Lecture 24:

Image Processing

Computer Graphics CMU 15-462/15-662, Spring 2016

Warm up: Putting many recent concepts together: JPEG Compression

JPEG compression: the big ideas

Low-frequency content is predominant in images of the real world

Therefore, it's often acceptable for a compression scheme to introduce errors in high-frequency components of the image.

- The human visual system is:
 - less sensitive to high frequency sources of error
 - less sensitive to detail in chromaticity than in luminance

[Credit: Pat Hanrahan] 3 CMU 15-462/662, Spring 2016

JPEG: color space conversion and chroma subsampling

- Convert image to Y'CbCr color representation
- Subsample chroma channels (e.g., to 4:2:0 format)

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y' ₃₀
Υ′ ₀₁	Y′ ₁₁	Υ′21	Y ′ ₃₁

4:2:0 representation:

Store Y' at full resolution

Store Cb, Cr at half resolution in both dimensions

Apply discrete cosine transform (DCT) to each 8x8 block of image values

basis[
$$i, j$$
] = $\cos \left[\pi \frac{i}{N} \left(x + \frac{1}{2} \right) \right] \times \cos \left[\pi \frac{j}{N} \left(y + \frac{1}{2} \right) \right]$

DCT computes projection of image onto 64 basis functions: basis[i, j]

DCT applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

Quantization

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

Result of DCT (representation of image in cosine basis)

Quantization Matrix

Changing JPEG quality setting in your favorite photo app modifies this matrix ("lower quality" = higher values for elements in quantization matrix)

Quantization produces small values for coefficients (only few bits needed per coefficient) Notice: quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan 6 CMU 15-462/662, Spring 2016

JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low-frequency regions of image represented accurately even under high compression

JPEG compression artifacts

Quality Level 9

Quality Level 1

Quality Level 6

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?

Lossless compression of quantized DCT values

Quantized DCT Values

Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0's

Huffman encode non-zero values

JPEG compression summary

Convert image to Y'CbCr

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y', Cb, Cr):

For each 8x8 block of values

Compute DCT

Quantize results

(information loss occurs here)

Reorder values

Run-length encode 0-spans

Huffman encode non-zero values

Key theme: exploit characteristics of human perception to build efficient image storage and image processing systems

- Separation of luminance from chrominance in color representations (e.g,
 Y'CrCb) allows reduced resolution in chrominance channels (4:2:0)
- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)
- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
 - human brain is more tolerant of errors in high frequency image components than in low frequency ones
 - Images of the real-world are dominated by low-frequency components

Basic image processing operations

(This section of the lecture will describe how to implement a number of basic operations on images)

Example image processing operations

Blur

Example image processing operations

Sharpen

Edge detection

A "smarter" blur (doesn't blur over edges)

Denoising

Review: convolution

It may be helpful to consider the effect of convolution with the simple unit-area "box" function:

$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy$$

-0.5 0.5

f*g is a "smoothed" version of g

Discrete 2D convolution

Consider f(i,j) that is nonzero only when: $-1 \leq i,j \leq 1$

Then:
$$(f*g)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

And we can represent f(i,j) as a 3x3 matrix of values where:

$$f(i,j) = \mathbf{F}_{i,j}$$
 (often called: "filter weights", "kernel")

Simple 3x3 box blur

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
                                                                                                                                                                                                                                                                                      Will ignore boundary pixels today and
                                                                                                                                                                                                                                                                                      assume output image is smaller than
                                                                                                                                                                                                                                                                                      input (makes convolution loop bounds
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./
                                                                                                                                                                                                                                                                                      much simpler to write)
                                                                                                        1./9, 1./9, 1./9,
                                                                                                        1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
                 for (int i=0; i<WIDTH; i++) {</pre>
                                float tmp = 0.f;
                                 for (int jj=0; jj<3; jj++)
                                                  for (int ii=0; ii<3; ii++)</pre>
                                                                  tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
                                output[j*WIDTH + i] = tmp;
```

7x7 box blur

Gaussian blur

Obtain filter coefficients from sampling 2D Gaussian

$$f(i,j) = \frac{1}{2\pi\sigma^2}e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- Produces weighted sum of neighboring pixels (contribution falls off with distance)
 - Truncate filter beyond certain distance

7x7 gaussian blur

What does convolution with this filter do?

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sharpens image!

3x3 sharpen filter

What does convolution with these filters do?

$$egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \ \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Extracts horizontal gradients

Extracts vertical gradients

Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

Sobel edge detection

Compute gradient response images

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$

$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$

Pixel-wise operation on images

Cost of convolution with N x N filter?

```
float input[(WIDTH+2) * (HEIGHT+2)];
                                                                                                                                                                                                                            In this 3x3 box blur example:
float output[WIDTH * HEIGHT];
                                                                                                                                                                                                                            Total work per image = 9 x WIDTH x HEIGHT
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./
                                                                                                                                                                                                                           For N x N filter: N<sup>2</sup> x WIDTH x HEIGHT
                                                                                                         1./9, 1./9, 1./9,
                                                                                                         1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
                 for (int i=0; i<WIDTH; i++) {
                                 float tmp = 0.f;
                                 for (int jj=0; jj<3; jj++)
                                                  for (int ii=0; ii<3; ii++)
                                                                  tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
                                 output[j*WIDTH + i] = tmp;
```

Separable filter

- A filter is separable if is the product of two other filters
 - Example: a 2D box blur

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} [1 \quad 1 \quad 1]$$

 Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)

Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Implementation of 2D box blur via two 1D convolutions

```
Total work per image = 6 x WIDTH x HEIGHT
int WIDTH = 1024
int HEIGHT = 1024;
                                            For NxN filter: 2N x WIDTH x HEIGHT
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT];
                                            Extra cost of this approach?
float weights[] = \{1./3, 1./3, 1./3\};
                                            Storage!
for (int j=0; j<(HEIGHT+2); j++)
                                            Challenge: can you achieve this work
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
                                            complexity without incurring this cost?
    for (int ii=0; ii<3; ii++)
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp buf[j*WIDTH + i] = tmp;
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Data-dependent filter (not a convolution)

This filter clamps pixels to the min/max of its cardinal neighbors (e.g., hot-pixel suppression)

Median filter

- Replace pixel with median of its neighbors
 - Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn't drag up the average for entire region
- Not linear, not separable
 - Filter weights are 1 or 0

 (depending on image content)

original image

3px median filter

1px median filter

10px median filter

- Basic algorithm for NxN support region:
 - Sort N² elements in support region, pick median O(N²log(N²)) work per pixel
 - Can you think of an O(N²) algorithm? What about O(N)?

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Bilateral filter

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of <u>spatial distance</u> and <u>input image pixel intensity</u> difference. (non-linear filter: like the median filter, the filter's weights depend on input image content)

- The bilateral filter is an "edge preserving" filter: down-weight contribution of pixels on the other side of strong edges. f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could itself be a gaussian
 - Or very simple: f(x) = 0 if x > threshold, 1 otherwise

Bilateral filter

Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across these edges)

Data-driven image processing: "Image manipulation by example"

(main idea: pixel patterns in another part of the image are hints for how to improve image in the current region)

Denoising using non-local means

- Main idea: replace pixel with average value of nearby pixels that <u>have a similar surrounding region</u>.
 - Assumption: images have repeating structure

$$\mathrm{NL}[I](\mathbf{p}) = \sum_{\mathbf{q} \in \mathrm{S}(\mathbf{p})} w(\mathbf{p}, \mathbf{q}) I(q)$$
 All points in search

All points in search region about p

$$w(p,q) = \frac{1}{C_p} e^{-\frac{\|N_p - N_q\|^2}{h^2}}$$

- N_p and N_q are vectors of pixel values in square window around pixels p and q (highlighted regions in figure)
- L^2 difference between N_p and $N_q = "similarity" of surrounding regions$
- Cp is just a normalization constant to ensure weights sum to one for pixel p.
- S is the search region around p (given by dotted red line in figure)

Denoising using non-local means

- Large weight for input pixels that have similar neighborhood as p
 - Intuition: filtered result is the average of pixels "like" this one
 - In example below-right: q1 and q2 have high weight, q3 has low weight

In each image pair below:

- Image at left shows the pixel p to denoise.
- Image at right shows weights of pixels in 21x21-pixel kernel support window surrounding p.

Buades et al. CVPR 2005

Texture synthesis

- Input: low-resolution texture image
- Desired output: high-resolution texture that appears "like" the input

Algorithm: non-parametric texture synthesis

Main idea: given the NxN neighborhood N_p around unknown pixel p, want a probability distribution function for possible values of p, given N_p : $P(p=X \mid N_p)$

For each pixel p to synthesize:

- 1. Find other NxN patches (Nq) in the image that are most similar to Np
- 2. Center pixels of the closest patches are candidates for p
- 3. Randomly sample from candidates weighted by distance d(Np,Nq)

Synthesized Textures

Increasing size of neighborhood search window: w(p)

More texture synthesis examples

[Efros and Leung 99]

Source textures

Synthesized Textures

ut it becomes harder to lau cound itself, at "this daily I ving rooms," as House Der escribed it last fall. He fail ut he left a ringing question ore years of Monica Lewin inda Tripp?" That now seen colitical comedian Al Francext phase of the story will

the following regard coordinatesets, accounts on new across a it ndateears coune Tring rooms," as Heft he fast nd it l ars dat nocars cortseas ribed it last n# hest bedian Al. I econicalHomd it h Al. Heft ars of as da Lewindailf I lian Al Ths," as Lewing questies last aticarsticall. He is dian Al last fal counda Lew, at "this dailyears dily edianicall. Hoorewing rooms," as House De fale f De und itical counsests cribed it last fall. He fall. Hefft rs oroheoned it nd it he left a ringing questica Lewin . icars coecoms," astore years of Monica Lewinow seee a Thas Fring roome stooniscat noweare left a roouse bouestof MHe lelft a Lest fast ngine launesticars Hef nd it rip?" TrHouself, a ringind itsonestudit a ring que: astical cois ore years of Moung fall. He ribof Mouse ore years of and a Tripp?" That hedian Al Lest fasee yea nda Tripp?' Holitical comedian Aléthe few se ring que olitical cone re years of the storears of as I Frat nica L ras Lewise lest a rime li He fas questinging of, at beou

Image completion example

Original Image

Masked Region

Completion Result

Goal: fill in masked region with "plausible" pixel values.

See PatchMatch algorithm [Barnes 2009] for a fast randomized algorithm for finding similar patches

Image processing summary

- Image processing via convolution
 - Different operations specified by changing weights of convolution kernel
 - Separable filters lend themselves to efficiency implementation as multiple 1D filters
- Data-driven image processing techniques
 - Key idea: use examples from other places in the image as priors to determine how to manipulate image
- To learn more: consider 15-463/663: "Computational Photography"

Computer Graphics courses 2016-2017

■ Fall 2016

- 15-462/15-662 Computer Graphics Profs. Crane/Coros

- 15-463/15-663 Computational Photography Prof. Kitani

- 15-769 Visual Computing Systems Prof. Fatahalian

Spring 2017

- 15-462/15-662 Computer Graphics Prof. Pollard

- 15-464/15-664 Technical Animation Prof. Pollard

- 15-365/60-422 Experimental Animation Profs. Hodgins/Deusing

Computer Graphics courses 2017-2018

■ Fall 2017

- 15-462/15-662 Computer Graphics Profs. Fatahalian/Coros
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-869 Discrete Differential Geometry Prof. Crane

Spring 2018

- 15-462/15-662 Computer Graphics Prof. Pollard
- 15-4??/15-6?? Geometry Processing Prof. Crane
- 15-465/60-414 Animation Art and Technology Profs. Hodgins/Deusing
- 15-869 Computational Aspects of Fabrication Prof. Coros
- 16-899 Hands: Design and Control for Dexterous Manipulation Prof. Pollard

What you should know:

- What is the flow of operations involved in JPEG compression? How does JPEG compression achieve reduced storage space? What kinds of artifacts can be expected to result?
- Show examples of 3x3 blur, sharpening, and edge detection filters. Be able to generalize these ideas (e.g., create a filter to detect diagonal edges).
- Why is a Gaussian filter preferred to the box filter for creating blur? (You may want to refer back to the beginning of the course.)
- How does the median filter work? What is it designed to achieve?
- How does the bilateral filter work? What is it designed to achieve?
- We discussed a technique to de-noise images using information from other parts of the image (specifically, pixels having similar local neighborhoods). Explain this approach.
- We also discussed a non-parameteric texture synthesis technique that similarly makes use of neighborhood information to fill in empty pixels. Give pseudocode for such a technique.
- Which of the following filters use convolution? If a filter does not work through convolution, explain why not. The filter types are: blur, median, sharpen, edge detection, bilateral.