Lecture 24:

Image Processing

Computer Graphics
CMU 15-462/15-662, Spring 2016



Warm up:
Putting many recent concepts together:
JPEG Compression



JPEG compression: the big ideas

m Low-frequency content is predominant in images of the real world

|

Therefore, it’s often acceptable for a
compression scheme to introduce errors in
high-frequency components of the image.

B The human visual system is: |

- less sensitive to high frequency sources of error
- less sensitive to detail in chromaticity than in luminance
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JPEG: color space conversion and chroma
subsampling

m Convertimage to Y'ChCr color representation
m Subsample chroma channels (e.g., to 4:2:0 format)

Y00 Y'10 Y'20 Y30
Choo Chyo
Croo Crao
Y01 Y1 Y2 Y31

4:2:0 representation:
Store Y’ at full resolution
Store Ch, Cr at half resolution in both dimensions
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Apply discrete cosine transform (DCT) to each
8x8 block of image values

basis[i, j] = cOs

X COS

DCT computes projection of image
onto 64 basis functions:
basisli, ]

DCT applied to 8x8 pixel blocks of Y’
channel, 16x16 pixel blocks of Cb, Cr
(assuming 4:2:0)
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Quantization

—415 =30 —-61 27 56 —-20 -2 O]
4 =22 -61 10 13 -7 =9 5
-47 7 =25 =29 10 5 -6
-49 12 34 -15 =10 6 2 2
12 -7 -13 -4 -2 2 -3 3
-8 3 2 —b -2 1 4 2
-1 0 0 -2 -1 -3 4 -1
0 o -1 -4 -1 0 1 2

Result of DCT
(representation of image in cosine basis)

2% -3 -6 2 2 -1 0 0
0 -2 -4 1 1 0 00
-3 1 5 =1 =1 0 0 0
4 1 2 -1 0 0 00
— 1 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
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12
14
14
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24
49
72
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39
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b
29
16 24 40 57 69 56
62

22 29 51 37 30
37 56 63 109
5> 64 31 104
3 37 103 121
> 93 112 100

Quantization Matrix

103 77
113 92
120 101
103 99

Changing JPEG quality setting in your favorite photo app
modifies this matrix (“lower quality” = higher values for
elements in quantization matrix)

JPEG Options

Matte: None

— Image Options

Quality: |9 | | High

small file

Cancel
u Preview

large file
836.3K

Quantization produces small values for coefficients (only few bits needed per coefficient)

Notice: quantization zeros out many coefficients

[Credit: Pat Hanrahan]

Slide credit: Wikipedia, Pat Hanrahan
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JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality : Medium quality

Low-frequency regions of image represented accurately even under high compression , ¢\ 1< 42662, soring 2016



JPEG compression artifacts

a

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

Quality Level 3 Quality Level 1
8
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Lossless compression of quantized DCT values

26 -3 -6 2 2 -1 00 B
0 -2 -4 1 1 0 00 4 VvV
-3 1 5 -1 =1 0 0 0 | v
-4 1 2 -1 0 0 00
1 0 0 0 0 0 00 N/ v
0 0 0 0 0 0 00
0 0 0 0 0 0 00 ~
10O 0 0 0 0 0 0 0 "/ ya
Quantized DCT Values avay “
Entropy encoding: (lossless) ‘ _I ‘ _| ' _l |
Reorderin
Reorder values ]

Run-length encode (RLE) 0s

Huffman encode non-zero values

Image credit: Wikipedia 9 (MU 15-462/662, Spring 2016



JPEG compression summary

Convert image to Y'ChCr
Downsample CbCr (to 4:2:2 0r4:2:0) (information loss occurs here)
For each color channel (Y, Ch, Cr):
For each 8x8 block of values
Compute DCT

Quantize results (information loss occurs here)
Reorder values

Run-length encode 0-spans
Huffman encode non-zero values
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Key theme: exploit characteristics of human
perception to build efficient image storage and
Image processing systems

m Separation of luminance from chrominance in color representations (e.g,
Y'CrCb) allows reduced resolution in chrominance channels (4:2:0)

B Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

m JPEG compression significantly reduces file size at cost of quantization error
in high spatial frequencies

- human brain is more tolerant of errors in high frequency image
components than in low frequency ones

- Images of the real-world are dominated by low-frequency components

11CMU 15-462/662, Spring 2016



Basicimage processing operations

(This section of the lecture will describe how to implement
a humber of basic operations on images)
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Example image processing operations
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Example image processing operations
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Edge detection
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A“smarter” blur (doesn’t blur over edges)
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Denoising

Denoised
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Review: convolution

O

yZanlat N

output signal filter input signal

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

f(z) = {1 7| < O,'5 - 11

0 otherwise

0.5 4_“‘“4 . >
(f *g)(r) = / g(x —y)dy 0.5 0.5

/ —0.5

[ * gisa“smoothed” version of g
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Discrete 2D convolution

T Tj—

output image filter input image

Consider f (7, 7) thatisnonzeroonlywhen: —1 < 7,7 <1
Then:

(f *9)(z,y) Z f(i, ) (z — i,y — )

And we can represent f(i,j) as a 3x3 matrix of values where:

f (iv 7 ) — Fq;, j (often called: “filter weights”, “kernel”)

19 (MU 15-462/662, Spring 2016



Simple 3x3 box blur

float input[ (WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; <—————  — Willignore boundary pixels today and

assume output image is smaller than

float weights[] = {1./9, 1./9, 1./9, input (makes convolution loop bounds
1./9, 1./9, 1./9, much simpler to write)

1./9, 1./9, 1./9};

for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; jj<3; jj++)
for (int ii=0; 1ii<3; 1ii++)
tmp += input[ (j+3jj) * (WIDTH+2) + (i+ii)] * weights[jj*3 + 1ii];
output[J*WIDTH + i] = tmp;
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7x7 box blur

Original

Blurred
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Gaussian blur

m (Obtain filter coefficients from sampling 2D Gaussian

1 i2 4 52

f(Z7j) — 27_‘_0_26 20

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— Truncate filter beyond certain distance

075 124 .075
124 .204 124

075 124 075
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7x7 gaussian blur

Original

Blurred
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What does convolution with this filter do?

0 -1 0

Sharpens image!



3x3 sharpen filter

Original
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What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients



Grad

ient detection filters

Horizontal gradients

e —?%——.-———Q- — - — | — —

e e et T e A e oo e Vertical gradients

=
- e I — - — - > T A—— . S — . S — - — T S - | AN - e

— — e ——— —— —— — L e . R, D - - D . I A - e

— e ——— - Note: you can think of a filteras a
“detector” of a pattern, and the
et b T 4= = o magnitude of a pixel in the output

. —— et e | —

T . T S e e awm D - — . T M D S—— e < —

— image as the “response” of the filter

<Ae = e = IR T e to the region surrounding each pixel

— — -— L e R - - — — B e e———_ - —————

—

— -  — - | ——— D e c——————

¢ e e e in the input image (this is a common
interpretation in computer vision)
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Sobel edge detection

m Compute gradient response images

—1 0 1
Gy, =[—-2 0 2| %1

-1 0 1

-1 -2 -1
Gy =10 0 0 | 1

12 1

® Find pixels with large gradients

G=1/G+G,

YT Pixel-wise operation on images
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Cost of convolution with N x N filter?

float input[ (WIDTH"‘Z) * (HEIGHT+2) ] y In this 3x3 box blur example:
float output[WIDTH * HEIGHT]; Total work perimage = 9 x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9,  ForNxN filter: N2x WIDTH x HEIGHT
1./9, 1./9, 1./9,

1./9, 1./9, 1./9};

for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; jj<3; jj++)
for (int ii=0; 1ii<3; 1ii++)
tmp += input[ (j+3jj) * (WIDTH+2) + (i+ii)] * weights[jj*3 + 1ii];
output[J*WIDTH + i] = tmp;
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Separable filter

m Afilteris separable if is the product of two other filters

- Example: a 2D box blur
1 1 1 1
1 1 1
§111:§1*§[111}
11 1 1

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection filters as product of 1D filters (they are
separable!)

m Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

30 (MU 15-462/662, Spring 2016



Implementation of 2D box blur via two 1D
convolutions

int WIDTH = 1024 Total work perimage =6 x WIDTH x HEIGHT
int HEIGHT = 1024;
float input[ (WIDTH+2) * (HEIGHT+2)]; For NxN filter: 2N x WIDTH x HEIGHT

float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT] ;

Extra cost of this approach?
float weights[] = {1./3, 1./3, 1./3};

Storage!
for (int j§=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) { Challenge: can you achieve this work
float tmp = 0.f; o o o - -
for (int 1120, 4i<3; iit+) complexity without incurring this cost?
tmp += input[j* (WIDTH+2) + i+ii] * weights[ii];
tmp buf[J*WIDTH + i] = tmp;
)

for (int j=0; J<HEIGHT, j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.£;
for (int jj=0; 3J3<3; JFj++)
tmp += tmp buf[ (j+jj)*WIDTH + i] * weights[jj];
output[jJ*WIDTH + i] = tmp;
}
}
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Data-dependent filter (not a convolution)

float input[ (WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT] ;

for (int j=0; J<HEIGHT; j++) {
for (int i1=0; i<WIDTH; i++) {
float min value = min( min(input[ (j-1)*WIDTH + 1i], input[(j+1)*WIDTH + 1i]),
min (input[jJ*WIDTH + i-1], input[j*WIDTH + i+l1l]) )

float max value max ( max (input[ (j-1) *WIDTH + i], input[ (j+1)*WIDTH + i]),

max (input[jJ*WIDTH + i-1], input[j*WIDTH + i+l1l]) ),
output[J*WIDTH + i] = clamp(min value, max value, input[j*WIDTH + i]);

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression)

32(MU 15-462/662, Spring 2016



Median filter

m  Replace pixel with median of its neighbors §

—  Useful noise reduction filter: unlike gaussian
blur, one bright pixel doesn’t drag up the
average for entire region

B Not linear, not separable

—  Filter weightsare 10r 0
(depending on image content)

1px médian fivlnter

uint8 input[ (WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT] ;
for (int j=0; J<HEIGHT; j++) {
for (int 1=0; i<WIDTH, i++) {
output[J*WIDTH + 1] =

// compute median of pixels

// in surrounding 5x5 pixel window o , -
} 3px median filter 10px median filter
}

m  Basicalgorithm for NxN support region:

— Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel
— (an you think of an 0(N2) algorithm? What about O(N)?
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Bilateral filter

o
»

* 5

o S Y y

G LN R .r_ o ' .
% - . N £ 2

Example use of bilateral filter: removing noise while preserving image edges
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Bilateral filter

Gaussian blur kernel Input image

N, /.

= f(ld(z =i,y —3)— I(z,y)|)GE ) I(x — i,y — j)
e
For all pixels in support region Re-weight based on difference
of Gaussian kernel in input image pixel values

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

B The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the other side of strong edges. f(x) defines what “stronqg edge means”

B Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple:f(x) =0 if x > threshold, 1 otherwise

35CMU 15-462/662, Spring 2016



Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 36CMU 15-462/662, Spring 2016



Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. 37CMU 15-462/662, Spring 2016



Data-driven image processing:
“Image manipulation by example”

(main idea: pixel patterns in another part of the image are hints
for how to improve image in the current region)
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Denoising using non-local means

m Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding region.

region about p

1 INp—Ng|l? -
w(p,q) = ol h2 ‘
P A A A ) N S U S

- Assumption: images have repeating structure _*_______________],
NL[I](p) = » w(p,a)I(q)
a€S(p) N : '
All points in search — _ ENq '

- Ny and Nq are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- L2 difference between N, and Ny =“similarity” of surrounding regions

- Cp is just a normalization constant to ensure weights sum to one for pixel p.

- Sis the search region around p (given by dotted red line in figure)
39CMU 15-462/662, Spring 2016



Denoising using non-local means

B Large weight for input pixels that have similar neighborhood as p

- Intuition: filtered result is the average of pixels “like” this one
- In example below-right: q1 and g2 have high weight, g3 has low weight

In each image pair below:
- Image at left shows the pixel p to denoise.
- Image at right shows weights of pixels in 21x21-pixel
kernel support window surrounding p.

(A) (B)

(C)

Buades et al. CVPR 2005
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High-resolution texture generated by naively tiIing low-resolution texture
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Algorithm: non-parametric texture synthesis

Main idea: given the NxN neighborhood N, around unknown pixel p, want a probability
distribution function for possible values of p, given Np: P(p=X|N;)

For each pixel p to synthesize:
1. Find other NxN patches (Ng) in the image that are most similar to Np
2. Center pixels of the closest patches are candidates for p

3. Randomly sample from candidates weighted by distance d(Np,Nq)

[Efros and Leung 99]
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Non-parametric texture synthesis i

Synthesized Textures
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More texture synthesis examples

Source textures
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[Efros and Leung 99]

Naive tiling solution
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Image completion example

Completion Result

Goal: fill in masked region with
“plausible” pixel values.

See PatchMatch algorithm [Barnes 2009] for a fast
randomized algorithm for finding similar patches

Image credit: [Barnes et al. 2009]
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Image processing summary

® |mage processing via convolution

- Different operations specified by changing weights of
convolution kernel

- Separable filters lend themselves to efficiency implementation
as multiple 1D filters

m Data-driven image processing techniques

- Key idea: use examples from other places in the image as priors
to determine how to manipulate image

m To learn more: consider 15-463/663: “Computational Photography”
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Computer Graphics courses 2016-2017

m Fall 2016
- 15-462/15-662 Computer Graphics Profs. Crane/Coros
- 15-463/15-663 Computational Photography Prof. Kitani
- 15-769 Visual Computing Systems  Prof. Fatahalian

m Spring 2017
- 15-462/15-662 Computer Graphics Prof. Pollard
- 15-464/15-664 Technical Animation Prof. Pollard
- 15-365/60-422 Experimental Animation Profs. Hodgins/Deusing

47 (MU 15-462/662, Spring 2016



Computer Graphics courses 2017-2018

Fall 2017

15-462/15-662 Computer Graphics Profs. Fatahalian/Coros
15-463/15-663 Computational Photography  Prof. Kitani
15-869 Discrete Differential Geometry Prof. Crane

Spring 2018

15-462/15-662 Computer Graphics Prof. Pollard
15-422/15-6?? Geometry Processing Prof. Crane
15-465/60-414 Animation Art and Technology Profs. Hodgins/Deusing
15-869 Computational Aspects of Fabrication Prof. Coros

16-899 Hands: Design and Control for Dexterous Manipulation Prof. Pollard
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What you should know:

What is the flow of operations involved in JPEG compression? How does JPEG compression
achieve reduced storage space? What kinds of artifacts can be expected to result?

B Show examples of 3x3 blur, sharpening, and edge detection filters. Be able to generalize
these ideas (e.g., create a filter to detect diagonal edges).

®m  Why s a Gaussian filter preferred to the hox filter for creating blur? (You may want to
refer back to the beginning of the course.)

B How does the median filter work? What is it designed to achieve?
B How does the bilateral filter work? What is it designed to achieve?

B Wediscussed a technique to de-noise images using information from other parts of the
image (specifically, pixels having similar local neighborhoods). Explain this approach.

m Wealso discussed a non-parameteric texture synthesis technique that similarly makes use
of neighborhood information to fill in empty pixels. Give pseudocode for sucha
technique.

B Which of the following filters use convolution? If a filter does not work through
convolution, explain why not. The filter types are: blur, median, sharpen, edge
detection, bilateral.
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