Lecture 24:

Image Processing

Computer Graphics
CMU 15-462/15-662, Spring 2016
Warm up:
Putting many recent concepts together:
JPEG Compression
JPEG compression: the big ideas

- Low-frequency content is predominant in images of the real world

Therefore, it’s often acceptable for a compression scheme to introduce errors in high-frequency components of the image.

- The human visual system is:
 - less sensitive to high frequency sources of error
 - less sensitive to detail in chromaticity than in luminance
JPEG: color space conversion and chroma subsampling

- Convert image to $Y'\text{CbCr}$ color representation
- Subsample chroma channels (e.g., to 4:2:0 format)

<table>
<thead>
<tr>
<th>Y'_{00}</th>
<th>Y'_{10}</th>
<th>Y'_{20}</th>
<th>Y'_{30}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb_{00}</td>
<td>Y'_{10}</td>
<td>Cb_{20}</td>
<td>Y'_{30}</td>
</tr>
<tr>
<td>Cr_{00}</td>
<td>Y'_{20}</td>
<td>Cr_{20}</td>
<td>Y'_{31}</td>
</tr>
<tr>
<td>Y'_{01}</td>
<td>Y'_{11}</td>
<td>Y'_{21}</td>
<td>Y'_{31}</td>
</tr>
</tbody>
</table>

4:2:0 representation:
- Store Y' at full resolution
- Store Cb, Cr at half resolution in both dimensions
Apply discrete cosine transform (DCT) to each 8x8 block of image values

\[
basis[i, j] = \cos \left[\pi \frac{i}{N} \left(x + \frac{1}{2} \right) \right] \times \cos \left[\pi \frac{j}{N} \left(y + \frac{1}{2} \right) \right]
\]

DCT computes projection of image onto 64 basis functions:

\(\text{basis}[i, j] \)

DCT applied to 8x8 pixel blocks of \(Y' \) channel, 16x16 pixel blocks of \(C_b, C_r \) (assuming 4:2:0)
Quantization

Quantization produces small values for coefficients (only few bits needed per coefficient)
Notice: quantization zeros out many coefficients

Result of DCT
(representation of image in cosine basis)

Quantization Matrix

Changing JPEG quality setting in your favorite photo app modifies this matrix (“lower quality” = higher values for elements in quantization matrix)

[Credit: Pat Hanrahan]
JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality

Medium quality

Low-frequency regions of image represented accurately even under high compression
JPEG compression artifacts

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?
Lossless compression of quantized DCT values

Quantized DCT Values

\[
\begin{bmatrix}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Entropy encoding: (lossless)
- Reorder values
- Run-length encode (RLE) 0's
- Huffman encode non-zero values

Reordering

JPEG compression summary

Convert image to Y’CbCr

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y’, Cb, Cr):

 For each 8x8 block of values
 Compute DCT
 Quantize results (information loss occurs here)
 Reorder values
 Run-length encode 0-spans
 Huffman encode non-zero values
Key theme: exploit characteristics of human perception to build efficient image storage and image processing systems

- Separation of luminance from chrominance in color representations (e.g., Y′CrCb) allows reduced resolution in chrominance channels (4:2:0)

- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)

- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
 - human brain is more tolerant of errors in high frequency image components than in low frequency ones
 - Images of the real-world are dominated by low-frequency components
Basic image processing operations

(This section of the lecture will describe how to implement a number of basic operations on images)
Example image processing operations

Blur
Example image processing operations

Sharpen
A “smarter” blur (doesn’t blur over edges)
Denoising
Review: convolution

\[(f * g)(x) = \int_{-\infty}^{\infty} f(y) g(x - y) dy\]

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

\[f(x) = \begin{cases}
1 & |x| \leq 0.5 \\
0 & \text{otherwise}
\end{cases}\]

\[(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy\]

\(f * g\) is a “smoothed” version of \(g\)
Discrete 2D convolution

\[(f \ast g)(x, y) = \sum_{i,j=-\infty}^{\infty} f(i, j)I(x - i, y - j)\]

output image

filter

input image

Consider \(f(i, j)\) that is nonzero only when: \(-1 \leq i, j \leq 1\)

Then:

\[(f \ast g)(x, y) = \sum_{i,j=-1}^{1} f(i, j)I(x - i, y - j)\]

And we can represent \(f(i,j)\) as a 3x3 matrix of values where:

\[f(i, j) = F_{i,j}\] (often called: “filter weights”, “kernel”)
Simple 3x3 box blur

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Will ignore boundary pixels today and assume output image is smaller than input (makes convolution loop bounds much simpler to write)
7x7 box blur

Original

Blurred
Gaussian blur

- Obtain filter coefficients from sampling 2D Gaussian

\[f(i, j) = \frac{1}{2\pi \sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}} \]

- Produces weighted sum of neighboring pixels (contribution falls off with distance)

 — Truncate filter beyond certain distance

\[
\begin{bmatrix}
 .075 & .124 & .075 \\
 .124 & .204 & .124 \\
 .075 & .124 & .075
\end{bmatrix}
\]
7x7 gaussian blur

Original

Blurred
What does convolution with this filter do?

\[
\begin{bmatrix}
 0 & -1 & 0 \\
 -1 & 5 & -1 \\
 0 & -1 & 0 \\
\end{bmatrix}
\]

Sharpenes image!
3x3 sharpen filter

Original

Sharpened
What does convolution with these filters do?

-1 0 1
-2 0 2
-1 0 1

Extracts horizontal gradients

-1 -2 -1
0 0 0
1 2 1

Extracts vertical gradients
Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a “detector” of a pattern, and the magnitude of a pixel in the output image as the “response” of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision).
Sobel edge detection

- Compute gradient response images

\[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I \]

\[G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I \]

- Find pixels with large gradients

\[G = \sqrt{G_x^2 + G_y^2} \]

Pixel-wise operation on images
Cost of convolution with N x N filter?

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N² x WIDTH x HEIGHT
Separable filter

- A filter is separable if it is the product of two other filters
 - Example: a 2D box blur
 \[
 \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ast \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
 \]

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)

- Key property: 2D convolution with separable filter can be written as two 1D convolutions!
Implementation of 2D box blur via two 1D convolutions

```c
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)
        tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; j<HEIGHT; j++)
for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
        tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
}
```

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

Extra cost of this approach?

Storage!

Challenge: can you achieve this work complexity without incurring this cost?
Data-dependent filter (not a convolution)

```c
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
                                min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );
        float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
                                max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );
        output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
    }
}
```

This filter clamps pixels to the min/max of its cardinal neighbors (e.g., hot-pixel suppression)
Median filter

- Replace pixel with median of its neighbors
 - Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region

- Not linear, not separable
 - Filter weights are 1 or 0 (depending on image content)

```c
uart8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
  for (int i=0; i<WIDTH; i++) {
    output[j*WIDTH + i] =
      // compute median of pixels
      // in surrounding 5x5 pixel window
  }
}
```

- Basic algorithm for NxN support region:
 - Sort N^2 elements in support region, pick median $O(N^2 \log(N^2))$ work per pixel
 - Can you think of an $O(N^2)$ algorithm? What about $O(N)$?
Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges
Bilateral filter

\[BF[I](x, y) = \sum_{i,j} f(\| I(x - i, y - j) - I(x, y) \|) G(i, j) I(x - i, y - j) \]

For all pixels in support region of Gaussian kernel

Re-weight based on difference in input image pixel values

Value of output pixel \((x,y)\) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of **spatial distance** and **input image pixel intensity** difference. (non-linear filter: like the median filter, the filter’s weights depend on input image content)

- The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the other side of strong edges. \(f(x)\) defines what “strong edge means”
- Spatial distance weight term \(f(x)\) could itself be a gaussian
 - Or very simple: \(f(x) = 0 \text{ if } x > \text{ threshold}, 1 \text{ otherwise}\)
Bilateral filter

Pixels with significantly different intensity as \(p \) contribute little to filtered result (they are “on the “other side of the edge”)

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002
Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter.

Question: describe a type of edge the bilateral filter will not respect (it will blur across these edges)
Data-driven image processing: “Image manipulation by example”

(main idea: pixel patterns in another part of the image are hints for how to improve image in the current region)
Denoising using non-local means

- **Main idea:** replace pixel with average value of nearby pixels that have a similar surrounding region.

 - Assumption: images have repeating structure

\[
NL[I](p) = \sum_{q \in S(p)} w(p, q) I(q)
\]

\[
w(p, q) = \frac{1}{C_p} e^{-\frac{||N_p - N_q||^2}{h^2}}
\]

- \(N_p\) and \(N_q\) are vectors of pixel values in square window around pixels \(p\) and \(q\) (highlighted regions in figure)
- \(L^2\) difference between \(N_p\) and \(N_q\) = “similarity” of surrounding regions
- \(C_p\) is just a normalization constant to ensure weights sum to one for pixel \(p\).
- \(S\) is the search region around \(p\) (given by dotted red line in figure)
Denoising using non-local means

- Large weight for input pixels that have similar neighborhood as \(p \)
 - Intuition: filtered result is the average of pixels “like” this one
 - In example below-right: \(q_1 \) and \(q_2 \) have high weight, \(q_3 \) has low weight

In each image pair below:
- Image at left shows the pixel \(p \) to denoise.
- Image at right shows weights of pixels in 21x21-pixel kernel support window surrounding \(p \).

Buades et al. CVPR 2005
Texture synthesis

- Input: low-resolution texture image
- Desired output: high-resolution texture that appears “like” the input

Source texture (low resolution) → High-resolution texture generated by naively tiling low-resolution texture
Algorithm: non-parametric texture synthesis

Main idea: given the NxN neighborhood N_p around unknown pixel p, want a probability distribution function for possible values of p, given N_p: $P(p=X | N_p)$

For each pixel p to synthesize:
1. Find other NxN patches (N_q) in the image that are most similar to N_p
2. Center pixels of the closest patches are candidates for p
3. Randomly sample from candidates weighted by distance $d(N_p, N_q)$

[Efros and Leung 99]
Non-parametric texture synthesis

Source textures

Synthesized Textures

Increasing size of neighborhood search window: $w(p)$
More texture synthesis examples

Source textures

Synthesized Textures

Naive tiling solution

[Efros and Leung 99]
Image completion example

Goal: fill in masked region with “plausible” pixel values.

Image credit: [Barnes et al. 2009]
Image processing summary

- Image processing via convolution
 - Different operations specified by changing weights of convolution kernel
 - Separable filters lend themselves to efficiency implementation as multiple 1D filters

- Data-driven image processing techniques
 - Key idea: use examples from other places in the image as priors to determine how to manipulate image

- To learn more: consider 15-463/663: “Computational Photography”
Computer Graphics courses 2016-2017

Fall 2016
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-769 Visual Computing Systems Prof. Fatahalian

Spring 2017
- 15-464/15-664 Technical Animation Prof. Pollard
- 15-365/60-422 Experimental Animation Profs. Hodgins/Deusing
Computer Graphics courses 2017-2018

- **Fall 2017**
 - 15-463/15-663 Computational Photography Prof. Kitani
 - 15-869 Discrete Differential Geometry Prof. Crane

- **Spring 2018**
 - 15-4??/15-6?? Geometry Processing Prof. Crane
 - 15-869 Computational Aspects of Fabrication Prof. Coros
 - 16-899 Hands: Design and Control for Dexterous Manipulation Prof. Pollard
What you should know:

- What is the flow of operations involved in JPEG compression? How does JPEG compression achieve reduced storage space? What kinds of artifacts can be expected to result?
- Show examples of 3x3 blur, sharpening, and edge detection filters. Be able to generalize these ideas (e.g., create a filter to detect diagonal edges).
- Why is a Gaussian filter preferred to the box filter for creating blur? (You may want to refer back to the beginning of the course.)
- How does the median filter work? What is it designed to achieve?
- How does the bilateral filter work? What is it designed to achieve?
- We discussed a technique to de-noise images using information from other parts of the image (specifically, pixels having similar local neighborhoods). Explain this approach.
- We also discussed a non-parametric texture synthesis technique that similarly makes use of neighborhood information to fill in empty pixels. Give pseudocode for such a technique.
- Which of the following filters use convolution? If a filter does not work through convolution, explain why not. The filter types are: blur, median, sharpen, edge detection, bilateral.