462/662, Spring 2016

Point-in-triangle test

Pi= (X Yi) o
®

dXi = Xi+1 - Xi
dY; = Yis1 - Y, :
®
Ei(x,y) =(x-X)dYi -(y-Y)dXi| o
=Aix+ B y+ (o
Ei(x,y) = 0 :point on edge ¢
> () :outside edge o
< 0 :1nside edge .
®

(MU 15-462/662, Spring 2016

Point-in-triangle test

Pi= (X Yi) o
®

dXi = Xi+1 - Xi
dY; = Yis1 - Y, :
®
Ei(x,y) =(x-X)dYi -(y-Y)dXi| o
=Aix+ B y+ (o
Ei(x,y) = 0 :point on edge ¢
> () :outside edge o
< 0 :1nside edge .
®

(MU 15-462/662, Spring 2016

Point-in-triangle test

Pi= (X Yi) o
®

dXi = Xi+1 - Xi
dY; = Yis1 - Y, :
®
Ei(x,y) =(x-X)dYi -(y-Y)dXi| o
=Aix+ B y+ (.
Ei(x,y) = 0 :point on edge ¢
> () :outside edge .
< 0 :1nside edge .
®

(MU 15-462/662, Spring 2016

Point-in-triangle test

Sample point s = (sx, sy) isinside the °
triangle if it is inside all three edges. .
inside(sx, sy) = ¢
Eo(sx, sy) < 0 && o
E;(sx,sy) < 0 && .
E> (sx, sy) < 0,
®
®
®
Note: actual implementation of
inside(sx,sy) involves < checks based on ¢
the triangle coverage edge rules (see °

beginning of lecture)

Sample points inside triangle are highlighted red.

(MU 15-462/662, Spring 2016

Incremental triangle traversal

Pi=(X,Y) °
dXi = Xi+1 - Xi °
dYi=Yiy1-Yi °
Ei(x,y) = (x-X)dY: - (y-Y)dX; *
:Aix+B,-y+Ci ®

°

Ei(x,y) =0 :point on edge
> () : outside edge o
< 0 :1nside edge

®
Efficient incremental update: .
dE; (x+1,y) = E;(x,y) + dYi = Ei(x,y) + A;

®

dE; (x,y+1) = E; (x,y) + dX; = E; (x,y) + B;

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
(MU 15-462/662, Spring 2016

Math for Computer Graphics

Points vs. vectors
Homogeneous coordinates
Dot product

Cross product

Matrix multiplication
Parametric line / surface

Implicit line / surface

(MU 15-462/662, Spring 2016

Points vs. Vectors

m Apointisalocation in space. We might write it casually as

Pi=(X,Y)

Pj= (X, Y} Z))

m Avector has magnitude and direction. We might write it
casually in a similar way

Vi=(Xi Yi)

Vi= (X, Y, 2)

(MU 15-462/662, Spring 2016

Homogeneous Coordinates

m For graphics operations, we will often represent points and
vectors in homogeneous coordinates. (We will soon see why
this is useful.*)

£z £j
2 Zq
1 0
3D point 3D vector

*Looking ahead — lifting points and vectors into homogeneous coordinate space allows us to perform
affine operations as linear transforms.

(MU 15-462/662, Spring 2016

Dot Product

m Dot products are required for many operations in graphics,
including projection

p-a=[ps py Pz |

N\

m If ¢ isaunitvector, D - U
gives the magnitude of the
projection of » onto U

(MU 15-462/662, Spring 2016

Cross Product

m The cross product is also important for graphics operations.
Examples are to compute a surface normal or to form an
orthonormal coordinate system

P,
= (Pl — P())
b= (Pz — P())

a:'ybz T azby
n = a X b —_ azba: T bg_jaz b
30y — ayby

|n|| = 4/n2 + n;-’; + n?2

P;
+ TL
n = 7| /

Po

(MU 15-462/662, Spring 2016

Matrix Multiplication

B We will use matrix multiplication to compose transforms

together, to transform points and vectors, and to do
perspective projection

m What do you think this matrix operation accomplishes?

-

Up L s

+uy Py +u P, + t,

Vo Pr + vy Py -
We Py +wy Py +w, P, + ¢,

1

- v, P, + t,

(MU 15-462/662, Spring 2016

Parametric representation of a line

m Aline can be expressed as a function of a single parameter

P(t) =a+tb— a)

(MU 15-462/662, Spring 2016

Implicit representation of a line

m Aline can also be expressed implicitly, with an expression
that evaluates to zero only for points that are exactly on the
line

v=(b—a) q . .

(MU 15-462/662, Spring 2016

Now, it should be easy to derive and
understand this edge equation

Pi=(X:Y)

dXi = Xi+1 - Xi .
in = Yi+1 - Yi

Ei(x,y) =(x-X)dYi -(y-Y)dX; | ®
:Aix+Biy‘|—Ci °

Ei(x, y) = 0 :pointon edge
> () : outside edge ¢
< 0 :1side edge o

(MU 15-462/662, Spring 2016

Next topic: Transforms

(MU 15-462/662, Spring 2016

-1,1,1) (1,1,1)

('1111'1) (1111'1)

(11'111)

(-1,-1,-1) 1,-1,-1)

(MU 15-462/662, Spring 2016

Cube man

f transforms x to f(x)

Linear transforms

Transform f'is linear if and only if:

fx+y)=f(x)+ f(y)
flax) = af(x)

(MU 15-462/662, Spring 2016

Uniform scale:

Sq(X) = ax

Non-uniform scale??

(MU 15-462/662, Spring 2016

Is scale a linear transform?

(MU 15-462/662, Spring 2016

Rotation

Ry =rotate counter-clockwise by

(MU 15-462/662, Spring 2016

Rotation as Circular Motion

Ry =rotate counter-clockwise by ¢/

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: | Ry (X) | — |X‘

(MU 15-462/662, Spring 2016

Is rotation linear?

(MU 15-462/662, Spring 2016

Translation

Ty (x) =translate by b
Th(x) =x+Db

(MU 15-462/662, Spring 2016

|s translation linear?

......... v®
Tp(x) e
b " ve
> X + y Tp(x+y)
......... v ®
.................. Ty (y)
............... ;

No. Translation is affine.

(MU 15-462/662, Spring 2016

Reflection

Rey (x2) Re,(xs) e, =reflection about y

Rey(x1) Rey(x0)

Re.. =reflection about x

Re.(x0) Re,(X1)

Rem (X3) Rew (Xz)

(MU 15-462/662, Spring 2016

Shear (in x direction)

(MU 15-462/662, Spring 2016

Compose basic transforms to construct
more complex transforms

Note: order of composition matters

Top-right: scale, then translate
Bottom-right: translate, then scale

(MU 15-462/662, Spring 2016

How would you perform these transformations?

(MU 15-462/662, Spring 2016

Common pattern: rotation about point x

X
® o
X
Step 1: translate by - x
X X
® ®
Step 2: rotate Step 4: translate by x

(MU 15-462/662, Spring 2016

Summary of basic transforms

Linear: Affine:
f(x+y) = f(x)+ f(¥) Composition of linear transform + translation
flax) = af(x) (all examples on previous two slides)
Scale f(x)=g(x)+b
Rotation Not affine: perspective projection (will discuss later)
Reflection
Shear

Euclidean: (Isometries)
Preserve distance between points (preserves length)

Not linear: f(x) = f(y) =[x~y
Translation Translation
Rotation
Reflection

“Rigid body” transforms are Euclidean transforms that
also preserve “winding” (does not include reflection)

(MU 15-462/662, Spring 2016

What you should know

1. Express points and vectors using homogeneous coordinates.

g

Perform a dot product and demonstrate how to use the dot product for projection (e.qg.,
projection of a point onto a coordinate axis).

Perform a cross product and demonstrate how to use it to compute a surface normal.
Perform matrix multiplication.

Derive a parametric expression for a line hetween two points.

Prove that your parametric expression is correct. Discuss whether it is unique.
Derive an implicit expression for an edge between two points.

Prove that your implicit expression is correct. Discuss whether it is unique.

S - o

Use an implicit edge expression to determine whether a (2D) point is inside a (projected)
triangle.

10. Create an algorithm to rasterize a triangle from a set of “inside-triangle” tests.
11. Make that algorithm efficient so that not every pixel needs to be tested.

(MU 15-462/662, Spring 2016

