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Lecture 25:

The Light Field and 
Computational Cameras

Credit: light-field camera slides courtesy of Ren Ng
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Takeaway from today’s lecture
The values of pixels in photographs you see on screen 

are quite different than the values output by the 
photosensor in a modern digital camera. 

Computation is now a fundamental aspect of 
producing high-quality good pictures.
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Computation
Output of 

sensor (“RAW”)

Beautiful 
image
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Camera’s lens system focuses light on sensor

3Image credit: Canon

Sensor

Canon 14 MP CMOS Sensor 
(14 bits per pixel)
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CMOS sensor pixel
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Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

Fill factor: fraction of surface area 
used for light gathering 

Microlens (a.k.a. lenslet) steers light 
toward photo-sensitive region 
(increases light-gathering capability) 

Microlens also serves to prefilter 
signal. Why? 

Quantum efficiency of photodiode in 
typical digital camera ~ 50%

Color filter attenuates light 
(more on this soon) 

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html
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Reading sensed signal off sensor
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Row select 
Register

ADCAmplify
Bits

Row buffer 
(shift register)

…
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Measurement noise

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

▪ Photon shot noise: 
- Photon arrival rates feature poisson distribution 
- Standard deviation = sqrt(N) 
- Signal-to-noise ratio: N/sqrt(N) 

▪ Dark-shot noise 
- Due to leakage current 

▪ Non-uniformity of pixel sensitivity 

▪ Read noise 
- e.g., due to amplification prior to ADC
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http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html
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Noise
Black image examples: Nikon D7000, High ISO
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1/60 sec exposure 1 sec exposure 
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Color filter array (Bayer mosaic)
▪ Color filter array placed over sensor 

▪ Result: each pixel measures red, green, or blue light 

▪ 50% of pixels are green pixels
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Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit: 
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)
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Demosiac
▪ Produce RGB image from mosaiced input image 

▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors) 

▪ More advanced algorithms: 

- Bicubic interpolation (wider filter support region… may overblur) 

- Good implementations attempt to find and avoid interpolation across edges 

9Image credit: Mark Levoy
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RAW sensor output (simulated data)
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RAW output of sensor

Light Hitting Sensor

Bad row

“Hot pixel”
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Other corrections
▪ Dead pixels 

▪ Vignetting (optical and pixel) 

▪ Lens distortion 

▪ …
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Barrel distortion

Vignetting 
(less light at corner pixels)

Takeaway: a complex pipeline of image processing operations is 
required to convert the output of a sensor to an image that 
you’d actually want to see.
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Light L16 camera
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16 synchronized cameras: allows for varying exposure, zoom, focal depth, etc..

[Image credit: http://www.theverge.com/2015/10/7/9473793/light-l16-16-lens-camera-specs-price]
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The light field

13

[Levoy and Hanrahan 96]

[Gortler et al., 96]
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Light-field parameterization
Light field is a 4D function (represents light in free space: no occlusion)
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Efficient two-plane parameterization 

Line described by connecting point on (u,v) plane with point on (s,t) plane 

If one of the planes placed at infinity:  point + direction representation 

Levoy/Hanrahan refer to representation as a “light slab”: beam of light entering one 
quadrilateral and exiting another

[Image credit: Levoy and Hanrahan 96]
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Sampling the light field
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U=1

U=0 S=0

S=1

Simplification: only showing lines in 2D 
(full light field is 4D function)
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Sampling the light field by taking pictures
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U=1

U=0 S=0

S=1

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]
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Stanford Camera Array
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640 x 480 tightly synchronized, 
repositionable cameras  

Custom processing board per camera 

Tethered to PCs for additional 
processing/storage

Host PC with 
disk array

Wilburn et al. 2005
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Light field storage layouts

18[Image credit: Levoy and Hanrahan 96]
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Line-space representation
Each line in Cartesian space* is represented by a point in line space
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Cartesian space Line space

* Shown here in 2D, generalizes to 3D Cartesian lines [Image credit: Levoy and Hanrahan 96]
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Light field inside a pinhole camera
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Sensor plane: (X,Y)

Lens aperture plane: 
(U,V)

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Pinhole at (0.5, 0.5)

0.5

Scene object 2Scene object 1
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Review: camera with finite aperture
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

Field of view

Scene object 2Scene object 1
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Light field inside a camera
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot 
(only showing X-U 2D projection)

Pixel P1 Pixel P2

Field of view

Scene object 2Scene object 1

Sensor pixels measure integral of energy from all 
rays of light passing through points on the aperture 
and a pixel-sized area of the sensor.
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Decrease aperture size
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2



 CMU 15-462/662, Spring 2016

Defocus
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Circle of 
confusion

Previous sensor 
plane location
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Defocus

25Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

X

U

Ray space plot

Pixel P1 Pixel P2
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How might we measure the light field inside a camera?
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot 
(only showing X-U 2D projection)

Pixel P1 Pixel P2

Field of view

Scene object 2Scene object 1
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Intuition: handheld light field camera
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Lens aperture: (U,V)

World plane of focus

Intuition: build an optical system where 
each region of the sensor “takes” a picture 
of the aperture of the main lens

Sensor plane: (X,Y)
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Handheld light field camera
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

[Ng et al. 2005]

Implementation: microlens array placed 
just on top of the sensor.

Pixel 1 Pixel 2

[Adelson and Wang, 1992]
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Each sensor pixel records a small beam of light inside the camera
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

X

U
Pixel 1
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Each sensor pixel records a small beam of light inside the camera
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 2

X

U
Pixel 1

Pixel 2
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Microlens Array
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Where Microlenses Go Inside Camera
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Cross-section of Nikon D3, 14-24mm F28 lens, Credit: ?? 
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Where Microlenses Go Inside Camera
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Where Microlenses Go Inside Camera
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Lens SensorCover Glass
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Where Microlenses Go Inside Camera
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Lens SensorCover Glass
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Raw Data From Light Field Sensor
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Raw Data From Light Field Sensor
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Raw Data From Light Field Sensor
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One disk image
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Raw Data From Light Field Sensor
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u,v

x,y

Mapping Sensor Pixels to (x,y,u,v) Rays
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u,v

  
Microlens location  
in image field of view 
gives (x,y) coord

Pixel location in  
microlens image  
gives (u,v) coord

x,y
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u,v

x,y

Mapping Sensor Pixels to (x,y,u,v) Rays
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u,v

Microlens location  
in image field of view 
gives (x,y) coord

Pixel location in  
microlens image  
gives (u,v) coord

x,y



 CMU 15-462/662, Spring 2016

Analogy: Shooting RAW vs JPG (2D Photos)
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RAW Bayer 14-bit data preserves 
intensity information, and provides 
flexibility over exposure and color.
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Shooting 4D Light Field vs 2D Photographs
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Light field data preserves directional 
intensity information, and provides 
flexibility over focus and aberrations.
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Check your understanding

44
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Sub-Aperture Images
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Image from selecting the same pixel under every microlens

Umin
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Sub-Aperture Images
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Image from selecting same pixel under every microlens

Umax
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Sub-Aperture Images

47

x

u
x

u

Sub-aperture image, max u
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Sub-Aperture Images
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x

u
x

u

Sub-aperture image, min u
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Lateral movement (left)

Application: computational Change of Viewpoint
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Lateral movement (right)

Application: computational Change of Viewpoint

50
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How do you compute a photograph from a light field?

51
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Computing a photograph from a light field
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

X

U

Pixel 1

Pixel 14

Pixel 14

Ray space plot

Computing photograph is integral projection 
(Output image pixel is sum of highlighted light-
field sensor pixels)
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Computing a photograph at a new focal plane
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Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 6

Virtual focal plane

X

U

Computing photograph is integral projection 
(Output image pixel is integral over highlighted 
region: resample)
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x

u

Output Image Pixel is Sum of Many Sensor Pixels
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Consumer Light Field Resolutions Today
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Lytro (2012) 
10 MegaRay 

~10 pixels / microlens

Lytro ILLUM (2014) 
40 MegaRay  

~14 pixels / microlens
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Sensor Industry Has Large Untapped Resolution
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Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

1/3” Sensor 
4.8 x 3.6 mm 
Up to 13 MP 

1.12 micron pixel



 CMU 15-462/662, Spring 2016

Sensor Industry Has Large Untapped Capability
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Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

1/3” Sensor 
4.8 x 3.6 mm 
Up to 13 MP 

1.12 micron pixel

Full-Frame Sensor 
36 x 24 mm 

688 MP 
1.12 micron pixel
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New photography applications

▪ Single shot capture of information that can be used to generate 
many different photographs 
- Digital (post shot) refocusing 

- Parallax (computational change of viewpoint) 

- Extended depth of field (put entire image in focus) 

- Stereo images 

▪ Better camera performance: 
- Reduced shutter lag: in the limit, no need for autofocus 

- Potential for better low-light performance (always shoot with wide aperture, since 
misfocus due to shallow depth-of-field can be corrected after the shot) 

- Correction of lens aberrations

64
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Trends
▪ No free lunch: measure directional information at cost of spatial resolution 

- Ng’s original prototype: 16 MP sensor, but output was 300x300 images 

- Original Lytro camera: 11MP sensor, ~1MP output images 

▪ Light field cameras can make use of increasing sensor pixel densities 

- More directional resolution = increased refocusing capability 

- More spatial resolution at fixed directional resolution 

- Few motivations high-pixel-count sensors for traditional cameras today 

▪ High-resolution cameras introduce computational challenges 

- Processing challenges 

- Storage challenges 

- Data-transfer challenges

65
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What you should know:
▪ Give examples of the types of computation that may be done within the camera itself to 

assemble and improve the final generated image. 

▪ What are sources of noise in capturing / measuring images in a typical digital camera? 

▪ How is color handled in a typical digital camera (e.g., explain the Bayer mosaic)? 

▪ What does it mean to “demosaic” an image? 

▪ Give some examples of how an image may be improved using outputs from multiple 
cameras (e.g., as in the Light L16 camera).  

▪ Give a 4D lightfield parameterization of rays entering a camera using coordinates on the 
image plane and on the camera lens. 

▪ How does the microlens array of a lightfield camera allow this 4D space to be captured 
within a single 2D array?    Draw sketches to illustrate your answer. 

▪ What are the advantages to capturing a 4D representation of the light energy in a scene vs. 
a standard 2D image representation? 

▪ What are the disadvantages?

66


