Lecture 22:

Dynamics and Time
Integration

Computer Graphics
CMU 15-462/15-662, Spring 2016

Last time: animation

m Added motion to our model
m Interpolate keyframes
m Still alot of work!
m Today: physically-based animation
- often less manual labor
- often more compute-intensive
m Leverage tools from physics \

- dynamical descriptions

- numerical integration
m Payoff: beautiful, complex behavior from simple models
m Widely-used techniques in modern film (and games!)

CMU 15-462/662, Spring 2016

Dynamical Description of Motion

“A change in motion is proportional to the motive force
impressed and takes place along the straight line in which

that force is impressed.”
—Sir Isaac Newton, 1687

“Dynamics is concerned with the study of forces and their
effect on motion, as opposed to kinematics, which studies the
motion of objects without reference to its causes.”

—Sir Wiki Pedia, 2015

(Q: Is keyframe interpolation dynamic, or kinematic?)

CMU 15-462/662, Spring 2016

The Animation Equation

m Already saw the rendering equation
m What's the animation equation?

acceleration

CMU 15-462/662, Spring 2016

The “Animation Equation,” revisited

m Well actually there are some more equations...

q
m Let’s be more careful: ~ o
(1) 9(q)=0
- Anysystem has a conﬁguratlond l
- Italsohasavelocity 4 -— ;4 £

- And some kind of mass M/

- There are probably some forces [

- And also some constraints (q , q , t) — ()
m E.g.,couldwrite Newtons2ndlawas G — F' / m,
m Makes two things clear:

- acceleration is 2nd time derivative of configuration

- ultimately, we want to solve for the configuration ¢

CMU 15-462/662, Spring 2016

Generalized Coordinates

m Often describing systems with many, many moving pieces
m E.g., a collection of billiard balls, each with position x;
m Collect them all into a single vector of generalized coordinates:

q = (20, 21,...,%y)

q(t)

/\, — on

m (Can think of q as a single point moving along a trajectory in R"

m This way of thinking naturally maps to the way we actually solve
equations on a computer: all variables are often “stacked”into a
big long vector and handed to a solver.

m (...50 why not write things down this way in the first place?)

CMU 15-462/662, Spring 2016

Generalized Velocity

m Not much more to say about glgneralized.velocity: it's the
time derivative of the generalized coordinates!

¢ = (To,T1,...,%n)

1 B
10

All of life (and physics) is just
traveling along a curve...

(MU 15-462/662, Spring 2016

Ordinary Differential Equations

m Many dynamical systems can be described via an ordinary
differential equation (ODE) in generalized coordinates:

change in configuration over time — velocity function

o= f(q,4,1)

m ODE doesn’t have to describe mechanical phenomenon, e.g.,

d () _
ull) = au
“rate of growth is proportional to value”
m Solution? v (t) = be®
m Describes exponential decay (a < 1), or really great stock (a > 1)

m “Ordinary” means “involves derivatives in time but not space”

CMU 15-462/662, Spring 2016

Dynamics via ODEs

m Another key example: Newton’s 2nd law!
§g=F/m
“Second order” ODE since we take two time derivatives

m (an also write as a system of two first order ODEs, by
introducing new “dummy” variable for velocity:

q="v
v=F/m

m Splitting things up this way will make it easy to talk about
solving these equations numerically (among other things)

CMU 15-462/662, Spring 2016

Simple Example: Throwing a Rock

m Consider a rock* of mass m tossed under force of gravity g
m Easy to write dynamical equations, since only force is

U T N q = v
@ e
l Solution: U(t) — Vo + Lg
g Tr

2
q(t) = qo +tvg + 5—g

(What do we need a computer for?!)

*Yes, this rock is spherical and has uniform density.
CMU 15-462/662, Spring 2016

Slightly Harder Example: Pendulum
m Mass on end of a bar, swinging under
gravity
m What are the equations of motion?
m Same as “rock” problem, but constrained
m Could use a“force diagram”

- ¥ bably did this f h
hql)ghpsrghoaol)éolllegeIs orany nots K

CMU 15-462/662, Spring 2016

Lagrangian Mechanics

m Beautifully simple recipe:
1 «Write down kinetic energy X’
2 «Write down potential energy U

3 oWrite down LagrangianL = K —U Joe Lagrange
4.Dynamics then given by Euler-Lagrange equation
becomes (generalized) d 8[: 8,6 .
“MASS TIMES ACCELERATION” = - = — € hecomes (generalized) “FORCE"
dt Oq 0q

m Why is this useful?
- often easier to come up with (scalar) energies than forces
- very general, works in any kind of generalized coordinates
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

(MU 15-462/662, Spring 2016

Lagrangian Mechanics - Example

m Generalized coordinates for pendulum?

__) «— justone coordinate:
q = 0 angle with the vertical direction

m Kinetic energy (mass m)?

K = %IwQ = %mLQG’Q

m Potential energy?
U =mgh = —mglL cosf

m Euler- Lagrang e equationsarom here, just “plug and chug”—even a colmputer could do it!)
L=K—-U = 772(%1}26’2 + gL cos0)

oL oL 2, oL __ oL __ .
90 = 28 = mL~0 5 = 90 — maqgl sin @
d OL oL n __ g _:

S5 = 5= — H — 7 sin 6

CMU 15-462/662, Spring 2016

Solving the Pendulum

m Great, now we have a nice simple equation for the

H = gsinﬁ

m For small angles (e.g., clock pendulum) can approximate as

0=—-20 = 0(t) =acos(t/g/L+0b) BN

“harmonic oscillator”

In general, there is no closed form solution!

Hence, we must use a numerical approximation

...And this was (almost) the simplest system we can think of!
(What if we want to animate something more interesting?)

CMU 15-462/662, Spring 2016

Not-So-Simple Example: Double Pendulum

Blue ball swings from fixed point; green ball swings from blue one
Simple system... not-so-simple motion!
Chaotic: perturb input, wild changes to output
Must again use numerical approximation

(MU 15-462/662, Spring 2016

Not-So-Simple Example: n-Body Problem

m Consider the Earth, moon, and sun—where do they go?
m Solution is trivial for two bodies (e.g., assume one is fixed)

n é\s so;)n as h = 3, again get chaotic solutions (no closed
orm

Credit: Governato et al / NASA CMU 15-462/662, Spring 2016

For animation, we want to simulate
these kinds of phenomena!

CMU 15-462/662, Spring 2016

Example: Flocking

(MU 15-462/662, Spring 2016

Simulated Flocking as an ODE

m Each bird is a particle &
m Subject to very simple forces: g, :
- attraction to center of neighbors .

- repulsion from individual neighbors -
- alignment toward average trajectory of neighbors
m Solve large system of ODEs (numerically!)

m Emergent complex behavior (also seen in fish, bees, ...)

A 4 N
A A%J,. ﬁwé I L«\ A
K| .
4_ 4 ‘ 4‘/ A A >
attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

CMU 15-462/662, Spring 2016

http://www.red3d.com/cwr/boids/

Particle Systems

m More generally, model phenomena
as large collection of particles

m Each particle has a behavior
described by (physical or non-
physical) forces

m Extremely common in graphics/
games

- easy to understand
- simple equation for each particle
- easy to scale up/down

m Ma¥ need many particles to capture
certain phenomena (e.g., fluids)

- may require fast hierarchical data
structure (kd-tree, BVH, ...)

CMU 15-462/662, Spring 2016

Example: Crowds

Where are the bottlenecks in a building plan?

(MU 15-462/662, Spring 2016

Example: Crowds + “Rock” Dynamics

(MU 15-462/662, Spring 2016

Example: Particle-Based Fluids

Sph particle fluid

(Fluid: particles or continuum?)

CMU 15-462/662, Spring 2016

Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”

(MU 15-462/662, Spring 2016

Example: Molecular Dynamics

. TP e) $.. . 9 . ’ .
/'t ".FA A'&’o l\i.-’"’ ,‘*")’ ‘ L‘('.. ' g.
L » .

" D'f. 'l .o\)\.

’

!
oi/\‘.‘..: w“vv'\zo‘\o'v\{./ilw
"\ﬂ'§ Nt ’-’ - . ." "'"s'
] 2 £ 3
o™ = Tl W, \ »” sa'.,'\ .s\ p \-Q
e %X
~0.1 ﬂ\f\/ Vv}.f\a‘.
L 4 L"

.'('}"k«\.’w\{’ *o \/vsl\f

¢ :

'\)-sl\“* - N ~asa~\f\.' \/\/ -

) 5 : “ : | s 1

»
et e T T
LYY XL} ' t 2 }
. Y\f‘-r‘uv v ey
.-v‘\—"“(“ 0’ ‘~’
T > . 2 3 L
e T T T A T

y 3 40

SA T 4. LW L R

.:o~‘4': .\,"i‘ ‘rw) .‘.

TR T ”‘Ynlg‘:ﬂ

SOOI s V10 Nove My

(model of melting ice crystal)

CMU 15-462/662, Spring 2016

Example: Cosmological Simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)

CMU 15-462/662, Spring 2016

Example: Mass-Spring System

m Connect particles x1, x; by a spring of length Lo
m Potential energy is given by

re;length
U = k(L — Lp)*

stiffness current length
— %k(|:1;1 — x5|* — Lg)°

m Connect up many springs to describe interesting phenomena
m Extremely common in graphics/games

- easy to understand

- simple equation for each particle
m Often good reasons for using continuum model (PDE)

CMU 15-462/662, Spring 2016

Example: Mass Spring System

CMU 15-462/662, Spring 2016

Example: Mass Spring + Character

S ¥

(MU 15-462/662, Spring 2016

Example: Hair

(MU 15-462/662, Spring 2016

Ok, I'm convinced.
So how do we solve these
things numerically?

CMU 15-462/662, Spring 2016

Numerical Integration

m Key idea: replace derivatives with differences
m In ODE, only need to worry about derivative in time
m Replace time-continuous function q(t) with samples g in

Zq(t) = f(q(t))

new configuration . \U
(unknown—want to solve for this!) current configuration
N\ 2~ (known)
dk+1 — 4k f(q)
T
Wait§where do we
“time step,”’i.e., interval of evaluate the velocity
time between gy and qy. function? At the new

or old configuration?

CMU 15-462/662, Spring 2016

Forward Euler

m Simplest scheme: evaluate velocity at current configuration

m New configuration can then be written explicitly in terms of

known data:

: velocity at current time
current configuration ¢

v
\C]k—H = qr + 7f(qx)

m Very intuitive: walk a tiny bit in the direction of the velocity

new configuration

m Unfortunately, not very stable—consider pendulum:

starts out slow...

Where did all this extra
energy come from?

...gradually moves faster & faster!
CMU 15-462/662, Spring 2016

Forward Euler - Stability Analysis

m Let’s consider behavior of forward Euler for simple linear ODE:
uw=—au, a >0
m Importantly: u should decay (exact solution is u(t)=e-2t)
m Forward Euler approximation is

UL+1 — Uk — TAUE
= (1 — Ta)uy
m Which means after n steps, we have
Uy = (1 — 7a) " ug

m Decays only if |1-ta| < 1, or equivalently, if T < 2/a
m In practice: need very small time steps if a is large (“stiff system”)

CMU 15-462/662, Spring 2016

Backward Euler

m Let’s try something else: evaluate velocity at next configuration
m New configuration is then implicit, and we must solve for it:

: velocity at next time
current configuration ¢

V
\Qk—l—l = (qr T Tf(C]k+1>

m Much harder to solve, since in general f can be very nonlinear!

new configuration

m Pendulum is now stable... perhaps too stable?

starts out slow...

Where did all the
l energy go?

...and eventually stops moving completely. 1546266
15-462/662, Spring 2016

Backward Euler - Stability Analysis

m Again consider a simple linear ODE:

uw=—au, a >0
m Remember: ushould decay (exact solution is u(t)=e-2t)
m Backward Euler approximation is

(U1 — Uk)/T = —QUk41
_ 1
< UL+1 — 1_|_7_auk
m Which means after n steps, we have n
Uy — L U
no (1—|—7'a) 0

m Decays if |1+1a| > 1, which is always true!
m =>Backward Euler is unconditionally stable for linear ODEs

CMU 15-462/662, Spring 2016

Symplectic Euler

m Backward Euler was stable, but we also saw (em glrlcally) that it
exhibits numerical dampmg (damping not found in original eqn.)

m Nice alternative is symplectic Euler

- update velocity using current configuration
- update configuration using new velocity

m Easy toimplement; used often in practice (or leapfrog, Verlet, ...)
m Pendulum now conserves energy almost exactly, forever:

starts out slow...

(Proof? The analysis
/ \ is not quite as easy...)

— Pe—

...and keeps on ticking.
p g CMU 15-462/662, Spring 2016

Numerical Integrators

m Barely scratched the surface
m Many different integrators

NMEMATICH 3‘

Geometric Numerical

m Why? Because many notions of “good”: ~ Integration

oge Structure-Preserving
} Stablllty Algorithms for Ordinary

- accuracy Differential Equations

Second Edition

- consistency/convergence

- conservation, symmetry, ...

- computational efficiency (!)
m No one “best” integrator—pick the right tool for the job!
m Could do (at least) an entire course on time integration...
m Great book: Hairer, Lubich, Wanner

CMU 15-462/662, Spring 2016

Computational Differentiation

m So far, we've been taking derivatives by hand

m Very often in simulation, need to differentiate extremely
complicated functions (e.g., potential energy, to get forces)

m Several different techniques:

keep doing it by hand! (laborious & error prone, but potentially fast)
numerical differentiation (simple to code, but usually poor accuracy)
automatic differentiation (bigger code investment, better accuracy)
symbolic differentiation (can help w/ “by-hand’, often messy results)

geometric differentiation (sometimes simplifies “by hand”
expressions)

\

CMU 15-462/662, Spring 2016

Review: Derivatives

m Suppose l haveafunction f: R — R;x — f(x)

Q: How do | define its first derivative with respect to x, at xo?

(o) = lim f(xo +€) — f(wo)

e—0 €

In dynamical simulation, often need to consider functions

fiR" = R;q = f(q) (eq. potential

Directional derivative looks a lot like ordinary derivative:
. +eX) —
Dy f(qo) = lim f(q0 + €X) — f(qo)

e—0 € (Q: is Dyf vector or scalar?)

Gradient is vector V£ that yields Dxf when you take inner product:

<Vf (QO)v X > = Dxf (QO) (e.g., gradient of potential is force)

CMU 15-462/662, Spring 2016

Numerical Differentiation

m Taking all those derivatives by hand is a lot of work!
(Especially if you're just developing/debugging)

m Idea: replace derivatives with differences (as we did w/

/ / ($ 0) —> n
———— now has fixed size
relative error
m Buthow do we pick h? !
)) (too small to distinguish)
m Smaller is better... right?
m Notalways! Must be careful.
m (an also be expensive!

e.g., what if f were some
kind of radiance integral?
0 -~

sweet spot decreasing h
(but whereiis it?)

CMU 15-462/662, Spring 2016

Automatic Differentiation

Completely different idea: do arithmetic simultaneously on a
function and its derivative.

.e., rather than work with values f, work with tuples (f,f’)

Use chain rule to determine rules for manipulating tuples

2

Example function: f(z) = ax for derivatives, we

Suppose we want the value and derivative at x=2 apply the chain rule

® I .
Start with the tuple (z, a%x) p=2 = (2,1) va#rﬁ;t{gfiggﬂ/

How do we multiply tuples? (v, ') x (v,v") = (uv, wv’ + vu)
50, squaring our tupleyields (2 1)« (2,1) = (4,4)
. . . . (did we get it right?)
And multiplying by a scales the value and derivative: (4, 44)
Pros: good accuracy, reasonably fast

. . (must have access to code!)
Cons: have to redefine all our arithmetic operatorsT

CMU 15-462/662, Spring 2016

Symbolic Differentiation

m Yet another approach (though related to automatic one...)

m Build explicit tree representing expression

m Apply transformations to obtain derivative 0

m Pros: only needs to happen once! @ Q

m Cons: serious development investment e
m But, can often use existing tools ‘ G

- Mathematica, Maple, etc. ())3

m Current systems not great with vectors, 3D ain (o Z)

T + oy

m Often produce unnecessarily complex formulae...

CMU 15-462/662, Spring 2016

Geometric Differentiation

m Sometimes symbolic differentiation misses the “big picture”
m E.g., gradient of triangle area w.r.t. vertex position p

Mathematica output:

(2 (b2 - ¢2) (-b2 ¢cl1 + a2 (-bl + ¢cl1) + al (b2 - c2) +
bl c2) + 2 (b3 - ¢3) (-b3 cl1 + a3 (-bl + cl1) + al (b3
- c3) + bl c3))/(4 Sqrt((a2 bl - al b2 - a2 cl1 + b2 cl
+ al ¢c2 - p bl ¢c2)”2 + (a3 bl - al b3 - a3 cl1 + b3 cl
+ al ¢3 - bl ¢c3)"2 + (a3 b2 - a2 b3 - a3 ¢c2 + b3 c2 +
a2 c3 - b2 ¢3)72)), (2 (bl - cl1) (a2 (bl - cl1) + b2 cl1
- bl c2 + al (-b2 + c2)) + 2 (b3 - ¢3) (-b3 c2 + a3 (-
b2 + ¢c2) + a2 (b3 - ¢3) + b2 ¢3))/(4 Sqrt((a2 bl - al
b2 - a2 ¢l + b2 ¢cl1 + al ¢2 - bl ¢c2)”2 + (a3 bl - al b3
- a3 cl + b3 cl + al ¢3 -Dbl ¢c3)72 + (a3 b2 - a2 b3 -
a3 c2 + b3 c2 + a2 ¢3 - b2 ¢c3)72)), (2 (bl - ¢cl1) (a3
(bl - cl1) + b3 ¢c1 - bl ¢3 + al (-b3 + c3)) + 2 (b2 -
c2) (a3 (b2 - c2) + b3 ¢c2 - b2 ¢3 + a2 (-b3 + ¢3)))/(4
Sqrt((a2 bl - al b2 - a2 ¢cl1 + b2 ¢cl1 + al ¢c2 - bl c2)"2
+ (a3 bl - al b3 - a3 ¢c1 + b3 ¢cl1 + al ¢3 - bl c3)"2 +
(a3 b2 - a2 b3 - a3 ¢c2 + b3 c2 + a2 ¢c3 - b2 ¢3)72))

CMU 15-462/662, Spring 2016

ot Covered: Contact Mechanics

Smith et al, “Reflections on Simultaneous
Impact”

CMU 15-462/662, Spring 2016

Notes

m These SIGGRAPH course notes have an excellent description of
how to write your own physically based simulation

- https://www.cs.cmu.edu/~baraff/sigcourse/

CMU 15-462/662, Spring 2016

https://www.cs.cmu.edu/~baraff/sigcourse/

hat you should know:

Sketch a block diagram of a physically based simulation engine. Include modules for
integrating the system forward in time, for calculating derivatives, for obtaining forces.

W

m How did you express state?

m Show state, and exact functionality of each module for a system where two 2D particles are
connected [)y aspring. You may use forward Euler integration.

m The Euler-Lagrange equation is listed below. Explain each of the terms. Use the Euler-
Lagrange equation to find the equations of motion for a particle acting under gravity, two
particles connected by a spring, other simple systems.

doL or

dt ¢ 9dq
m What equations are used for forward Euler integration? Forward Euler integration can

suffer from two kinds of problems: (1) poor accuracy, and (2) instability. Explain these
two problems. [llustrate each problem with a sketch.

m How do you set up Backward Euler integration? Is Backward Euler stable? Is it accurate?
What problems may be observed when using Backward Euler? (Alternatively, what are the
pros and cons of using Backward Euler?)

m Beprepared to explore other integration schemes, perhaps integrating a simple system
forward a couple of steps by hand.

m We would typically use symbolic differentiation in a simulator, but sometimes itis
convenient to use numerical differentiation. How would you numerically differentiate a
given function f(t)?

CMU 15-462/662, Spring 2016

