
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 24:

Image Processing

 CMU 15-462/662, Spring 2016

Warm up:
Putting many recent concepts together:

JPEG Compression

2

 CMU 15-462/662, Spring 2016

JPEG compression: the big ideas

▪ Low-frequency content is predominant in images of the real world

▪ The human visual system is:
- less sensitive to high frequency sources of error
- less sensitive to detail in chromaticity than in luminance

3[Credit: Pat Hanrahan]

Therefore, it’s often acceptable for a
compression scheme to introduce errors in
high-frequency components of the image.

 CMU 15-462/662, Spring 2016

JPEG: color space conversion and chroma
subsampling
▪ Convert image to Y’CbCr color representation

▪ Subsample chroma channels (e.g., to 4:2:0 format)

4

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:
Store Y’ at full resolution
Store Cb, Cr at half resolution in both dimensions

 CMU 15-462/662, Spring 2016

Apply discrete cosine transform (DCT) to each
8x8 block of image values

5

i = 0

basis[i, j] =

DCT computes projection of image
onto 64 basis functions:
basis[i, j]

DCT applied to 8x8 pixel blocks of Y’
channel, 16x16 pixel blocks of Cb, Cr
(assuming 4:2:0)

i = 7
j = 0 j = 7

 CMU 15-462/662, Spring 2016

Quantization

6

Quantization produces small values for coefficients (only few bits needed per coefficient)
Notice: quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan

Changing JPEG quality setting in your favorite photo app
modifies this matrix (“lower quality” = higher values for
elements in quantization matrix)

Result of DCT
(representation of image in cosine basis)

Quantization Matrix

=

[Credit: Pat Hanrahan]

 CMU 15-462/662, Spring 2016

JPEG compression artifacts

7

Noticeable 8x8 pixel block boundaries

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression

Noticeable error near large color gradients

 CMU 15-462/662, Spring 2016

JPEG compression artifacts

8
Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

 CMU 15-462/662, Spring 2016

Lossless compression of quantized DCT values

9

Quantized DCT Values

Reordering
Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0’s

Huffman encode non-zero values

Image credit: Wikipedia

 CMU 15-462/662, Spring 2016

JPEG compression summary

Convert image to Y’CbCr
Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y’, Cb, Cr):

For each 8x8 block of values
Compute DCT
Quantize results (information loss occurs here)
Reorder values
Run-length encode 0-spans
Huffman encode non-zero values

10

 CMU 15-462/662, Spring 2016

Key theme: exploit characteristics of human
perception to build efficient image storage and
image processing systems

▪ Separation of luminance from chrominance in color representations (e.g,
Y’CrCb) allows reduced resolution in chrominance channels (4:2:0)

▪ Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

▪ JPEG compression significantly reduces file size at cost of quantization error
in high spatial frequencies
- human brain is more tolerant of errors in high frequency image

components than in low frequency ones
- Images of the real-world are dominated by low-frequency components

11

 CMU 15-462/662, Spring 2016

Basic image processing operations

(This section of the lecture will describe how to implement
a number of basic operations on images)

12

 CMU 15-462/662, Spring 2016

Example image processing operations

13

Blur

 CMU 15-462/662, Spring 2016

Example image processing operations

14

Sharpen

 CMU 15-462/662, Spring 2016

Edge detection

15

 CMU 15-462/662, Spring 2016

A “smarter” blur (doesn’t blur over edges)

16

 CMU 15-462/662, Spring 2016

Denoising

17

Denoised

Original

 CMU 15-462/662, Spring 2016

Review: convolution

18

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1

 CMU 15-462/662, Spring 2016

Discrete 2D convolution

19

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

(f ⇤ g)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “kernel”)

 CMU 15-462/662, Spring 2016

Simple 3x3 box blur
float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,

 1./9, 1./9, 1./9,

 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

20

Will ignore boundary pixels today and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

 CMU 15-462/662, Spring 2016

7x7 box blur

21

Original

Blurred

 CMU 15-462/662, Spring 2016

Gaussian blur
▪ Obtain filter coefficients from sampling 2D Gaussian

22

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution
falls off with distance)

-Truncate filter beyond certain distance

 CMU 15-462/662, Spring 2016

7x7 gaussian blur

23

Original

Blurred

 CMU 15-462/662, Spring 2016

What does convolution with this filter do?

24

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

 CMU 15-462/662, Spring 2016

3x3 sharpen filter

25

Original

Sharpened

 CMU 15-462/662, Spring 2016

What does convolution with these filters do?

26

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

 CMU 15-462/662, Spring 2016

Gradient detection filters

27

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

 CMU 15-462/662, Spring 2016

Sobel edge detection
▪ Compute gradient response images

28

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

G
x

2 +G
y

2

Pixel-wise operation on images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

G
x

2 +G
y

2

 CMU 15-462/662, Spring 2016

Cost of convolution with N x N filter?
float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,

 1./9, 1./9, 1./9,

 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

29

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N2 x WIDTH x HEIGHT

 CMU 15-462/662, Spring 2016

Separable filter
▪ A filter is separable if is the product of two other filters

- Example: a 2D box blur

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection filters as product of 1D filters (they are
separable!)

▪ Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

30

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

 CMU 15-462/662, Spring 2016

Implementation of 2D box blur via two 1D
convolutions
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

31

For NxN filter: 2N x WIDTH x HEIGHT

Total work per image = 6 x WIDTH x HEIGHT

Extra cost of this approach?

Storage!
Challenge: can you achieve this work
complexity without incurring this cost?

 CMU 15-462/662, Spring 2016

Data-dependent filter (not a convolution)
float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float min_value = min(min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),

 min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));

 float max_value = max(max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),

 max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));

 output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);

 }

}

32

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression)

 CMU 15-462/662, Spring 2016

Median filter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =

 // compute median of pixels
 // in surrounding 5x5 pixel window

 }

}

33

▪ Replace pixel with median of its neighbors
- Useful noise reduction filter: unlike gaussian

blur, one bright pixel doesn’t drag up the
average for entire region

▪ Not linear, not separable
- Filter weights are 1 or 0

(depending on image content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

 CMU 15-462/662, Spring 2016

Bilateral filter

34

Example use of bilateral filter: removing noise while preserving image edges

 CMU 15-462/662, Spring 2016

Bilateral filter

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the other side of strong edges. f (x) defines what “strong edge means”

▪ Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

35

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)

 CMU 15-462/662, Spring 2016

Bilateral filter

36Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

 CMU 15-462/662, Spring 2016

Bilateral filter: kernel depends on image content

37Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

 CMU 15-462/662, Spring 2016

Data-driven image processing:
“Image manipulation by example”

(main idea: pixel patterns in another part of the image are hints
for how to improve image in the current region)

38

 CMU 15-462/662, Spring 2016

Denoising using non-local means
▪ Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding region.
- Assumption: images have repeating structure

39

- Np and Nq are vectors of pixel values in square window around pixels p and q
(highlighted regions in figure)

- L2 difference between Np and Nq = “similarity” of surrounding regions
- Cp is just a normalization constant to ensure weights sum to one for pixel p.
- S is the search region around p (given by dotted red line in figure)

p

q

Np

NqAll points in search
region about p

NL[I](p) =
X

q2S(p)

w(p, q)I(q)

w(p, q) =
1

Cp
e�

kNp�Nqk2

h2

 CMU 15-462/662, Spring 2016

Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p

- Intuition: filtered result is the average of pixels “like” this one
- In example below-right: q1 and q2 have high weight, q3 has low weight

40

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair below:
- Image at left shows the pixel p to denoise.
- Image at right shows weights of pixels in 21x21-pixel

kernel support window surrounding p.

 CMU 15-462/662, Spring 2016

Texture synthesis
▪ Input: low-resolution texture image
▪ Desired output: high-resolution texture that appears “like” the input

41

Source texture
(low resolution) High-resolution texture generated by naively tiling low-resolution texture

 CMU 15-462/662, Spring 2016

Algorithm: non-parametric texture synthesis
Main idea: given the NxN neighborhood Np around unknown pixel p, want a probability
distribution function for possible values of p, given Np: P(p=X | Np)

42

P

[Efros and Leung 99]

For	
 each	
 pixel	
 p	
 to	
 synthesize:	

1. Find	
 other	
 NxN	
 patches	
 (Nq)	
 in	
 the	
 image	
 that	
 are	
 most	
 similar	
 to	
 Np	

2. Center	
 pixels	
 of	
 the	
 closest	
 patches	
 are	
 candidates	
 for	
 p	

3. Randomly	
 sample	
 from	
 candidates	
 weighted	
 by	
 distance	
 d(Np,Nq)	

Np

 CMU 15-462/662, Spring 2016

Non-parametric texture synthesis

43

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23

 CMU 15-462/662, Spring 2016

More texture synthesis examples

44

Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]

 CMU 15-462/662, Spring 2016

Image completion example

45

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

See PatchMatch algorithm [Barnes 2009] for a fast
randomized algorithm for finding similar patches

Goal: fill in masked region with
“plausible” pixel values.

 CMU 15-462/662, Spring 2016

Image processing summary

▪ Image processing via convolution
- Different operations specified by changing weights of

convolution kernel
- Separable filters lend themselves to efficiency implementation

as multiple 1D filters

▪ Data-driven image processing techniques
- Key idea: use examples from other places in the image as priors

to determine how to manipulate image

▪ To learn more: consider 15-463/663: “Computational Photography”

46

 CMU 15-462/662, Spring 2016

Computer Graphics courses 2016-2017
▪ Fall 2016

- 15-462/15-662 Computer Graphics Profs. Crane/Coros
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-769 Visual Computing Systems Prof. Fatahalian

▪ Spring 2017
- 15-462/15-662 Computer Graphics Prof. Pollard
- 15-464/15-664 Technical Animation Prof. Pollard
- 15-365/60-422 Experimental Animation Profs. Hodgins/Deusing

47

 CMU 15-462/662, Spring 2016

Computer Graphics courses 2017-2018
▪ Fall 2017

- 15-462/15-662 Computer Graphics Profs. Fatahalian/Coros
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-869 Discrete Differential Geometry Prof. Crane

▪ Spring 2018
- 15-462/15-662 Computer Graphics Prof. Pollard
- 15-4??/15-6?? Geometry Processing Prof. Crane
- 15-465/60-414 Animation Art and Technology Profs. Hodgins/Deusing
- 15-869 Computational Aspects of Fabrication Prof. Coros
- 16-899 Hands: Design and Control for Dexterous Manipulation Prof. Pollard

48

 CMU 15-462/662, Spring 2016

What you should know:
▪ What is the flow of operations involved in JPEG compression? How does JPEG compression

achieve reduced storage space? What kinds of artifacts can be expected to result?

▪ Show examples of 3x3 blur, sharpening, and edge detection filters. Be able to generalize
these ideas (e.g., create a filter to detect diagonal edges).

▪ Why is a Gaussian filter preferred to the box filter for creating blur? (You may want to
refer back to the beginning of the course.)

▪ How does the median filter work? What is it designed to achieve?

▪ How does the bilateral filter work? What is it designed to achieve?

▪ We discussed a technique to de-noise images using information from other parts of the
image (specifically, pixels having similar local neighborhoods). Explain this approach.

▪ We also discussed a non-parameteric texture synthesis technique that similarly makes use
of neighborhood information to fill in empty pixels. Give pseudocode for such a
technique.

▪ Which of the following filters use convolution? If a filter does not work through
convolution, explain why not. The filter types are: blur, median, sharpen, edge
detection, bilateral.

49

