Lecture 20:

High-Performance
Ray Tracing

Computer Graphics
CMU 15-462/15-662, Spring 2016



Last time we talked about consistency, bias,
and sampling
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Consistency & Bias in Rendering Algorithms

method consistent? unbiased?
rasterization®* NO NO
path tracing ALMOST ALMOST
bidirectional path tracing m m
Metropolis light transport m m
photon mapping m m
radiosity m m

*But very high performance!
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Good paths can be hard to find!

|dea:
Once we find a good path,
perturb it to find nearby

i n S
QOOd paths. Metropolis light transport (MLT)
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Photon Mapping

m Trace particles from light, deposit “photons” in kd-tree
m Especially useful for, e.g., caustics, participating media

Interestingly enough, Voronoi diagrams
also used to improve photon distribution!

(from Spencer & Jones 2013)
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Finite Element Radiosity

m Very different approach: transport between patches in
scene

m Solve large linear system for equilibrium light distribution

—

—=
o
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Consistency & Bias in Rendering Algorithms

method consistent? unbiased?
rasterization NO NO
path tracing ALMOST ALMOST
bidirectional path tracing YES YES
Metropolis light transport YES YES
photon mapping YES NO
radiosity NO NO
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Can you certify a renderer?

m Grand challenge: write a renderer that comes with a
certificate (i.e., provable, formally-verified guarantee) that
the image prociuced represents the illumination in a scene.

m Harder than you might think!

m Inherent limitation of sampling: you can never be 100%
certain that you didn’t miss something important.

pinhole

~

Can always make sun brighter, hole smaller...!
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High Performance Ray Tracing
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Ray tracing is a mechanism for answering
“visibility” queries
v(x1,X2) = 1if xq is visible from x;, 0 otherwise

b4

X
v‘

vix,x')=1
v(x’x")=0

x’
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Using rasterization to answer
visibility queries

1 (MU 15-462/662, Spring 2016



Another way to think about rasterization

m Rasterization is an efficient algorithm for servicing large
batches of visibility queries. .. for rays with specific properties

- Assumption 1: Rays have the same origin

- Assumption 2: Rays are uniformly distributed over plane of projection (within
specified field of view)

B Assumptions — significant optimization opportunities

- Project triangles: reduce ray-triangle intersection to 2D point-in-polygon test

- Projection to canonical view volume enables use of efficient fixed-point math,
custom GPU hardware for rasterization
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Shadow mapping: ray origin need not be the
scene’s camera position wiiamzs

- Place ray origin at position of point light source

- Render scene to compute depth to closest object to light along uniformly
distributed “shadow rays” (answer stored in depth buffer)

- Store precomputed shadow ray intersection results in a texture

Shadow rays
“Shadow map” = depth map from perspective of a point light.

(Store closest intersection along each shadow ray in a texture map)

Image credits: Segal et al. 92, Cass Everitt 13 CMU 15-462/662, Spring 2016



Result of shadow texture lookup approximates
v(x,;x"”) when shading fragment at x’

Shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)
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Shadow aliasing due to undersampling

Shadows computed using shadow map
(shadow map resolution is too low)

Correct hard shadows
(result from computing v(x,x") directly
using ray tracing)

Image credit: Johnson et al. TOG 2005 15CMU 15-462/662, Spring 2016



Environment mapping

Place ray origin at location of
reflective object.

Scene rendered 6 times, with ray
origin at center of reflective box
(produces “cube-map”)

Yields approximation to true ¢
reflection results. Why?

Cube map:  >

stores results of approximate mirror reflection rays

Center of projection

Question: how can a glossy surface be rendered
using the cube map

Image credit: http://en.wikipedia.org/wiki/Cube_mapping
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_ Ambient occlusion




Ambient occlusion

|dea: precompute “amount of
hemisphere” that is occluded
from a point, attenuate direct
environment lighting by this
amount.

E(p) = / 2 V(w) L;(p,w) cos 0 dw
H ———————
/HQ Va(w) dw /H2 L;(p,w) cos 6 dw

X

0, / L;(p,w) cosfdw
H?2

18

Occlusion term: does ray from p in
direction w hit any scene object
within distance d

(MU 15-462/662, Spring 2016



“Screen-space” ambient occlusion in games

W Sarele tﬂlw‘l’l) ANGOM 100N » NOSH * Dy & pcCeiatieo

1. Render scene to depth buffer

2. For each pixel p (“ray trace” the depth buffer to estimate
occlusion of hemisphere - use a few samples per pixel)

3. Blur the the occlusion map to reduce noise

4. Shade pixels, darken direct environment lighting by
occlusion amount

without ambeant occlusion with ambent oocuUSsIon

Depth buffer values
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Direct Lighting (no shadowing computations)
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Motivations for real-time ray tracing

Estimate indirect illumination effects
(But unclear if ray tracing is best real-time solution for
low frequency effects. .. more to come)

Many shadowed lights (big pain to manage
many shadow maps)

Accurate reflections from curved surfaces

Reduce content creation and game engine
development time: single general solution rather

than a specialized technique for each lighting effect. VR may demand more flexible control over what pixels are
, , drawn. (e.g., row-based display rather than frame-based,
Less parameter tweaking (e.g., choosing shadow higher resolution where eye is looking, correct for



Efficient ray tracing
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Imagine | give you a 16-core CPU

How would you parallelize your ray tracer to render this picture?

- -
- e}

-
-

Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs) ,
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What about building a BVH in parallel?

b0 b1 b2 b3 b4 b5 b6 b7

Partition(node)
For each axis: Xx,y,z:
initialize buckets
For each primitive p in node:
b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH
Execute lowest cost partitioning found (or make node a leaf)
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Modern computer architecture 101
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What does a processor do?

=

- 1d ro, addr'[r'l]

mul rl, ro, ro
ALU mul rl1, rl, ro

(Execute)

st addr[r2], re

!

[output]
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A processor executes an instruction stream

My very simple processor: executes one instruction per clock

=

- > 1d ro, addr[ri]

mul rl, ro, ro
ALU mul rl1, rl, ro

(Execute)

st addr[r2], re

!

[output]
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Execute program

My very simple processor: executes one instruction per clock

3
!

ld roe, addr[ri]

mul rl, ro, ro

mul rl1, rl, ro

A >

(Execute)

st addr[r2], re

!
-
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Sixteen cores: process 16 tasks in parallel

!

!

!

!

!

Sixteen tasks processed at once

B B
B
| ..
B

B B
B
I
|
==

Sixteen cores
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An efficient ray tracer implementation must
use all the cores on a modern processor
(this Is quite easy)
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Multi-core processors

Intel Core i7 (Haswell): quad-core CPU

W Processor S

™ Graphics

TEEUNEEFEUNEET
Shared L3 Cache**

sl Memory Controller 110

Intel Xeon Phi:
60 core CPU
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Multi-core processors

NVIDIA

GeForce GTX 980
(Maxwell) GPU

32 (MU 15-462/662, Spring 2016



SIMD processing

Single instruction, multiple data

" Processor .
N Graphics

S § Shared L3 Lache™™
' l ‘»\.:‘ -

Each core can execute the same instruction
simultaneously on multiple pieces of data:

e.g., add vector A to vector B (length 8)
32-bit addition performed in parallel for each
vector element.

33(MU 15-462/662, Spring 2016



An efficient ray tracer implementation must also utilize
the SIMD execution capabilities of modern processors

CPUs: up to a factor of 8
GPUs: up to a factor of 32
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Accessing memory has high cost

Py
25 GB/sec Memory
Core 1
L2 cache ﬁ DDR3 DRAM
(256 KB)
(Gigabytes)
L3 cache
(8 MB)
L1 cache
Core N = B High latency: 100’ of cycles
e B Too little bandwidth: modern processors
(256 £B) can perform arithmetic much faster
than memory can provide data.
Product Peak flops (fp) DRAM Bandwidth (compute/BW ratio)

NVIDIA Tesla K40
(2014, high-end discrete GPU)

4.4 TF (fp32)

288 GB/sec (8.75 flops/byte)

NVIDIA Tegra X1
(2015, high-end mobile GPU)

512 GF (fp32)
1 TF (fp16)

25.6 GB/sec (10 flops/byte)

Imagination PowerVR GX6450
(2014, iPhone 06)

115.2 GF (fp32)

12.4 GB/sec (9.2 flops/byte)

Imagination PowerVR GT7900
(2015, high-end mobile GPU)

384 GF (fp32)
768 GF (fp16)

TBD since processor is not in shipping SoCs

Intel Integrated HD 350 GPU
(2014, integrated desktop GPU)

384 GF (fp32)

34.1 GB/sec (11.2 flops/byte)

Xbox 360 (2005)

240 GF (fp32)

32.1 GB/sec (7.5 flops/byte)
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An efficient ray tracer implementation must be careful to
reduce memory access costs as much as possible.
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Rules of the game

m Many individual processor cores
= Run tasks in parallel

m SIMD instruction capability

- Single instruction carried out on multiple elements of an
array in parallel (8-wide on modern GPUs, 16-wide on Xeon
Phi, 8-to-32-wide on modern GPUs)

B Accessing memory is expensive
- Processor must wait for data to arrive
- Role of CPU caches is to reduce wait time (want good locality)
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Efficient ray traversal algorithms
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High-throughput ray tracing

m Want work-efficient algorithms (do less)

- High-quality acceleration structures (minimize ray-box, ray-primitive tests)| Discussed in

- Smart traversal algorithms (early termination, etc.)

m |[mplementations for existing parallel hardware (CPUs/GPUs):
- High multi-core, SIMD execution efficiency

= Help from fixed-function processing?

m Bandwidth-efficient implementations:
- How to minimize bandwidth requirements?
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Parallelizing ray-triangle tests?
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Parallelize ray-bhox, ray-triangle intersection

® Given one ray and one bounding box, there are opportunities for
SIMD processing

- (Can use 3 of 4 SSE vector lanes (e.g., xyz work, point-multiple-plane tests, etc.)

m Similar SIMD parallelism in ray-triangle test at BVH leaf

m [f leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles
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Parallelize over BVH child nodes [Wald et al. 2008]

B |dea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)

- BVH with branching factor 4 has similar work efficiency to branching factor 2

- BVH with branching factor 8 or 16 is significantly less work efficient (diminished
benefit of leveraging SIMD execution)
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Parallelize across rays

m Simultaneously intersect multiple rays with scene

m Today: we'll discuss one approach: ray packets

- Code is explicitly written to trace N rays at a time, not 1 ray
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Simple ray tracer (using a BVH)

// stores information about closest hit found so far
struct ClosestHitInfo {

Primitive primitive;

float distance;

}s
trace(Ray ray, BVHNode node, ClosestHitInfo hitInfo)
{
if (!intersect(ray, node.bbox) || (closest point on box is farther than hitInfo.distance))
return;
if (node.leaf) {
for (each primitive in node) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitInfo.distance) {
hitInfo.primitive = primitive;
hitInfo.distance = distance;
}
}
} else {
trace(ray, node.leftChild, hitInfo);
trace(ray, node.rightChild, hitInfo);
}
}
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Ray packet tracing Waldetal 2001

Program explicitly intersects a collection of rays against BVH at once

RayPacket

{
Ray rays[PACKET_SIZE];

bool active[PACKET_SIZE];

}s
trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo)
{
if (!'ANY _ACTIVE intersect(rays, node.bbox) ||
(closest point on box (for all active rays) is farther than hitInfo.distance))
return;
update packet active mask
if (node.leaf) {
for (each primitive in node) {
for (each ACTIVE ray r in packet) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitInfo.distance) {
hitInfo[r].primitive = primitive;
hitInfo[r].distance = distance;
}
}
}
} else {
trace(rays, node.leftChild, hitInfo);
trace(rays, node.rightChild, hitInfo);
}
}
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Ray packet tracing

= active rays after node box test
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Advantages of packets

m Enable wide SIMD execution
- One vector lane per ray

B Amortize BVH data fetch: all rays in packet visit node at same time

- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.qg., size = 64)

B Amortize work (packets are hierarchies over rays)

- Use interval arithmetic to conservatively test entire set of rays against node bbox
(e.g., think of a packet as a beam)
= Further arithmetic optimizations possible when all rays share origin

- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets f
Blue = active ray after node hox test

m |f any ray must visit a node, it drags all uu ul
rays in the packet along with it) j

B Loss of efficiency: node traversal, uu/u/\\
intersection, etc. amortized over less [ N

than a packet’s worth of rays

m  Not all SIMD lanes doing useful work o




Ray packet tracing: incoherent rays
. : l% il

G
|

>4

3

: D | \I‘:
: aa) L4
When rays are incoherent, benefit of packets can decrease

significantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling benefit!)




Incoherence is a property of both the rays and the scene

<

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Improving packet tracing with ray reordering

[Boulos et al. 2008]
|ldea: when packet utilization drops below threshold, resort rays and
continue with smaller packet
— Increases SIMD utilization

— Amortization benefits of smaller packets, but not large packets

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

16-ray packet: 7 of 16 rays active l l u l l l

$

Reorder rays
Recompute intervals/bounds for active rays uuul

Continue tracing with 8-ray packet: uuul
7 of 8 rays active
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Giving up on packets

m  Even with reordering, ray coherence during BVH traversal will diminish

- Diffuse bounces result in essentially random ray distribution
- High-resolution geometry encourages incoherence near leaves of tree

B |nthese situations there is little benefit to packets (can even decrease
performance compared to single ray code)
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Packet tracing best practices

m Use large packets for eye/reflection/point light shadow rays
or higher levels of BVH [Wald et al. 2007)

- Ray coherence always high at the top of the tree

[Benthin et al. 2011]

m Switch to single ray (intra-ray SIMD) when packet

utilization drops below threshold

- For wide SIMD machine, a branching-factor-4 BVH works well for both packet
traversal and single ray traversal

m (an use packet reordering to postpone time of switch (Boutosetal. 2008]

- Reordering allows packets to provide benefit deeper into tree
- Not often used in practice due to high implementation complexity
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Let’s stop and think

® One strong argument for high-performance ray tracing is to produce
advanced effects that are difficult or inefficient to compute given
the single point of projection and uniform sampling constraints of
rasterization

- e.g., soft shadows, diffuse interreflections

m But these phenomenon create situations of high ray divergence!
(where packet- and SIMD-optimizations are less effective)
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Emerging hardware for ray tracing
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Emerging hardware for ray tracing

B Modern academic/announced industry implementations:
- Trace single rays, not ray packets (assume most rays are incoherent rays...)

B Two areas of focus:

- Custom logic for accelerating ray-box and ray-triangle tests
- MIMD designs: wide SIMD execution not beneficial

- Support for efficiently reordering ray-tracing computations to maximize
memory locality (ray scheduling)

m See “further reading” on web site for a list of references
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[Pharr 1997, Navratil 07, Alia 10]

Global ray reordering

ldea: dynamically batch up rays that must traverse the same part of the
scene. Process these rays together to increase locality in BVH access

Partition BVH into treelets
O internal node (treelets sized for L1 or L2 cache)

leaf node ®
1. Whenray (or packet) enters treelet, add rays
1) treelet & T & to treelet queue

& [ )\ =] 2. When treelet queue is sufficiently large,
T | | intersect enqueued rays with treelet

(amortize treelet load over all enqueued rays)

. Buffering overhead to global ray reordering: must
T/ ' Ts store per-ray “stack” (need not be entire call stack,
- | but must contain traversal history) for many rays.

Per-treelet ray queues sized to fit in caches (or in
dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]
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PowerVR GR6500 ray tracing GPU

Unfied Shadng Cluster Arrary

USC USC

Poed
Dl
Masties

LOompute
Data
Master
Muts-bevwed
Memory
Shared Texture Und Shared Texture Uit Cache Uns

(NCLU)

L e . Frame
g Pooed
."f'_‘ " 'Y‘ — N- '- lJ'. -.“’!:-"
COprocessor Coprocessor Cache

Rayv nlersechon

(stryer 3lOf

59 (MU 15-462/662, Spring 2016



Constructing High-Quality BVHs Quickly



Building a “poor” BVH quickly

1. Discretize each dimension of scene into 28 cells
2. Compute index of centroid of bounding box of each primitive:
(c_i,c_j,c k)
3. Interleave bits of ¢_i, ¢_j, ¢_k to get 3B bit-Morton code
4. Sort primitives by Morton code (primitives now ordered with high 00 01 7 V7
locality in 3D space: in a space-filling curve!) b | i
= O(N) radix sort = PR

2D Morton Order
B=1 B=2

0 11

Simple, highly parallelizable BVH build:

Partition(int i, primitives):

node.bbox = bbox (primitives)

(left, right) = partition primitives by bit 1

if there are more bits: Ml W =
Partition (left, i+l); AT TR AR
Partition(right, i+l); | ' |

else:
make a leaf node B= B=4

"""""
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Modern, fast BVH build schemes

B Build“poor” BVH quickly using Morton Codes
m  Useinitial BVH to accelerate construction of high-quality BVH
B Example: [Kerras 2013]

For all treelets of size < N in original “poor” BVH: (in parallel)

try all possible trees, keep “optimal” topology that minimizes SAH for treeless
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What you should know:

Be able to describe the main ideas and some strengths and weaknesses of photon mapping and
radiosity.

B Why does radiosity give a biased estimator? an inconsistent estimator?

B How does Shadow Mapping make use of rasterization in the shadow computation?

B How do we use rasterization to capture reflections in an environment map such as a cube map?
B Give an example of where an environment map gives a poor approximation.

B Whatis an ambient occlusion map? How does it fit into the graphics pipeline (i.e., give a
rendering flow that makes use of an ambient occlusion map to speed computation).

B Give some examples of scenes or situations where these tricks are insufficient, and we can
achieve a benefit from instead having a real time ray tracer.

B Understand the “rules of the game” for high speed ray tracing: multiple cores, SIMD
processing, and high cost of memory access.

B What does it mean to trace a ray packet? Under what circumstances will ray packet tracing be
efficient? ..beinefficient?

B What sorts of things would you think about if writing a scheduler to determine the order in
which rays will be traced?
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