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Warm up: 
Putting many recent concepts together: 

JPEG Compression 
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JPEG compression: the big ideas

▪ Low-frequency content is predominant in images of the real world 

▪ The human visual system is: 
- less sensitive to high frequency sources of error 
- less sensitive to detail in chromaticity than in luminance 

3[Credit: Pat Hanrahan]

Therefore, it’s often acceptable for a 
compression scheme to introduce errors in 
high-frequency components of the image.
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JPEG: color space conversion and chroma 
subsampling
▪ Convert image to Y’CbCr color representation 

▪ Subsample chroma channels (e.g., to 4:2:0 format)

4

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:  
Store Y’ at full resolution 
Store Cb, Cr at half resolution in both dimensions



 CMU 15-462/662, Spring 2016

Apply discrete cosine transform (DCT) to each 
8x8 block of image values

5

i = 0

basis[i, j] = 

DCT computes projection of image 
onto 64 basis functions: 
basis[i, j]

DCT applied to 8x8 pixel blocks of Y’ 
channel, 16x16 pixel blocks of Cb, Cr 
(assuming 4:2:0)

i = 7
j = 0 j = 7
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Quantization

6

Quantization produces small values for coefficients (only few bits needed per coefficient) 
Notice: quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan

Changing JPEG quality setting in your favorite photo app 
modifies this matrix (“lower quality” = higher values for 
elements in quantization matrix) 

Result of DCT 
(representation of image in cosine basis)

Quantization Matrix

=

[Credit: Pat Hanrahan]
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JPEG compression artifacts

7

Noticeable 8x8 pixel block boundaries 

Low quality Medium quality 

Low-frequency regions of image represented accurately even under high compression

Noticeable error near large color gradients
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JPEG compression artifacts

8
Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not 
be a good compression scheme for 
illustrations and rasterized text?
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Lossless compression of quantized DCT values

9

Quantized DCT Values 

Reordering
Entropy encoding: (lossless) 

Reorder values 

Run-length encode (RLE) 0’s 

Huffman encode non-zero values

Image credit: Wikipedia
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JPEG compression summary

Convert image to Y’CbCr 
Downsample CbCr  (to 4:2:2 or 4:2:0)        (information loss occurs here) 
For each color channel (Y’, Cb, Cr): 

For each 8x8 block of values 
Compute DCT 
Quantize results                             (information loss occurs here) 
Reorder values 
Run-length encode 0-spans 
Huffman encode non-zero values

10
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Key theme: exploit characteristics of human 
perception to build efficient image storage and 
image processing systems

▪ Separation of luminance from chrominance in color representations (e.g, 
Y’CrCb) allows reduced resolution in chrominance channels (4:2:0) 

▪ Encode pixel values linearly in lightness (perceived brightness), not in 
luminance (distribute representable values uniformly in perceptual space) 

▪ JPEG compression significantly reduces file size at cost of quantization error 
in high spatial frequencies 
- human brain is more tolerant of errors in high frequency image 

components than in low frequency ones 
- Images of the real-world are dominated by low-frequency components

11
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Basic image processing operations 

(This section of the lecture will describe how to implement 
a number of basic operations on images)

12
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Example image processing operations

13

Blur
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Example image processing operations

14

Sharpen



 CMU 15-462/662, Spring 2016

Edge detection

15
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A “smarter” blur (doesn’t blur over edges)

16
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Denoising

17

Denoised

Original
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Review: convolution

18

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function: 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1
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Discrete 2D convolution

19

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

(f ⇤ g)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “filter weights”, “kernel”)
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Simple 3x3 box blur
float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 

   for (int i=0; i<WIDTH; i++) { 

      float tmp = 0.f; 

      for (int jj=0; jj<3; jj++) 

         for (int ii=0; ii<3; ii++) 

            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

      output[j*WIDTH + i] = tmp; 

  } 

}

20

Will ignore boundary pixels today and 
assume output image is smaller than 
input (makes convolution loop bounds 
much simpler to write) 
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7x7 box blur

21

Original

Blurred



 CMU 15-462/662, Spring 2016

Gaussian blur
▪ Obtain filter coefficients from sampling 2D Gaussian

22

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution 
falls off with distance) 

-Truncate filter beyond certain distance
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7x7 gaussian blur

23

Original

Blurred
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What does convolution with this filter do?

24

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!
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3x3 sharpen filter

25

Original

Sharpened
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What does convolution with these filters do?

26

Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical 
gradients
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Gradient detection filters

27

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the filter 
to the region surrounding each pixel 
in the input image (this is a common 
interpretation in computer vision)
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Sobel edge detection
▪ Compute gradient response images

28

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

G
x

2 +G
y

2

Pixel-wise operation on images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

G
x

2 +G
y

2
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Cost of convolution with N x N filter?
float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 

   for (int i=0; i<WIDTH; i++) { 

      float tmp = 0.f; 

      for (int jj=0; jj<3; jj++) 

         for (int ii=0; ii<3; ii++) 

            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

      output[j*WIDTH + i] = tmp; 

  } 

}

29

In this 3x3 box blur example: 
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter:  N2 x WIDTH x HEIGHT
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Separable filter
▪ A filter is separable if is the product of two other filters 

- Example: a 2D box blur 

- Exercise: write 2D gaussian and vertical/horizontal 
gradient detection filters as product of 1D filters (they are 
separable!) 

▪ Key property: 2D convolution with separable filter can be 
written as two 1D convolutions!

30

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤
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Implementation of 2D box blur via two 1D 
convolutions 
int WIDTH = 1024 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./3, 1./3, 1./3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

31

For NxN filter:  2N x WIDTH x HEIGHT

Total work per image = 6 x WIDTH x HEIGHT

Extra cost of this approach?

Storage! 
Challenge: can you achieve this work 
complexity without incurring this cost? 
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Data-dependent filter (not a convolution)
float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

for (int j=0; j<HEIGHT; j++) { 

   for (int i=0; i<WIDTH; i++) { 

      float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 

                             min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 

      float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 

                             max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 

      output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]); 

    } 

}

32

This filter clamps pixels to the min/max of its cardinal neighbors 
(e.g., hot-pixel suppression) 
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Median filter

uint8 input[(WIDTH+2) * (HEIGHT+2)]; 
uint8 output[WIDTH * HEIGHT]; 

for (int j=0; j<HEIGHT; j++) { 

   for (int i=0; i<WIDTH; i++) { 
      output[j*WIDTH + i] = 

           // compute median of pixels 
           // in surrounding 5x5 pixel window  

   } 

}

33

▪ Replace pixel with median of its neighbors 
- Useful noise reduction filter: unlike gaussian 

blur, one bright pixel doesn’t drag up the 
average for entire region 

▪ Not linear, not separable 
- Filter weights are 1 or 0 

(depending on image content)

▪ Basic algorithm for NxN support region: 
- Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel 
- Can you think of an O(N2) algorithm? What about O(N)?
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Bilateral filter

34

Example use of bilateral filter: removing noise while preserving image edges
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Bilateral filter

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels 
on the other side of strong edges.  f (x) defines what “strong edge means” 

▪ Spatial distance weight term f (x) could itself be a gaussian 
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

35

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a 
truncated gaussian kernel 

But weight is combination of spatial distance and input image pixel intensity difference. 
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference 
in input image pixel values

For all pixels in support region 
of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)
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Bilateral filter

36Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity 
as p contribute little to filtered result (they 
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image
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Bilateral filter: kernel depends on image content 

37Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect 
(it will blur across these edges)
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Data-driven image processing: 
“Image manipulation by example” 

(main idea: pixel patterns in another part of the image are hints 
for how to improve image in the current region)

38



 CMU 15-462/662, Spring 2016

Denoising using non-local means
▪ Main idea: replace pixel with average value of nearby pixels 

that have a similar surrounding region. 
- Assumption: images have repeating structure

39

- Np and Nq are vectors of pixel values in square window around pixels p and q 
(highlighted regions in figure) 

- L2 difference between  Np and Nq  = “similarity” of surrounding regions 
- Cp is just a normalization constant to ensure weights sum to one for pixel p. 
- S is the search region around p (given by dotted red line in figure) 

p

q

Np

NqAll points in search 
region about p

NL[I](p) =
X

q2S(p)

w(p, q)I(q)

w(p, q) =
1

Cp
e�

kNp�Nqk2

h2
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Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p 

- Intuition: filtered result is the average of pixels “like” this one 
- In example below-right: q1 and q2 have high weight, q3 has low weight

40

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair below: 
- Image at left shows the pixel p to denoise. 
- Image at right shows weights of pixels in 21x21-pixel 

kernel support window surrounding p.



 CMU 15-462/662, Spring 2016

Texture synthesis
▪ Input: low-resolution texture image 
▪ Desired output: high-resolution texture that appears “like” the input

41

Source texture 
(low resolution) High-resolution texture generated by naively tiling low-resolution texture
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Algorithm: non-parametric texture synthesis
Main idea: given the NxN neighborhood Np around unknown pixel p, want a probability 
distribution function for possible values of p, given Np:  P(p=X | Np)  

42

P

[Efros and Leung 99]

For	
  each	
  pixel	
  p	
  to	
  synthesize:	
  

1. Find	
  other	
  NxN	
  patches	
  (Nq)	
  in	
  the	
  image	
  that	
  are	
  most	
  similar	
  to	
  Np	
  

2. Center	
  pixels	
  of	
  the	
  closest	
  patches	
  are	
  candidates	
  for	
  p	
  

3. Randomly	
  sample	
  from	
  candidates	
  weighted	
  by	
  distance	
  d(Np,Nq)	
  

Np
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Non-parametric texture synthesis

43

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23



 CMU 15-462/662, Spring 2016

More texture synthesis examples

44

Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]
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Image completion example

45

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

See PatchMatch algorithm [Barnes 2009] for a fast 
randomized algorithm for finding similar patches

Goal: fill in masked region with 
“plausible” pixel values.



 CMU 15-462/662, Spring 2016

Image processing summary

▪ Image processing via convolution 
- Different operations specified by changing weights of 

convolution kernel 
- Separable filters lend themselves to efficiency implementation 

as multiple 1D filters 

▪ Data-driven image processing techniques 
- Key idea: use examples from other places in the image as priors 

to determine how to manipulate image 

▪ To learn more: consider 15-463/663: “Computational Photography”

46
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Computer Graphics courses 2016-2017
▪ Fall 2016 

- 15-462/15-662    Computer Graphics                         Profs. Crane/Coros 
- 15-463/15-663    Computational Photography    Prof. Kitani 
- 15-769                     Visual Computing Systems         Prof. Fatahalian 

▪ Spring 2017 
- 15-462/15-662    Computer Graphics                Prof. Pollard 
- 15-464/15-664    Technical Animation             Prof. Pollard 
- 15-365/60-422    Experimental Animation    Profs. Hodgins/Deusing

47
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Computer Graphics courses 2017-2018
▪ Fall 2017 

- 15-462/15-662    Computer Graphics                Profs. Fatahalian/Coros 
- 15-463/15-663    Computational Photography         Prof. Kitani 
- 15-869                     Discrete Differential Geometry     Prof. Crane 

▪ Spring 2018 
- 15-462/15-662    Computer Graphics                Prof. Pollard 
- 15-4??/15-6??      Geometry Processing            Prof. Crane 
- 15-465/60-414    Animation Art and Technology  Profs. Hodgins/Deusing 
- 15-869    Computational Aspects of Fabrication     Prof. Coros 
- 16-899    Hands:  Design and Control for Dexterous Manipulation  Prof. Pollard 

48
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What you should know:
▪ What is the flow of operations involved in JPEG compression?   How does JPEG compression 

achieve reduced storage space?   What kinds of artifacts can be expected to result? 

▪ Show examples of 3x3 blur, sharpening, and edge detection filters.   Be able to generalize 
these ideas (e.g., create a filter to detect diagonal edges). 

▪ Why is a Gaussian filter preferred to the box filter for creating blur?   (You may want to 
refer back to the beginning of the course.) 

▪ How does the median filter work?   What is it designed to achieve? 

▪ How does the bilateral filter work?   What is it designed to achieve? 

▪ We discussed a technique to de-noise images using information from other parts of the 
image (specifically, pixels having similar local neighborhoods).    Explain this approach. 

▪ We also discussed a non-parameteric texture synthesis technique that similarly makes use 
of neighborhood information to fill in empty pixels.    Give pseudocode for such a 
technique. 

▪ Which of the following filters use convolution?    If a filter does not work through 
convolution, explain why not.     The filter types are:    blur, median, sharpen, edge 
detection, bilateral.

49


