
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 20:

High-Performance
Ray Tracing

 CMU 15-462/662, Spring 2016

Last time we talked about consistency, bias,
and sampling

2

 CMU 15-462/662, Spring 2016

Consistency & Bias in Rendering Algorithms

3

method consistent? unbiased?

rasterization* NO NO

path tracing ALMOST ALMOST

bidirectional path tracing ??? ???

Metropolis light transport ??? ???

photon mapping ??? ???

radiosity ??? ???

*But very high performance!

 CMU 15-462/662, Spring 2016

Good paths can be hard to find!

4

bidirectional path tracing

Metropolis light transport (MLT)

Idea:
Once we find a good path,
perturb it to find nearby
“good” paths.

 CMU 15-462/662, Spring 2016

Photon Mapping
Trace particles from light, deposit “photons” in kd-tree
Especially useful for, e.g., caustics, participating media

5

Interestingly enough, Voronoi diagrams
also used to improve photon distribution!

(from Spencer & Jones 2013)

 CMU 15-462/662, Spring 2016

Finite Element Radiosity
Very different approach: transport between patches in
scene
Solve large linear system for equilibrium light distribution

6

 CMU 15-462/662, Spring 2016

Consistency & Bias in Rendering Algorithms

7

method consistent? unbiased?

rasterization NO NO

path tracing ALMOST ALMOST

bidirectional path tracing YES YES

Metropolis light transport YES YES

photon mapping YES NO

radiosity NO NO

 CMU 15-462/662, Spring 2016

Can you certify a renderer?
Grand challenge: write a renderer that comes with a
certificate (i.e., provable, formally-verified guarantee) that
the image produced represents the illumination in a scene.
Harder than you might think!
Inherent limitation of sampling: you can never be 100%
certain that you didn’t miss something important.

8

eye

sun
pinhole

Can always make sun brighter, hole smaller...!

 CMU 15-462/662, Spring 2016

High Performance Ray Tracing

9

 CMU 15-462/662, Spring 2016

Ray tracing is a mechanism for answering
“visibility” queries

10

x

x’

x’’

v(x,x’) = 1
v(x’,x’’) = 0

v(x1,x2) = 1 if x1 is visible from x2, 0 otherwise

 CMU 15-462/662, Spring 2016

Using rasterization to answer
visibility queries

11

 CMU 15-462/662, Spring 2016

Another way to think about rasterization

▪ Rasterization is an efficient algorithm for servicing large
batches of visibility queries… for rays with specific properties
- Assumption 1: Rays have the same origin

- Assumption 2: Rays are uniformly distributed over plane of projection (within
specified field of view)

▪ Assumptions → significant optimization opportunities
- Project triangles: reduce ray-triangle intersection to 2D point-in-polygon test
- Projection to canonical view volume enables use of efficient fixed-point math,

custom GPU hardware for rasterization

12

 CMU 15-462/662, Spring 2016

Shadow mapping: ray origin need not be the
scene’s camera position

13

- Place ray origin at position of point light source
- Render scene to compute depth to closest object to light along uniformly

distributed “shadow rays” (answer stored in depth buffer)
- Store precomputed shadow ray intersection results in a texture

Image credits: Segal et al. 92, Cass Everitt

Shadow rays
“Shadow map” = depth map from perspective of a point light.
(Store closest intersection along each shadow ray in a texture map)

[Williams 78]

 CMU 15-462/662, Spring 2016

Result of shadow texture lookup approximates
v(x’,x’’) when shading fragment at x’

14

x

x’

x’’ Shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)

 CMU 15-462/662, Spring 2016Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map
(shadow map resolution is too low)

Correct hard shadows
(result from computing v(x’,x’’) directly
using ray tracing)

Shadow aliasing due to undersampling

15

 CMU 15-462/662, Spring 2016

Environment mapping

16

Place ray origin at location of
reflective object.

Yields approximation to true
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of reflective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror reflection rays

Question: how can a glossy surface be rendered
using the cube map

 CMU 15-462/662, Spring 2016

Ambient occlusion

17

 CMU 15-462/662, Spring 2016

Ambient occlusion

18

✓

Occlusion term: does ray from p in
direction w hit any scene object
within distance d

E(p) =

Z

H2

V (!)Li(p,!) cos ✓ d!

⇡
Z

H2

Vd(!) d!

Z

H2

Li(p,!) cos ✓ d!

⇡ O

Z

H2

Li(p,!) cos ✓ d!

d!

d

Vd(!1) = 0

Vd(!2) = 1

Vd(!1) = 0

Vd(!2) = 1

!1

!2

Idea: precompute “amount of
hemisphere” that is occluded
from a point, attenuate direct
environment lighting by this
amount.

 CMU 15-462/662, Spring 2016

“Screen-space” ambient occlusion in games

19

p
Depth buffer values

1. Render scene to depth buffer
2. For each pixel p (“ray trace” the depth buffer to estimate

occlusion of hemisphere - use a few samples per pixel)
3. Blur the the occlusion map to reduce noise
4. Shade pixels, darken direct environment lighting by

occlusion amount

 CMU 15-462/662, Spring 2016

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720

in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Ambient occlusion

20

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720

in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Lighting modulated by occlusion

Direct Lighting (no shadowing computations)

 CMU 15-462/662, Spring 2016

Motivations for real-time ray tracing

21

Image Credit: Pixar (Cars)

Many shadowed lights (big pain to manage
many shadow maps)
Accurate reflections from curved surfaces

Estimate indirect illumination effects
(But unclear if ray tracing is best real-time solution for
low frequency effects… more to come)

Reduce content creation and game engine
development time: single general solution rather
than a specialized technique for each lighting effect.

Less parameter tweaking (e.g., choosing shadow
map texture size)

VR may demand more flexible control over what pixels are
drawn. (e.g., row-based display rather than frame-based,
higher resolution where eye is looking, correct for
distortion of optics)

 CMU 15-462/662, Spring 2016

Efficient ray tracing

22

 CMU 15-462/662, Spring 2016

Imagine I give you a 16-core CPU
How would you parallelize your ray tracer to render this picture?

23
Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)

 CMU 15-462/662, Spring 2016

What about building a BVH in parallel?

24

b0 b1 b2 b3 b4 b5 b6 b7

Partition(node),
,,,For,each,axis:,x,y,z:,
,,,,,,initialize,buckets,
,,,,,,For,each,primitive,p,in,node:,
,,,,,,,,,b,=,compute_bucket(p.centroid),
,,,,,,,,,b.bbox.union(p.bbox);,
,,,,,,,,,b.prim_count++;,
,,,,,,For,each,of,the,BD1,possible,partitioning,planes,evaluate,SAH,
,,,Execute,lowest,cost,partitioning,found,(or,make,node,a,leaf)

 CMU 15-462/662, Spring 2016

Modern computer architecture 101

25

 CMU 15-462/662, Spring 2016

What does a processor do?

26

input

Fetch/
Decode

Execution
Context

ALU
(Execute)

ld,,,r0,,addr[r1]

mul,,r1,,r0,,r0

mul,,r1,,r1,,r0

...

...

...

...

...,

...

st,,,addr[r2],,r0

output

 CMU 15-462/662, Spring 2016

A processor executes an instruction stream

27

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld,,,r0,,addr[r1]

mul,,r1,,r0,,r0

mul,,r1,,r1,,r0

...

...

...

...

...,

...

st,,,addr[r2],,r0

input

output

 CMU 15-462/662, Spring 2016

Execute program

28

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld,,,r0,,addr[r1]

mul,,r1,,r0,,r0

mul,,r1,,r1,,r0

...

...

...

...

...,

...

st,,,addr[r2],,r0

input

output

 CMU 15-462/662, Spring 2016

Sixteen cores: process 16 tasks in parallel

29

Sixteen coresSixteen tasks processed at once

 CMU 15-462/662, Spring 2016

An efficient ray tracer implementation must
use all the cores on a modern processor

(this is quite easy)

30

 CMU 15-462/662, Spring 2016

Multi-core processors
Intel Core i7 (Haswell): quad-core CPU

31

Intel Xeon Phi:
60 core CPU

 CMU 15-462/662, Spring 2016

Multi-core processors

32

NVIDIA
GeForce GTX 980

(Maxwell) GPU

 CMU 15-462/662, Spring 2016

21 43

5 6 7 8

SIMD processing
Single instruction, multiple data

33

Each core can execute the same instruction
simultaneously on multiple pieces of data:

e.g., add vector A to vector B (length 8)
32-bit addition performed in parallel for each
vector element.

 CMU 15-462/662, Spring 2016

An efficient ray tracer implementation must also utilize
the SIMD execution capabilities of modern processors

CPUs: up to a factor of 8
GPUs: up to a factor of 32

34

 CMU 15-462/662, Spring 2016

Accessing memory has high cost

35

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR3 DRAM

(Gigabytes)

Core 1

Core N

L1 cache
(32 KB)

L2 cache
(256 KB)

▪ High latency: 100’s of cycles
▪ Too little bandwidth: modern processors

can perform arithmetic much faster
than memory can provide data.

! 6

• Cloud-based gaming. While gaming has always primarily been a client since application,
high data-rate last-mile broadband is finally making it practical to execute games in the
datacenter and then transport compressed pixels to the user on a thin client at home. The
leading example of such services are the NVIDIA grid GPUs that deliver pixels to Shield tab-
lets. (http://shield.nvidia.com/grid-game-streaming)

• Visual data analytics. The growing ubiquity of online photo collections, security cameras,
webcams, traffic cams, etc. provide the opportunity for a new field of visual data analytics.
Data mining and pattern matching within large image and video datasets in the datacenter
will become as important as current practice of data mining text and symbolic information.
Image search and retrieval operations constitute a compelling opportunity for PIM.

2. State of Current Graphics Hardware
A more comprehensive portrait of modern GPU technology is listed in the table below. (Note that
arithmetic throughput is given in terms of fp16/32 multiply-accumulate operations counted as two
fp ops (consistent with industry spec sheets). As a result, the reader should divide by two to obtain
throughput for individual (not fused) fp16/32 multiply or add operations. Typically, int32 throughput
is about ½ that of fp32 throughput.

Product Peak flops (fp) DRAM Bandwidth (compute/BW ratio)
NVIDIA Tesla K40
(2014, high-end discrete GPU)

4.4 TF (fp32) 288 GB/sec (8.75 flops/byte)

NVIDIA Tegra X1
(2015, high-end mobile GPU)

512 GF (fp32)
1 TF (fp16)

25.6 GB/sec (10 flops/byte)

Imagination PowerVR GX6450
(2014, iPhone 6)

115.2 GF (fp32) 12.4 GB/sec (9.2 flops/byte)

Imagination PowerVR GT7900
(2015, high-end mobile GPU)

384 GF (fp32)
768 GF (fp16)

TBD since processor is not in shipping SoCs

Intel Integrated HD 350 GPU
(2014, integrated desktop GPU)

384 GF (fp32) 34.1 GB/sec (11.2 flops/byte)

Xbox 360 (2005) 240 GF (fp32) 32.1 GB/sec (7.5 flops/byte)

Interesting trends are as follows:

• A good rule of thumb is that modern GPUs must perform 5 instructions per byte comuni-
cated from DRAM to operate in a compute bound regime (5 MADDs=10 ops). In other
words, there must be 40 arithmetic instructions between each load and store of a 4-byte
fp32 value (8 bytes of DRAM I/O) for the system to be compute bound. This trend has
roughly held over time, and holds across low-end mobile GPUs to high-end discrete GPUs
today.

• Given the above statistic, in compute-bound scenarios there is a large ratio of arithmetic
operations to data access. Therefore, a significant amount of energy consumed to perform
the computation is used to source data from register files and perform arithmetic. (This is
less true of integer operations than fp operations.)

• In general, modern SoCs have last-level caches (LLCs) on the order of 1-4MB. For exam-
ple, the iPhone 6’s 4 MB on-chip cache is accessible to the GPU, and Intel Gen integrated
graphics shares an 8 MB LLC with its host CPU. It is not documented whether mobile
GPU data transfers can be absorbed by the LLC in other designs.

 CMU 15-462/662, Spring 2016

An efficient ray tracer implementation must be careful to
reduce memory access costs as much as possible.

36

 CMU 15-462/662, Spring 2016

Rules of the game
▪ Many individual processor cores

- Run tasks in parallel

▪ SIMD instruction capability
- Single instruction carried out on multiple elements of an

array in parallel (8-wide on modern GPUs, 16-wide on Xeon
Phi, 8-to-32-wide on modern GPUs)

▪ Accessing memory is expensive
- Processor must wait for data to arrive
- Role of CPU caches is to reduce wait time (want good locality)

37

 CMU 15-462/662, Spring 2016

Efficient ray traversal algorithms

38

 CMU 15-462/662, Spring 2016

High-throughput ray tracing
▪ Want work-efficient algorithms (do less)

- High-quality acceleration structures (minimize ray-box, ray-primitive tests)

- Smart traversal algorithms (early termination, etc.)

▪ Implementations for existing parallel hardware (CPUs/GPUs):
- High multi-core, SIMD execution efficiency

- Help from fixed-function processing?

▪ Bandwidth-efficient implementations:
- How to minimize bandwidth requirements?

39

Discussed in
earlier lecture

 CMU 15-462/662, Spring 2016

Parallelizing ray-triangle tests?

40

 CMU 15-462/662, Spring 2016

Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for
SIMD processing
- Can use 3 of 4 SSE vector lanes (e.g., xyz work, point-multiple-plane tests, etc.)

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf

▪ If leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles

41

 CMU 15-462/662, Spring 2016

Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)
- BVH with branching factor 4 has similar work efficiency to branching factor 2
- BVH with branching factor 8 or 16 is significantly less work efficient (diminished

benefit of leveraging SIMD execution)

42

[Wald et al. 2008]

 CMU 15-462/662, Spring 2016

Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

▪ Today: we’ll discuss one approach: ray packets
- Code is explicitly written to trace N rays at a time, not 1 ray

43

 CMU 15-462/662, Spring 2016

Simple ray tracer (using a BVH)
//,stores,information,about,closest,hit,found,so,far,
struct,ClosestHitInfo,{,
,,,Primitive,primitive;,
,,,float,distance;,
};,

trace(Ray,ray,,BVHNode,node,,ClosestHitInfo,hitInfo),
{,
,,,if,(!intersect(ray,,node.bbox),||,(closest,point,on,box,is,farther,than,hitInfo.distance)),
,,,,,,return;,

,,,if,(node.leaf),{,
,,,,,,for,(each,primitive,in,node),{,
,,,,,,,,,(hit,,distance),=,intersect(ray,,primitive);,
,,,,,,,,,if,(hit,&&,distance,<,hitInfo.distance),{,
,,,,,,,,,,,,hitInfo.primitive,=,primitive;,
,,,,,,,,,,,,hitInfo.distance,=,distance;,
,,,,,,,,,},
,,,,,,},
,,,},else,{,

trace(ray,,node.leftChild,,hitInfo);,
,,,,,trace(ray,,node.rightChild,,hitInfo);,
,,,},
}

44

 CMU 15-462/662, Spring 2016

Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once

45

RayPacket,
{,
,,,,Ray,rays[PACKET_SIZE];,
,,,,bool,active[PACKET_SIZE];,
};,

trace(RayPacket,rays,,BVHNode,node,,ClosestHitInfo,packetHitInfo),
{,
,,,if,(!ANY_ACTIVE_intersect(rays,,node.bbox),||,
,,,,,,,(closest,point,on,box,(for,all,active,rays),is,farther,than,hitInfo.distance)),
,,,,,,return;,

,,,update,packet,active,mask,

,,,if,(node.leaf),{,
,,,,,,for,(each,primitive,in,node),{,
,,,,,,,,,for,(each,ACTIVE,ray,r,in,packet),{,
,,,,,,,,,,,,(hit,,distance),=,intersect(ray,,primitive);,
,,,,,,,,,,,,if,(hit,&&,distance,<,hitInfo.distance),{,
,,,,,,,,,,,,,,,hitInfo[r].primitive,=,primitive;,
,,,,,,,,,,,,,,,hitInfo[r].distance,=,distance;,
,,,,,,,,,,,,},
,,,,,,,,,},
,,,,,,},
,,,},else,{,
,,,,,trace(rays,,node.leftChild,,hitInfo);,
,,,,,trace(rays,,node.rightChild,,hitInfo);,
,,,},
}

[Wald et al. 2001]

 CMU 15-462/662, Spring 2016

Ray packet tracing

46

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

 CMU 15-462/662, Spring 2016

Advantages of packets
▪ Enable wide SIMD execution

- One vector lane per ray

▪ Amortize BVH data fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64)

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox

(e.g., think of a packet as a beam)
- Further arithmetic optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

47

 CMU 15-462/662, Spring 2016

Disadvantages of packets

48

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it)

▪ Loss of efficiency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

 CMU 15-462/662, Spring 2016

Ray packet tracing: incoherent rays

49

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, benefit of packets can decrease
significantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling benefit!)

 CMU 15-462/662, Spring 2016

Incoherence is a property of both the rays and the scene

50

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!

 CMU 15-462/662, Spring 2016

Incoherence is a property of both the rays and the scene

51

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

 CMU 15-462/662, Spring 2016

Improving packet tracing with ray reordering

52

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet:
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and
continue with smaller packet

- Increases SIMD utilization

- Amortization benefits of smaller packets, but not large packets

[Boulos et al. 2008]

 CMU 15-462/662, Spring 2016

Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Diffuse bounces result in essentially random ray distribution
- High-resolution geometry encourages incoherence near leaves of tree

▪ In these situations there is little benefit to packets (can even decrease
performance compared to single ray code)

53

 CMU 15-462/662, Spring 2016

Packet tracing best practices
▪ Use large packets for eye/reflection/point light shadow rays

or higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet
utilization drops below threshold
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet

traversal and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide benefit deeper into tree
- Not often used in practice due to high implementation complexity

54

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

 CMU 15-462/662, Spring 2016

Let’s stop and think
▪ One strong argument for high-performance ray tracing is to produce

advanced effects that are difficult or inefficient to compute given
the single point of projection and uniform sampling constraints of
rasterization
- e.g., soft shadows, diffuse interreflections

▪ But these phenomenon create situations of high ray divergence!
(where packet- and SIMD-optimizations are less effective)

55

 CMU 15-462/662, Spring 2016

Emerging hardware for ray tracing

56

 CMU 15-462/662, Spring 2016

Emerging hardware for ray tracing
▪ Modern academic/announced industry implementations:

- Trace single rays, not ray packets (assume most rays are incoherent rays…)

▪ Two areas of focus:
- Custom logic for accelerating ray-box and ray-triangle tests

- MIMD designs: wide SIMD execution not beneficial

- Support for efficiently reordering ray-tracing computations to maximize
memory locality (ray scheduling)

▪ See “further reading” on web site for a list of references

57

 CMU 15-462/662, Spring 2016

Global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the
scene. Process these rays together to increase locality in BVH access

58

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays
to treelet queue

2. When treelet queue is sufficiently large,
intersect enqueued rays with treelet
(amortize treelet load over all enqueued rays)

Buffering overhead to global ray reordering: must
store per-ray “stack” (need not be entire call stack,
but must contain traversal history) for many rays.

Per-treelet ray queues sized to fit in caches (or in
dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]

[Pharr 1997, Navratil 07, Alia 10]

 CMU 15-462/662, Spring 2016

PowerVR GR6500 ray tracing GPU

59

 CMU 15-462/662, Spring 2016

Constructing High-Quality BVHs Quickly

60

 CMU 15-462/662, Spring 2016

Building a “poor” BVH quickly

61

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells
2. Compute index of centroid of bounding box of each primitive:

(c_i, c_j, c_k)
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code
4. Sort primitives by Morton code (primitives now ordered with high

locality in 3D space: in a space-filling curve!)
- O(N) radix sort

Partition(int i, primitives):
 node.bbox = bbox(primitives)
 (left, right) = partition primitives by bit i
if there are more bits:
 Partition(left, i+1);
 Partition(right, i+1);
else:
 make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:

 CMU 15-462/662, Spring 2016

Modern, fast BVH build schemes
▪ Build “poor” BVH quickly using Morton Codes

▪ Use initial BVH to accelerate construction of high-quality BVH

▪ Example: [Kerras 2013]

62

For all treelets of size < N in original “poor” BVH: (in parallel)

 try all possible trees, keep “optimal” topology that minimizes SAH for treeless

 CMU 15-462/662, Spring 2016

What you should know:
▪ Be able to describe the main ideas and some strengths and weaknesses of photon mapping and

radiosity.

▪ Why does radiosity give a biased estimator? an inconsistent estimator?

▪ How does Shadow Mapping make use of rasterization in the shadow computation?

▪ How do we use rasterization to capture reflections in an environment map such as a cube map?

▪ Give an example of where an environment map gives a poor approximation.

▪ What is an ambient occlusion map? How does it fit into the graphics pipeline (i.e., give a
rendering flow that makes use of an ambient occlusion map to speed computation).

▪ Give some examples of scenes or situations where these tricks are insufficient, and we can
achieve a benefit from instead having a real time ray tracer.

▪ Understand the “rules of the game” for high speed ray tracing: multiple cores, SIMD
processing, and high cost of memory access.

▪ What does it mean to trace a ray packet? Under what circumstances will ray packet tracing be
efficient? ..be inefficient?

▪ What sorts of things would you think about if writing a scheduler to determine the order in
which rays will be traced?

63

