
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 22:

Dynamics and Time
Integration

Added motion to our model
Interpolate keyframes
Still a lot of work!
Today: physically-based animation

- often less manual labor

- often more compute-intensive
Leverage tools from physics

- dynamical descriptions

- numerical integration
Payoff: beautiful, complex behavior from simple models
Widely-used techniques in modern film (and games!)

 CMU 15-462/662, Spring 2016

Last time: animation

 CMU 15-462/662, Spring 2016

Dynamical Description of Motion

“Dynamics is concerned with the study of forces and their
effect on motion, as opposed to kinematics, which studies the
motion of objects without reference to its causes.”

—Sir Wiki Pedia, 2015

“A change in motion is proportional to the motive force
impressed and takes place along the straight line in which
that force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)

 CMU 15-462/662, Spring 2016

The Animation Equation
Already saw the rendering equation
What’s the animation equation?

force

mass

acceleration

 CMU 15-462/662, Spring 2016

The “Animation Equation,” revisited

Well actually there are some more equations...

Let’s be more careful:

- Any system has a configuration

- It also has a velocity

- And some kind of mass

- There are probably some forces

- And also some constraints

E.g., could write Newton’s 2nd law as

Makes two things clear:

- acceleration is 2nd time derivative of configuration

- ultimately, we want to solve for the configuration q

 CMU 15-462/662, Spring 2016

Generalized Coordinates
Often describing systems with many, many moving pieces
E.g., a collection of billiard balls, each with position xi

Collect them all into a single vector of generalized coordinates:

Can think of q as a single point moving along a trajectory in Rn
This way of thinking naturally maps to the way we actually solve
equations on a computer: all variables are often “stacked” into a
big long vector and handed to a solver.
(…So why not write things down this way in the first place?)

 CMU 15-462/662, Spring 2016

Generalized Velocity
Not much more to say about generalized velocity: it’s the
time derivative of the generalized coordinates!

All of life (and physics) is just
traveling along a curve...

 CMU 15-462/662, Spring 2016

Ordinary Differential Equations
Many dynamical systems can be described via an ordinary
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution?
Describes exponential decay (a < 1), or really great stock (a > 1)
“Ordinary” means “involves derivatives in time but not space”

 CMU 15-462/662, Spring 2016

Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives
Can also write as a system of two first order ODEs, by
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easy to talk about
solving these equations numerically (among other things)

 CMU 15-462/662, Spring 2016

Simple Example: Throwing a Rock
Consider a rock* of mass m tossed under force of gravity g
Easy to write dynamical equations, since only force is

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)

 CMU 15-462/662, Spring 2016

Slightly Harder Example: Pendulum
Mass on end of a bar, swinging under
gravity
What are the equations of motion?
Same as “rock” problem, but constrained
Could use a “force diagram”
- You probably did this for many hours in

high school/college

 CMU 15-462/662, Spring 2016

Lagrangian Mechanics
Beautifully simple recipe:

1.Write down kinetic energy
2.Write down potential energy
3.Write down Lagrangian
4.Dynamics then given by Euler-Lagrange equation

Why is this useful?
- often easier to come up with (scalar) energies than forces
- very general, works in any kind of generalized coordinates
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized)
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”

 CMU 15-462/662, Spring 2016

Lagrangian Mechanics - Example
Generalized coordinates for pendulum?

Kinetic energy (mass m)?

Potential energy?

Euler-Lagrange equations?(from here, just “plug and chug”—even a computer could do it!)

just one coordinate:
angle with the vertical direction

 CMU 15-462/662, Spring 2016

Solving the Pendulum
Great, now we have a nice simple equation for the

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution!
Hence, we must use a numerical approximation
...And this was (almost) the simplest system we can think of!
(What if we want to animate something more interesting?)

 CMU 15-462/662, Spring 2016

Not-So-Simple Example: Double Pendulum
Blue ball swings from fixed point; green ball swings from blue one
Simple system... not-so-simple motion!
Chaotic: perturb input, wild changes to output
Must again use numerical approximation

 CMU 15-462/662, Spring 2016

Not-So-Simple Example: n-Body Problem
Consider the Earth, moon, and sun—where do they go?
Solution is trivial for two bodies (e.g., assume one is fixed)
As soon as n ≥ 3, again get chaotic solutions (no closed
form)

Credit: Governato et al / NASA

 CMU 15-462/662, Spring 2016

For animation, we want to simulate
these kinds of phenomena!

 CMU 15-462/662, Spring 2016

Example: Flocking

 CMU 15-462/662, Spring 2016

Simulated Flocking as an ODE
Each bird is a particle
Subject to very simple forces:
- attraction to center of neighbors
- repulsion from individual neighbors
- alignment toward average trajectory of neighbors
Solve large system of ODEs (numerically!)
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/

 CMU 15-462/662, Spring 2016

Particle Systems
More generally, model phenomena
as large collection of particles
Each particle has a behavior
described by (physical or non-
physical) forces
Extremely common in graphics/
games
- easy to understand
- simple equation for each particle
- easy to scale up/down
May need many particles to capture
certain phenomena (e.g., fluids)
- may require fast hierarchical data

structure (kd-tree, BVH, ...)

 CMU 15-462/662, Spring 2016

Example: Crowds

Where are the bottlenecks in a building plan?

 CMU 15-462/662, Spring 2016

Example: Crowds + “Rock” Dynamics

 CMU 15-462/662, Spring 2016

Example: Particle-Based Fluids

(Fluid: particles or continuum?)

 CMU 15-462/662, Spring 2016

Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”

 CMU 15-462/662, Spring 2016

Example: Molecular Dynamics

(model of melting ice crystal)

 CMU 15-462/662, Spring 2016

Example: Cosmological Simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)

 CMU 15-462/662, Spring 2016

Example: Mass-Spring System
Connect particles x1, x2 by a spring of length L0
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena
Extremely common in graphics/games
- easy to understand
- simple equation for each particle
Often good reasons for using continuum model (PDE)

 CMU 15-462/662, Spring 2016

Example: Mass Spring System

 CMU 15-462/662, Spring 2016

Example: Mass Spring + Character

 CMU 15-462/662, Spring 2016

Example: Hair

 CMU 15-462/662, Spring 2016

Ok, I’m convinced.
So how do we solve these

things numerically?

 CMU 15-462/662, Spring 2016

Numerical Integration
Key idea: replace derivatives with differences
In ODE, only need to worry about derivative in time
Replace time-continuous function q(t) with samples qk in

“time step,” i.e., interval of
time between qk and qk+1

new configuration
(unknown—want to solve for this!) current configuration

(known)

Wait... where do we
evaluate the velocity
function? At the new
or old configuration?

starts out slow...

...gradually moves faster & faster!
 CMU 15-462/662, Spring 2016

Forward Euler
Simplest scheme: evaluate velocity at current configuration
New configuration can then be written explicitly in terms of
known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity
Unfortunately, not very stable—consider pendulum:

Where did all this extra
energy come from?

 CMU 15-462/662, Spring 2016

Forward Euler - Stability Analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a
In practice: need very small time steps if a is large (“stiff system”)

starts out slow...

...and eventually stops moving completely.
 CMU 15-462/662, Spring 2016

Backward Euler
Let’s try something else: evaluate velocity at next configuration
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Much harder to solve, since in general f can be very nonlinear!
Pendulum is now stable... perhaps too stable?

Where did all the
energy go?

 CMU 15-462/662, Spring 2016

Backward Euler - Stability Analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true!
⇒Backward Euler is unconditionally stable for linear ODEs

starts out slow...

...and keeps on ticking.
 CMU 15-462/662, Spring 2016

Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it
exhibits numerical damping (damping not found in original eqn.)
Nice alternative is symplectic Euler

- update velocity using current configuration

- update configuration using new velocity

Easy to implement; used often in practice (or leapfrog, Verlet, ...)
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis
is not quite as easy...)

 CMU 15-462/662, Spring 2016

Numerical Integrators
Barely scratched the surface
Many different integrators
Why? Because many notions of “good”:
- stability
- accuracy
- consistency/convergence
- conservation, symmetry, ...
- computational efficiency (!)
No one “best” integrator—pick the right tool for the job!
Could do (at least) an entire course on time integration...
Great book: Hairer, Lubich, Wanner

 CMU 15-462/662, Spring 2016

Computational Differentiation
So far, we’ve been taking derivatives by hand
Very often in simulation, need to differentiate extremely
complicated functions (e.g., potential energy, to get forces)
Several different techniques:

- keep doing it by hand! (laborious & error prone, but potentially fast)

- numerical differentiation (simple to code, but usually poor accuracy)

- automatic differentiation (bigger code investment, better accuracy)

- symbolic differentiation (can help w/ “by-hand”, often messy results)

- geometric differentiation (sometimes simplifies “by hand”
expressions)

 CMU 15-462/662, Spring 2016

Review: Derivatives
Suppose I have a function
Q: How do I define its first derivative with respect to x, at x0?

In dynamical simulation, often need to consider functions

Directional derivative looks a lot like ordinary derivative:

(e.g., potential)

Gradient is vector ∇f that yields DXf when you take inner product:

(e.g., gradient of potential is force)

(Q: is DXf vector or scalar?)

 CMU 15-462/662, Spring 2016

Numerical Differentiation
Taking all those derivatives by hand is a lot of work!
(Especially if you’re just developing/debugging)
Idea: replace derivatives with differences (as we did w/

now has fixed size

But how do we pick h?
Smaller is better... right?
Not always! Must be careful.
Can also be expensive!

e.g., what if f were some
kind of radiance integral?

decreasing h

1

0

relative error

(too small to distinguish)

sweet spot
(but where is it?)

 CMU 15-462/662, Spring 2016

Automatic Differentiation
Completely different idea: do arithmetic simultaneously on a
function and its derivative.
I.e., rather than work with values f, work with tuples (f,f’)
Use chain rule to determine rules for manipulating tuples
Example function:
Suppose we want the value and derivative at x=2
Start with the tuple
How do we multiply tuples?
So, squaring our tuple yields
And multiplying by a scales the value and derivative:
Pros: good accuracy, reasonably fast
Cons: have to redefine all our arithmetic operators!

values just get
multiplied

for derivatives, we
apply the chain rule

(did we get it right?)

(must have access to code!)

 CMU 15-462/662, Spring 2016

Symbolic Differentiation
Yet another approach (though related to automatic one...)
Build explicit tree representing expression
Apply transformations to obtain derivative
Pros: only needs to happen once!
Cons: serious development investment
But, can often use existing tools
- Mathematica, Maple, etc.
Current systems not great with vectors, 3D
Often produce unnecessarily complex formulae...

 CMU 15-462/662, Spring 2016

Geometric Differentiation
Sometimes symbolic differentiation misses the “big picture”
E.g., gradient of triangle area w.r.t. vertex position p

(2 (b2 - c2) (-b2 c1 + a2 (-b1 + c1) + a1 (b2 - c2) +
b1 c2) + 2 (b3 - c3) (-b3 c1 + a3 (-b1 + c1) + a1 (b3
- c3) + b1 c3))/(4 Sqrt((a2 b1 - a1 b2 - a2 c1 + b2 c1
+ a1 c2 - ! b1 c2)^2 + (a3 b1 - a1 b3 - a3 c1 + b3 c1
+ a1 c3 - b1 c3)^2 + (a3 b2 - a2 b3 - a3 c2 + b3 c2 +
a2 c3 - b2 c3)^2)), (2 (b1 - c1) (a2 (b1 - c1) + b2 c1
- b1 c2 + a1 (-b2 + c2)) + 2 (b3 - c3) (-b3 c2 + a3 (-
b2 + c2) + a2 (b3 - c3) + b2 c3))/(4 Sqrt((a2 b1 - a1
b2 - a2 c1 + b2 c1 + a1 c2 - b1 c2)^2 + (a3 b1 - a1 b3
- a3 c1 + b3 c1 + a1 c3 - b1 c3)^2 + (a3 b2 - a2 b3 -
a3 c2 + b3 c2 + a2 c3 - b2 c3)^2)), (2 (b1 - c1) (a3
(b1 - c1) + b3 c1 - b1 c3 + a1 (-b3 + c3)) + 2 (b2 -
c2) (a3 (b2 - c2) + b3 c2 - b2 c3 + a2 (-b3 + c3)))/(4
Sqrt((a2 b1 - a1 b2 - a2 c1 + b2 c1 + a1 c2 - b1 c2)^2
+ (a3 b1 - a1 b3 - a3 c1 + b3 c1 + a1 c3 - b1 c3)^2 +
(a3 b2 - a2 b3 - a3 c2 + b3 c2 + a2 c3 - b2 c3)^2))

Mathematica output:

 CMU 15-462/662, Spring 2016

Not Covered: Contact Mechanics

Smith et al, “Reflections on Simultaneous
Impact”

 CMU 15-462/662, Spring 2016

Notes
These SIGGRAPH course notes have an excellent description of
how to write your own physically based simulation
- https://www.cs.cmu.edu/~baraff/sigcourse/

https://www.cs.cmu.edu/~baraff/sigcourse/

 CMU 15-462/662, Spring 2016

What you should know:
Sketch a block diagram of a physically based simulation engine. Include modules for
integrating the system forward in time, for calculating derivatives, for obtaining forces.

How did you express state?

Show state, and exact functionality of each module for a system where two 2D particles are
connected by a spring. You may use forward Euler integration.

The Euler-Lagrange equation is listed below. Explain each of the terms. Use the Euler-
Lagrange equation to find the equations of motion for a particle acting under gravity, two
particles connected by a spring, other simple systems.

What equations are used for forward Euler integration? Forward Euler integration can
suffer from two kinds of problems: (1) poor accuracy, and (2) instability. Explain these
two problems. Illustrate each problem with a sketch.

How do you set up Backward Euler integration? Is Backward Euler stable? Is it accurate?
What problems may be observed when using Backward Euler? (Alternatively, what are the
pros and cons of using Backward Euler?)

Be prepared to explore other integration schemes, perhaps integrating a simple system
forward a couple of steps by hand.

We would typically use symbolic differentiation in a simulator, but sometimes it is
convenient to use numerical differentiation. How would you numerically differentiate a
given function f(t)?

