Lecture 24:

Image Processing

Computer Graphics
CMU 15-462/15-662, Spring 2016

Warm up:
Putting many recent concepts together:
JPEG Compression

JPEG compression: the big ideas

m Low-frequency content is predominant in images of the real world

|

Therefore, it’s often acceptable for a
compression scheme to introduce errors in
high-frequency components of the image.

B The human visual system is: |

- less sensitive to high frequency sources of error
- less sensitive to detail in chromaticity than in luminance

[Credit: Pat Hanrahan] 3 (MU 15-462/662, Spring 2016

JPEG: color space conversion and chroma
subsampling

m Convertimage to Y'ChCr color representation
m Subsample chroma channels (e.g., to 4:2:0 format)

Y00 Y'10 Y'20 Y30
Choo Chyo
Croo Crao
Y01 Y1 Y2 Y31

4:2:0 representation:
Store Y’ at full resolution
Store Ch, Cr at half resolution in both dimensions

4 (MU 15-462/662, Spring 2016

Apply discrete cosine transform (DCT) to each
8x8 block of image values

basis[i, j] = cOs

X COS

DCT computes projection of image
onto 64 basis functions:
basisli,]

DCT applied to 8x8 pixel blocks of Y’
channel, 16x16 pixel blocks of Cb, Cr
(assuming 4:2:0)

5 (MU 15-462/662, Spring 2016

Quantization

—415 =30 —-61 27 56 —-20 -2 O]
4 =22 -61 10 13 -7 =9 5
-47 7 =25 =29 10 5 -6
-49 12 34 -15 =10 6 2 2
12 -7 -13 -4 -2 2 -3 3
-8 3 2 —b -2 1 4 2
-1 0 0 -2 -1 -3 4 -1
0 o -1 -4 -1 0 1 2

Result of DCT
(representation of image in cosine basis)

2% -3 -6 2 2 -1 0 0
0 -2 -4 1 1 0 00
-3 1 5 =1 =1 0 0 0
4 1 2 -1 0 0 00
— 1 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00

16
12
14
14
13
24
49
72

11
12
13
17
22
39
64
92

10 16 24 40 51
14 19 26 53 60

b
29
16 24 40 57 69 56
62

22 29 51 37 30
37 56 63 109
5> 64 31 104
3 37 103 121
> 93 112 100

Quantization Matrix

103 77
113 92
120 101
103 99

Changing JPEG quality setting in your favorite photo app
modifies this matrix (“lower quality” = higher values for
elements in quantization matrix)

JPEG Options

Matte: None

— Image Options

Quality: |9 | | High

small file

Cancel
u Preview

large file
836.3K

Quantization produces small values for coefficients (only few bits needed per coefficient)

Notice: quantization zeros out many coefficients

[Credit: Pat Hanrahan]

Slide credit: Wikipedia, Pat Hanrahan
6 CMU 15-462/662, Spring 2016

JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality : Medium quality

Low-frequency regions of image represented accurately even under high compression , ¢\ 1< 42662, soring 2016

JPEG compression artifacts

a

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

Quality Level 3 Quality Level 1
8

(MU 15-462/662, Spring 2016

Lossless compression of quantized DCT values

26 -3 -6 2 2 -1 00 B
0 -2 -4 1 1 0 00 4 VvV
-3 1 5 -1 =1 0 0 0 | v
-4 1 2 -1 0 0 00
1 0 0 0 0 0 00 N/ v
0 0 0 0 0 0 00
0 0 0 0 0 0 00 ~
10O 0 0 0 0 0 0 0 "/ ya
Quantized DCT Values avay “
Entropy encoding: (lossless) ‘ _I ‘ _| ' _l |
Reorderin
Reorder values]

Run-length encode (RLE) 0s

Huffman encode non-zero values

Image credit: Wikipedia 9 (MU 15-462/662, Spring 2016

JPEG compression summary

Convert image to Y'ChCr
Downsample CbCr (to 4:2:2 0r4:2:0) (information loss occurs here)
For each color channel (Y, Ch, Cr):
For each 8x8 block of values
Compute DCT

Quantize results (information loss occurs here)
Reorder values

Run-length encode 0-spans
Huffman encode non-zero values

10CMU 15-462/662, Spring 2016

Key theme: exploit characteristics of human
perception to build efficient image storage and
Image processing systems

m Separation of luminance from chrominance in color representations (e.g,
Y'CrCb) allows reduced resolution in chrominance channels (4:2:0)

B Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

m JPEG compression significantly reduces file size at cost of quantization error
in high spatial frequencies

- human brain is more tolerant of errors in high frequency image
components than in low frequency ones

- Images of the real-world are dominated by low-frequency components

11CMU 15-462/662, Spring 2016

Basicimage processing operations

(This section of the lecture will describe how to implement
a humber of basic operations on images)

12 (MU 15-462/662, Spring 2016

Example image processing operations

(MU 15-462/662, Spring 2016

Example image processing operations

& . ' " . . - - -' . r e . . b X 1 < AR5 i

YL s e ~ -
~ e P . " »

: : X PR Co iy VPR S
- . . » . v » . 4
e B aped et s Mgy "o . . v ' e

N ey ' A
R ey
P el ARy e

-y gt T PEH
RS ~eWrE A ‘.{. € D S Al 9 e I3 SRR - . Tl an s
s . . 5 o - ” . . »

." 4 . ““

(MU 15-462/662, Spring 2016

Edge detection

15 (MU 15-462/662, Spring 2016

A“smarter” blur (doesn’t blur over edges)

16 (MU 15-462/662, Spring 2016

Denoising

Denoised

(MU 15-462/662, Spring 2016

Review: convolution

O

yZanlat N

output signal filter input signal

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

f(z) = {1 7| < O,'5 - 11

0 otherwise

0.5 4_“‘“4 . >
(f *g)(r) = / g(x —y)dy 0.5 0.5

/ —0.5

[* gisa“smoothed” version of g

18 (MU 15-462/662, Spring 2016

Discrete 2D convolution

T Tj—

output image filter input image

Consider f (7, 7) thatisnonzeroonlywhen: —1 < 7,7 <1
Then:

(f *9)(z,y) Z f(i,) (z — i,y —)

And we can represent f(i,j) as a 3x3 matrix of values where:

f (iv 7) — Fq;, j (often called: “filter weights”, “kernel”)

19 (MU 15-462/662, Spring 2016

Simple 3x3 box blur

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; <————— — Willignore boundary pixels today and

assume output image is smaller than

float weights[] = {1./9, 1./9, 1./9, input (makes convolution loop bounds
1./9, 1./9, 1./9, much simpler to write)

1./9, 1./9, 1./9};

for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; jj<3; jj++)
for (int ii=0; 1ii<3; 1ii++)
tmp += input[(j+3jj) * (WIDTH+2) + (i+ii)] * weights[jj*3 + 1ii];
output[J*WIDTH + i] = tmp;

20 (MU 15-462/662, Spring 2016

7x7 box blur

Original

Blurred

(MU 15-462/662, Spring 2016

Gaussian blur

m (Obtain filter coefficients from sampling 2D Gaussian

1 i2 4 52

f(Z7j) — 27_‘_0_26 20

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— Truncate filter beyond certain distance

075 124 .075
124 .204 124

075 124 075

22 (MU 15-462/662, Spring 2016

7x7 gaussian blur

Original

Blurred

(MU 15-462/662, Spring 2016

What does convolution with this filter do?

0 -1 0

Sharpens image!

3x3 sharpen filter

Original

3 Bl B ko JIONC. TOTEER & r““

-S‘kuﬂ.’h ¥

S d *' B0 BT K T |
arpene 4l 16 T H""&. RRiol. ey IUE.T

"("I"TTJT" - .; L s
=3 | O3S b LU Ol

|r-f.l -
e e @b .

1 2088 e u‘ A -
Eeorn | _.afJ A [. ¥ O (L [mer 5

'Y'lf

S -

> ALY ".‘;I\] I e 130 3

o e |

¥R [T I o ' m‘::"'_.ﬂmx_.;.,

‘L.'E a B

CETIERA e

| 225021 BERR oINS |
JB-..?M.JE

115_.35 LR

L8 ' % R Y e b -_.YL'_;'.:.:.;..- BPESE |
TK'_*S(!L;“ e ol & IERSEE I
R [7 e] Lo L L]]

o e | S | T)

2Tl § e | K0S [N) 23 : .::]-q.._ | .

: o JP L_:—] 5 3['.:...![. ‘zm..“:r

5 [r:—.mu_-) b..J

I..i'lk.. oud UG | £d B AL
'] Rl [71 CEXSZES 030 (=] U] [R

 RECE] BRI Y by RO T

! -rrﬁ;' --]ﬁ ".‘.'- > ‘A l’, __4.. — l J bols - |
e ’ 'p |' 'i » |"‘L(

M E L [(S B | : .
el Fad s L_...f.h-_..__.L.. o B== 3[
. "'_.'.'3(‘;

-_ r.' _ : .'
L be adl L3 ([_.-...-
S 7T s J | P N PO N TN
A . o S EAsar -3 DO |
[7 s [eQ D] i) meare] B T

ARSI EEETE L

21 ESIN [0 ETS

:,.. : 2]
| S ORI f'"""l[.—"ni _j_.'-]f—'—'l.’ Lo Pk S [0
o | ; | .'."I.... w =

A el I..’I]..;-._J[” iH BX
3) B R A

- '_———--—vw<
(R S,

m :c':rj C,

(MU 15-462/662, Spring 2016

What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients

Grad

ient detection filters

Horizontal gradients

e —?%——.-———Q- — - — | — —

e e et T e A e oo e Vertical gradients

=
- e I — - — - > T A—— . S — . S — - — T S - | AN - e

— — e ——— —— —— — L e . R, D - - D . I A - e

— e ——— - Note: you can think of a filteras a
“detector” of a pattern, and the
et b T 4= = o magnitude of a pixel in the output

. —— et e | —

T . T S e e awm D - — . T M D S—— e < —

— image as the “response” of the filter

<Ae = e = IR T e to the region surrounding each pixel

— — -— L e R - - — — B e e———_ - —————

—

— - — - | ——— D e c——————

¢ e e e in the input image (this is a common
interpretation in computer vision)

27 (MU 15-462/662, Spring 2016

Sobel edge detection

m Compute gradient response images

—1 0 1
Gy, =[—-2 0 2| %1

-1 0 1

-1 -2 -1
Gy =10 0 0 | 1

12 1

® Find pixels with large gradients

G=1/G+G,

YT Pixel-wise operation on images

28 (MU 15-462/662, Spring 2016

Cost of convolution with N x N filter?

float input[(WIDTH"‘Z) * (HEIGHT+2)] y In this 3x3 box blur example:
float output[WIDTH * HEIGHT]; Total work perimage = 9 x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9, ForNxN filter: N2x WIDTH x HEIGHT
1./9, 1./9, 1./9,

1./9, 1./9, 1./9};

for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; jj<3; jj++)
for (int ii=0; 1ii<3; 1ii++)
tmp += input[(j+3jj) * (WIDTH+2) + (i+ii)] * weights[jj*3 + 1ii];
output[J*WIDTH + i] = tmp;

29 (MU 15-462/662, Spring 2016

Separable filter

m Afilteris separable if is the product of two other filters

- Example: a 2D box blur
1 1 1 1
1 1 1
§111:§1*§[111}
11 1 1

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection filters as product of 1D filters (they are
separable!)

m Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

30 (MU 15-462/662, Spring 2016

Implementation of 2D box blur via two 1D
convolutions

int WIDTH = 1024 Total work perimage =6 x WIDTH x HEIGHT
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)]; For NxN filter: 2N x WIDTH x HEIGHT

float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT] ;

Extra cost of this approach?
float weights[] = {1./3, 1./3, 1./3};

Storage!
for (int j§=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) { Challenge: can you achieve this work
float tmp = 0.f; o o o - -
for (int 1120, 4i<3; iit+) complexity without incurring this cost?
tmp += input[j* (WIDTH+2) + i+ii] * weights[ii];
tmp buf[J*WIDTH + i] = tmp;
)

for (int j=0; J<HEIGHT, j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; 3J3<3; JFj++)
tmp += tmp buf[(j+jj)*WIDTH + i] * weights[jj];
output[jJ*WIDTH + i] = tmp;
}
}

31 (MU 15-462/662, Spring 2016

Data-dependent filter (not a convolution)

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT] ;

for (int j=0; J<HEIGHT; j++) {
for (int i1=0; i<WIDTH; i++) {
float min value = min(min(input[(j-1)*WIDTH + 1i], input[(j+1)*WIDTH + 1i]),
min (input[jJ*WIDTH + i-1], input[j*WIDTH + i+l1l]))

float max value max (max (input[(j-1) *WIDTH + i], input[(j+1)*WIDTH + i]),

max (input[jJ*WIDTH + i-1], input[j*WIDTH + i+l1l])),
output[J*WIDTH + i] = clamp(min value, max value, input[j*WIDTH + i]);

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression)

32(MU 15-462/662, Spring 2016

Median filter

m Replace pixel with median of its neighbors §

— Useful noise reduction filter: unlike gaussian
blur, one bright pixel doesn’t drag up the
average for entire region

B Not linear, not separable

— Filter weightsare 10r 0
(depending on image content)

1px médian fivlnter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT] ;
for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH, i++) {
output[J*WIDTH + 1] =

// compute median of pixels

// in surrounding 5x5 pixel window o , -
} 3px median filter 10px median filter
}

m Basicalgorithm for NxN support region:

— Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel
— (an you think of an 0(N2) algorithm? What about O(N)?

33(MU 15-462/662, Spring 2016

Bilateral filter

o
»

* 5

o S Y y

G LN R .r_ o ' .
% - . N £ 2

Example use of bilateral filter: removing noise while preserving image edges

34 (MU 15-462/662, Spring 2016

Bilateral filter

Gaussian blur kernel Input image

N, /.

= f(ld(z =i,y —3)— I(z,y)|)GE) I(x — i,y — j)
e
For all pixels in support region Re-weight based on difference
of Gaussian kernel in input image pixel values

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

B The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the other side of strong edges. f(x) defines what “stronqg edge means”

B Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple:f(x) =0 if x > threshold, 1 otherwise

35CMU 15-462/662, Spring 2016

Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 36CMU 15-462/662, Spring 2016

Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. 37CMU 15-462/662, Spring 2016

Data-driven image processing:
“Image manipulation by example”

(main idea: pixel patterns in another part of the image are hints
for how to improve image in the current region)

38 (MU 15-462/662, Spring 2016

Denoising using non-local means

m Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding region.

region about p

1 INp—Ng|l? -
w(p,q) = ol h2 ‘
P A A A) N S U S

- Assumption: images have repeating structure _*_______________],
NL[I](p) = » w(p,a)I(q)
a€S(p) N : '
All points in search — _ ENq '

- Ny and Nq are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- L2 difference between N, and Ny =“similarity” of surrounding regions

- Cp is just a normalization constant to ensure weights sum to one for pixel p.

- Sis the search region around p (given by dotted red line in figure)
39CMU 15-462/662, Spring 2016

Denoising using non-local means

B Large weight for input pixels that have similar neighborhood as p

- Intuition: filtered result is the average of pixels “like” this one
- In example below-right: q1 and g2 have high weight, g3 has low weight

In each image pair below:
- Image at left shows the pixel p to denoise.
- Image at right shows weights of pixels in 21x21-pixel
kernel support window surrounding p.

(A) (B)

(C)

Buades et al. CVPR 2005

40CMU 15-462/662, Spring 2016

IS
texture

Texture synthes

image

ion

low-resolut

® [nput

Input

texture that appears “like” the i

ion

high-resolut

m Desired output

Source texture
(low resolution)

M‘.JI‘A-" M‘..J(A-ti N J‘Ar.l B J(Ari N J(A‘rd ..J(A.ri,
YW Ve v Y

R R

e S I R S S R
S AT,

f.f/ f.f/?{f.f/ f.f/?(f.f/
w.,,a fa fa

l,
Sy
,K..j
>
N

.
.n.'lf-.,..

IY

2 o 4 JA' o .= af = W 4 .-(V - W : -. . lv..
..rlr /! l.!-mflr /.., ?J.rrlr /, lf&».flr /! nf&w.rlr /.., l:f.flr /! “

. .6,.”_ 1..,...»“ o 6 .J.,.». .d.s. Jc.». . ,J..s. S ,.u .J,m.,...
o ! &> ! - . -

Ny .«.;w.n. s ﬂmn ST «A&. v a.nn S
e N, , /nfzf!r,/{!flr/?{»flr/!flrfl

- i Ny b ,d..». . Ny A f..s. 2 lu b Ny
A

A o Syt 5o e 5y
- .xf J./afaf .f / .faf Jr/ .faf .f / _fz? ...r /, _fz? .f / 3
>ty .ﬁ,f.,.v.._.ms... J..aq - ,d..». I..a. ,4.2». o lu, ,d.

.rﬂ..w r
”f{dr;f. /.f lfirt.lf // l.fiﬁt.lf /f l.f{ﬁt.lf // 1.!1/;.1' If jrﬁl’ If l

,d..». l...». e ,J...». 1..2». l.ln 0 lu,d..
_.x lrr _.x lrr ,.x I.r ®” Jrr 2 irr p

High-resolution texture generated by naively tiIing low-resolution texture

41CMU 15-462/662, Spring 2016

Algorithm: non-parametric texture synthesis

Main idea: given the NxN neighborhood N, around unknown pixel p, want a probability
distribution function for possible values of p, given Np: P(p=X|N;)

For each pixel p to synthesize:
1. Find other NxN patches (Ng) in the image that are most similar to Np
2. Center pixels of the closest patches are candidates for p

3. Randomly sample from candidates weighted by distance d(Np,Nq)

[Efros and Leung 99]

42 (MU 15-462/662, Spring 2016

Non-parametric texture synthesis i

Synthesized Textures

| f#ﬂ&%WWW//
'/ﬂW/W/W/W

S s
A | '
, | G T

AN /

'/7//;/4,*///”/%//9'4//
.////A%WW/V//A:////

ff’, 'I/}’ /,ﬁ? /7 ///f/z,y/,v/,{/,{,l/?/y" /9'/19/
/WWWW

./.,%‘észf?///m‘é

| /, N e
,’ s i

e i

;’I i ‘0@

.

Source textures

%
, /J'

-/
"

' e B R ' —-iii—r-—— .._.____.__
E"'f."f-'"'"".‘- h.-!.- :'L""':.:'-.! SEaree oen

Increasing size of neighborhood search window: w(p)

43 (MU 15-462/662, Spring 2016

More texture synthesis examples

Source textures

utitbecornes harder to law
wound itself, at "this daily
ving rooms,” as House Der
2scribed it last fall. He fail
Jthe left a ringing question
wie years of Monica Lewir
inda Tripp?" That now seer
?olitical cornedian A1 Frar
:xtphase of the stoxy will

Synthesized Textures

B AULLLIL LU TR 1L LULILLL TISELL dL ULIS Ud LEW JLUY »
st ndatrears coune Tring roomns,” as Heft he fastnd it
315 dat noears oortseas ribed it last ot hest bedian A1. F
econical Homd it h A1, Heft ars 67 as da Lewindailf]
lian A1 Ths " as Lewning questies last aticarsticall. He
is dianu A1 Jast fal counda Lewr, at "this dailyears d ily
wdianicall. Hooxewing rooms,” as House De fale f De
und itical counoestscyibed itlast fall. He fall. Hefft
15 oxohwoned itnd ithe 1eft a ringing questica Lewnin.
icars coecoms,” astore years of Monica Lewinow seee
a Thas Fring roorne stooniscat nowea re left a roouse
bougstof BMie lelft a Lést fast ngineg lavnesticars Hef
wditxip? Teouself, a ringind itfonestidit a ring que:
.astical cods oxe years of Moung fall. He ribof Mouse
yee years ofanda Tripp?” That hedian A1 Lest fasee yea
ada Tripp? 1olitical coraedian A1ét b f29 5¢ 1ing que
olitical conw xe years of the storears ofas 1 Fratnica L
ras Lew se lesta vione 1 He fas quest nging of, at beou

[Efros and Leung 99]

Naive tiling solution

44(MU 15-462/662, Spring 2016

Image completion example

Completion Result

Goal: fill in masked region with
“plausible” pixel values.

See PatchMatch algorithm [Barnes 2009] for a fast
randomized algorithm for finding similar patches

Image credit: [Barnes et al. 2009]
45CMU 15-462/662, Spring 2016

Masked Region

Image processing summary

® |mage processing via convolution

- Different operations specified by changing weights of
convolution kernel

- Separable filters lend themselves to efficiency implementation
as multiple 1D filters

m Data-driven image processing techniques

- Key idea: use examples from other places in the image as priors
to determine how to manipulate image

m To learn more: consider 15-463/663: “Computational Photography”

46 (MU 15-462/662, Spring 2016

Computer Graphics courses 2016-2017

m Fall 2016
- 15-462/15-662 Computer Graphics Profs. Crane/Coros
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-769 Visual Computing Systems Prof. Fatahalian

m Spring 2017
- 15-462/15-662 Computer Graphics Prof. Pollard
- 15-464/15-664 Technical Animation Prof. Pollard
- 15-365/60-422 Experimental Animation Profs. Hodgins/Deusing

47 (MU 15-462/662, Spring 2016

Computer Graphics courses 2017-2018

Fall 2017

15-462/15-662 Computer Graphics Profs. Fatahalian/Coros
15-463/15-663 Computational Photography Prof. Kitani
15-869 Discrete Differential Geometry Prof. Crane

Spring 2018

15-462/15-662 Computer Graphics Prof. Pollard
15-422/15-6?? Geometry Processing Prof. Crane
15-465/60-414 Animation Art and Technology Profs. Hodgins/Deusing
15-869 Computational Aspects of Fabrication Prof. Coros

16-899 Hands: Design and Control for Dexterous Manipulation Prof. Pollard

48 (MU 15-462/662, Spring 2016

What you should know:

What is the flow of operations involved in JPEG compression? How does JPEG compression
achieve reduced storage space? What kinds of artifacts can be expected to result?

B Show examples of 3x3 blur, sharpening, and edge detection filters. Be able to generalize
these ideas (e.g., create a filter to detect diagonal edges).

®m Why s a Gaussian filter preferred to the hox filter for creating blur? (You may want to
refer back to the beginning of the course.)

B How does the median filter work? What is it designed to achieve?
B How does the bilateral filter work? What is it designed to achieve?

B Wediscussed a technique to de-noise images using information from other parts of the
image (specifically, pixels having similar local neighborhoods). Explain this approach.

m Wealso discussed a non-parameteric texture synthesis technique that similarly makes use
of neighborhood information to fill in empty pixels. Give pseudocode for sucha
technique.

B Which of the following filters use convolution? If a filter does not work through
convolution, explain why not. The filter types are: blur, median, sharpen, edge
detection, bilateral.

49 (MU 15-462/662, Spring 2016

