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Last time we talked about consistency, bias, 
and sampling

2
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Consistency & Bias in Rendering Algorithms
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method consistent? unbiased?

rasterization* NO NO

path tracing ALMOST ALMOST

bidirectional path tracing ??? ???

Metropolis light transport ??? ???

photon mapping ??? ???

radiosity ??? ???

*But very high performance!
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Good paths can be hard to find!
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bidirectional path tracing

Metropolis light transport (MLT)

Idea: 
Once we find a good path, 
perturb it to find nearby 
“good” paths.
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Photon Mapping
Trace particles from light, deposit “photons” in kd-tree 
Especially useful for, e.g., caustics, participating media 

5

Interestingly enough, Voronoi diagrams 
also used to improve photon distribution!

(from Spencer & Jones 2013)
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Finite Element Radiosity
Very different approach: transport between patches in 
scene 
Solve large linear system for equilibrium light distribution 

6
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Consistency & Bias in Rendering Algorithms

7

method consistent? unbiased?

rasterization NO NO

path tracing ALMOST ALMOST

bidirectional path tracing YES YES

Metropolis light transport YES YES

photon mapping YES NO

radiosity NO NO
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Can you certify a renderer?
Grand challenge: write a renderer that comes with a 
certificate (i.e., provable, formally-verified guarantee) that 
the image produced represents the illumination in a scene. 
Harder than you might think! 
Inherent limitation of sampling: you can never be 100% 
certain that you didn’t miss something important.
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eye

sun
pinhole

Can always make sun brighter, hole smaller...!
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High Performance Ray Tracing

9
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Ray tracing is a mechanism for answering 
“visibility” queries
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x

x’

x’’

v(x,x’) = 1 
v(x’,x’’) = 0

v(x1,x2) = 1 if x1 is visible from x2, 0 otherwise
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Using rasterization to answer 
visibility queries

11
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Another way to think about rasterization

▪ Rasterization is an efficient algorithm for servicing large 
batches of visibility queries… for rays with specific properties 
- Assumption 1: Rays have the same origin 

- Assumption 2: Rays are uniformly distributed over plane of projection (within 
specified field of view) 

▪ Assumptions → significant optimization opportunities 
- Project triangles: reduce ray-triangle intersection to 2D point-in-polygon test 
- Projection to canonical view volume enables use of efficient fixed-point math, 

custom GPU hardware for rasterization

12
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Shadow mapping: ray origin need not be the 
scene’s camera position
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- Place ray origin at position of point light source 
- Render scene to compute depth to closest object to light along uniformly 

distributed “shadow rays” (answer stored in depth buffer) 
- Store precomputed shadow ray intersection results in a texture

Image credits: Segal et al. 92, Cass Everitt 

Shadow rays
“Shadow map” = depth map from perspective of a point light. 
(Store closest intersection along each shadow ray in a texture map)

[Williams 78]



 CMU 15-462/662, Spring 2016

Result of shadow texture lookup approximates 
v(x’,x’’) when shading fragment at x’
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x

x’

x’’ Shadow rays shown in red: 
Distance to closest object in scene is precomputed 
and stored in texture map (“shadow map”) 
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Shadows computed using shadow map 
(shadow map resolution is too low)

Correct hard shadows 
(result from computing v(x’,x’’) directly 
using ray tracing)

Shadow aliasing due to undersampling

15
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Environment mapping 

16

Place ray origin at location of 
reflective object. 

Yields approximation to true 
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray 
origin at center of reflective box 
(produces “cube-map”)

Center of projection

Cube map: 
stores results of approximate mirror reflection rays

Question: how can a glossy surface be rendered 
using the cube map
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Ambient occlusion

17
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Ambient occlusion

18

✓

Occlusion term: does ray from p in 
direction w hit any scene object 
within distance d

E(p) =

Z

H2

V (!)Li(p,!) cos ✓ d!
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Idea: precompute “amount of 
hemisphere” that is occluded 
from a point, attenuate direct 
environment lighting by this 
amount.
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“Screen-space” ambient occlusion in games

19

p
Depth buffer values

1. Render scene to depth buffer 
2. For each pixel p (“ray trace” the depth buffer to estimate 

occlusion of hemisphere - use a few samples per pixel) 
3. Blur the the occlusion map to reduce noise 
4. Shade pixels, darken direct environment lighting by 

occlusion amount
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The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
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Vicarious Visions
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Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720

in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Ambient occlusion
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tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
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unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Lighting modulated by occlusion

Direct Lighting (no shadowing computations)
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Motivations for real-time ray tracing

21

Image Credit: Pixar (Cars)

Many shadowed lights (big pain to manage 
many shadow maps) 
Accurate reflections from curved surfaces

Estimate indirect illumination effects 
(But unclear if ray tracing is best real-time solution for 
low frequency effects… more to come)

Reduce content creation and game engine 
development time: single general solution rather 
than a specialized technique for each lighting effect. 

Less parameter tweaking (e.g., choosing shadow 
map texture size)

VR may demand more flexible control over what pixels are 
drawn. (e.g., row-based display rather than frame-based, 
higher resolution where eye is looking, correct for 
distortion of optics) 
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Efficient ray tracing

22
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Imagine I give you a 16-core CPU
How would you parallelize your ray tracer to render this picture?

23
Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)



 CMU 15-462/662, Spring 2016

What about building a BVH in parallel?

24

b0 b1 b2 b3 b4 b5 b6 b7

Partition(node),
,,,For,each,axis:,x,y,z:,
,,,,,,initialize,buckets,
,,,,,,For,each,primitive,p,in,node:,
,,,,,,,,,b,=,compute_bucket(p.centroid),
,,,,,,,,,b.bbox.union(p.bbox);,
,,,,,,,,,b.prim_count++;,
,,,,,,For,each,of,the,BD1,possible,partitioning,planes,evaluate,SAH,
,,,Execute,lowest,cost,partitioning,found,(or,make,node,a,leaf)
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Modern computer architecture 101

25
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What does a processor do?

26

input

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

ld,,,r0,,addr[r1] 

mul,,r1,,r0,,r0 

mul,,r1,,r1,,r0 

... 

... 

... 

... 

...,

... 

st,,,addr[r2],,r0

output
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A processor executes an instruction stream

27

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld,,,r0,,addr[r1] 

mul,,r1,,r0,,r0 

mul,,r1,,r1,,r0 

... 

... 

... 

... 

...,

... 

st,,,addr[r2],,r0

input

output
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Execute program

28

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld,,,r0,,addr[r1] 

mul,,r1,,r0,,r0 

mul,,r1,,r1,,r0 

... 

... 

... 

... 

...,

... 

st,,,addr[r2],,r0

input

output
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Sixteen cores: process 16 tasks in parallel 

29

Sixteen coresSixteen tasks processed at once
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An efficient ray tracer implementation must 
use all the cores on a modern processor 

(this is quite easy) 

30
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Multi-core processors
Intel Core i7 (Haswell): quad-core CPU

31

Intel Xeon Phi: 
60 core CPU
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Multi-core processors

32

NVIDIA 
GeForce GTX 980 

(Maxwell) GPU
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21 43

5 6 7 8

SIMD processing
Single instruction, multiple data

33

Each core can execute the same instruction 
simultaneously on multiple pieces of data: 

e.g., add vector A to vector B (length 8) 
32-bit addition performed in parallel for each 
vector element.
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An efficient ray tracer implementation must also utilize 
the SIMD execution capabilities of modern processors 

CPUs: up to a factor of 8 
GPUs: up to a factor of 32 

34
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Accessing memory has high cost

35

25 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR3 DRAM 

(Gigabytes)

Core 1

Core N

L1 cache 
(32 KB)

L2 cache 
(256 KB)

▪ High latency: 100’s of cycles 
▪ Too little bandwidth: modern processors 

can perform arithmetic much faster 
than memory can provide data. 

! 6 

• Cloud-based gaming. While gaming has always primarily been a client since application, 
high data-rate last-mile broadband is finally making it practical to execute games in the 
datacenter and then transport compressed pixels to the user on a thin client at home.  The 
leading example of such services are the NVIDIA grid GPUs that deliver pixels to Shield tab-
lets. (http://shield.nvidia.com/grid-game-streaming) 

• Visual data analytics.  The growing ubiquity of online photo collections, security cameras, 
webcams, traffic cams, etc. provide the opportunity for a new field of visual data analytics.  
Data mining and pattern matching within large image and video datasets in the datacenter 
will become as important as current practice of data mining text and symbolic information. 
Image search and retrieval operations constitute a compelling opportunity for PIM. 

2. State of Current Graphics Hardware 
A more comprehensive portrait of modern GPU technology is listed in the table below.  (Note that 
arithmetic throughput is given in terms of fp16/32 multiply-accumulate operations counted as two 
fp ops (consistent with industry spec sheets). As a result, the reader should divide by two to obtain 
throughput for individual (not fused) fp16/32 multiply or add operations. Typically, int32 throughput 
is about ½ that of fp32 throughput. 

Product Peak flops (fp) DRAM Bandwidth (compute/BW ratio) 
NVIDIA Tesla K40 
(2014, high-end discrete GPU) 

4.4 TF (fp32) 288 GB/sec  (8.75 flops/byte) 

NVIDIA Tegra X1 
(2015, high-end mobile GPU) 

512 GF (fp32) 
1 TF (fp16) 

25.6 GB/sec (10 flops/byte) 

Imagination PowerVR GX6450 
(2014, iPhone 6) 

115.2 GF (fp32) 12.4 GB/sec  (9.2 flops/byte) 

Imagination PowerVR GT7900 
(2015, high-end mobile GPU)  

384 GF (fp32) 
768 GF (fp16) 

TBD since processor is not in shipping SoCs 

Intel Integrated HD 350 GPU 
(2014, integrated desktop GPU) 

384 GF (fp32)  34.1 GB/sec (11.2 flops/byte) 

Xbox 360 (2005)  240 GF (fp32)   32.1 GB/sec (7.5 flops/byte) 
 

Interesting trends are as follows: 

• A good rule of thumb is that modern GPUs must perform 5 instructions per byte comuni-
cated from DRAM to operate in a compute bound regime (5 MADDs=10 ops). In other 
words, there must be 40 arithmetic instructions between each load and store of a 4-byte 
fp32 value (8 bytes of DRAM I/O) for the system to be compute bound.  This trend has 
roughly held over time, and holds across low-end mobile GPUs to high-end discrete GPUs 
today. 

• Given the above statistic, in compute-bound scenarios there is a large ratio of arithmetic 
operations to data access. Therefore, a significant amount of energy consumed to perform 
the computation is used to source data from register files and perform arithmetic. (This is 
less true of integer operations than fp operations.) 

• In general, modern SoCs have last-level caches (LLCs) on the order of 1-4MB. For exam-
ple, the iPhone 6’s 4 MB on-chip cache is accessible to the GPU, and Intel Gen integrated 
graphics shares an 8 MB LLC with its host CPU.  It is not documented whether mobile 
GPU data transfers can be absorbed by the LLC in other designs. 
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An efficient ray tracer implementation must be careful to 
reduce memory access costs as much as possible.

36
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Rules of the game
▪ Many individual processor cores 

- Run tasks in parallel 

▪ SIMD instruction capability 
- Single instruction carried out on multiple elements of an 

array in parallel (8-wide on modern GPUs, 16-wide on Xeon 
Phi, 8-to-32-wide  on modern GPUs) 

▪ Accessing memory is expensive 
- Processor must wait for data to arrive 
- Role of CPU caches is to reduce wait time (want good locality)

37



 CMU 15-462/662, Spring 2016

Efficient ray traversal algorithms

38
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High-throughput ray tracing
▪ Want work-efficient algorithms  (do less)  

- High-quality acceleration structures (minimize ray-box, ray-primitive tests) 

- Smart traversal algorithms (early termination, etc.) 

▪ Implementations for existing parallel hardware (CPUs/GPUs): 
- High multi-core, SIMD execution efficiency 

- Help from fixed-function processing? 

▪ Bandwidth-efficient implementations:  
- How to minimize bandwidth requirements?

39

Discussed in 
earlier lecture
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Parallelizing ray-triangle tests?

40
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Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for 
SIMD processing 
- Can use 3 of 4 SSE vector lanes (e.g., xyz work, point-multiple-plane tests, etc.) 

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf 

▪ If leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles 

41
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Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child 
node bboxes in parallel) 
- BVH with branching factor 4 has similar work efficiency to branching factor 2 
- BVH with branching factor 8 or 16 is significantly less work efficient (diminished 

benefit of leveraging SIMD execution) 

42

[Wald et al. 2008]
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Parallelize across rays
▪ Simultaneously intersect multiple rays with scene 

▪ Today: we’ll discuss one approach: ray packets 
- Code is explicitly written to trace N rays at a time, not 1 ray

43
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Simple ray tracer (using a BVH)
//,stores,information,about,closest,hit,found,so,far,
struct,ClosestHitInfo,{,
,,,Primitive,primitive;,
,,,float,distance;,
};,

trace(Ray,ray,,BVHNode,node,,ClosestHitInfo,hitInfo),
{,
,,,if,(!intersect(ray,,node.bbox),||,(closest,point,on,box,is,farther,than,hitInfo.distance)),
,,,,,,return;,

,,,if,(node.leaf),{,
,,,,,,for,(each,primitive,in,node),{,
,,,,,,,,,(hit,,distance),=,intersect(ray,,primitive);,
,,,,,,,,,if,(hit,&&,distance,<,hitInfo.distance),{,
,,,,,,,,,,,,hitInfo.primitive,=,primitive;,
,,,,,,,,,,,,hitInfo.distance,=,distance;,
,,,,,,,,,},
,,,,,,},
,,,},else,{,

trace(ray,,node.leftChild,,hitInfo);,
,,,,,trace(ray,,node.rightChild,,hitInfo);,
,,,},
}

44
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Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once 

45

RayPacket,
{,
,,,,Ray,rays[PACKET_SIZE];,
,,,,bool,active[PACKET_SIZE];,
};,

trace(RayPacket,rays,,BVHNode,node,,ClosestHitInfo,packetHitInfo),
{,
,,,if,(!ANY_ACTIVE_intersect(rays,,node.bbox),||,
,,,,,,,(closest,point,on,box,(for,all,active,rays),is,farther,than,hitInfo.distance)),
,,,,,,return;,

,,,update,packet,active,mask,

,,,if,(node.leaf),{,
,,,,,,for,(each,primitive,in,node),{,
,,,,,,,,,for,(each,ACTIVE,ray,r,in,packet),{,
,,,,,,,,,,,,(hit,,distance),=,intersect(ray,,primitive);,
,,,,,,,,,,,,if,(hit,&&,distance,<,hitInfo.distance),{,
,,,,,,,,,,,,,,,hitInfo[r].primitive,=,primitive;,
,,,,,,,,,,,,,,,hitInfo[r].distance,=,distance;,
,,,,,,,,,,,,},
,,,,,,,,,},
,,,,,,},
,,,},else,{,
,,,,,trace(rays,,node.leftChild,,hitInfo);,
,,,,,trace(rays,,node.rightChild,,hitInfo);,
,,,},
}

[Wald et al. 2001]
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Ray packet tracing

46
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Blue = active rays after node box test

r0 
r1 r2 r3 r4 r5 r6 

r7 

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F
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Advantages of packets
▪ Enable wide SIMD execution 

- One vector lane per ray 

▪ Amortize BVH data fetch: all rays in packet visit node at same time 
- Load BVH node once for all rays in packet (not once per ray) 
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64) 

▪ Amortize work (packets are hierarchies over rays) 
- Use interval arithmetic to conservatively test entire set of rays against node bbox 

(e.g., think of a packet as a beam) 
- Further arithmetic optimizations possible when all rays share origin  
- Note: there is value to making packets much bigger than SIMD width!

47
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Disadvantages of packets

48

B

C D

E F

1 2 

3 4 5 

G
6 

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all 
rays in the packet along with it) 

▪ Loss of efficiency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays 

▪ Not all SIMD lanes doing useful work
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Ray packet tracing: incoherent rays

49
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Blue = active ray after node box test
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When rays are incoherent, benefit of packets can decrease 
significantly.  This example: packet visits all tree nodes. 
(So all eight rays visit all tree nodes! No culling benefit!) 
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Incoherence is a property of both the rays and the scene

50

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherence is a property of both the rays and the scene
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Camera rays become “incoherent” with respect to lower nodes in the BVH if 
a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Improving packet tracing with ray reordering
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16-ray packet: 7 of 16 rays active

Reorder rays 
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet: 
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets 
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and 
continue with smaller packet 

- Increases SIMD utilization 

- Amortization benefits of smaller packets, but not large packets 

[Boulos et al. 2008]
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Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish 

- Diffuse bounces result in essentially random ray distribution 
- High-resolution geometry encourages incoherence near leaves of tree 

▪ In these situations there is little benefit to packets (can even decrease 
performance compared to single ray code)
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Packet tracing best practices
▪ Use large packets for eye/reflection/point light shadow rays 

or higher levels of BVH 
- Ray coherence always high at the top of the tree 

▪ Switch to single ray (intra-ray SIMD) when packet 
utilization drops below threshold 
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet 

traversal and single ray traversal 

▪ Can use packet reordering to postpone time of switch 
- Reordering allows packets to provide benefit deeper into tree  
- Not often used in practice due to high implementation complexity
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[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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Let’s stop and think
▪ One strong argument for high-performance ray tracing is to produce 

advanced effects that are difficult or inefficient to compute given 
the single point of projection and uniform sampling constraints of 
rasterization 
- e.g., soft shadows, diffuse interreflections 

▪ But these phenomenon create situations of high ray divergence! 
(where packet- and SIMD-optimizations are less effective)
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Emerging hardware for ray tracing

56
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Emerging hardware for ray tracing
▪ Modern academic/announced industry implementations: 

- Trace single rays, not ray packets (assume most rays are incoherent rays…) 

▪ Two areas of focus: 
- Custom logic for accelerating ray-box and ray-triangle tests 

- MIMD designs: wide SIMD execution not beneficial 

- Support for efficiently reordering ray-tracing computations to maximize 
memory locality (ray scheduling) 

▪ See “further reading” on web site for a list of references
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Global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the 
scene.  Process these rays together to increase locality in BVH access
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Partition BVH into treelets 
(treelets sized for L1 or L2 cache) 

1. When ray (or packet) enters treelet, add rays 
to treelet queue 

2. When treelet queue is sufficiently large, 
intersect enqueued rays with treelet 
(amortize treelet load over all enqueued rays) 

Buffering overhead to global ray reordering: must 
store per-ray “stack” (need not be entire call stack, 
but must contain traversal history) for many rays. 

Per-treelet ray queues sized to fit in caches (or in 
dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]

[Pharr 1997, Navratil 07, Alia 10]
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PowerVR GR6500 ray tracing GPU
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Constructing High-Quality BVHs Quickly
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Building a “poor” BVH quickly
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00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells 
2. Compute index of centroid of bounding box of each primitive: 

(c_i, c_j, c_k) 
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code 
4. Sort primitives by Morton code (primitives now ordered with high 

locality in 3D space: in a space-filling curve!) 
- O(N) radix sort

Partition(int i, primitives): 
 node.bbox = bbox(primitives) 
 (left, right) = partition primitives by bit i 
if there are more bits: 
   Partition(left, i+1); 
   Partition(right, i+1); 
else: 
   make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:
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Modern, fast BVH build schemes
▪ Build “poor” BVH quickly using Morton Codes 

▪ Use initial BVH to accelerate construction of high-quality BVH 

▪ Example: [Kerras 2013]
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For all treelets of size < N in original “poor” BVH: (in parallel) 

 try all possible trees, keep “optimal” topology that minimizes SAH for treeless
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What you should know:
▪ Be able to describe the main ideas and some strengths and weaknesses of photon mapping and 

radiosity. 

▪ Why does radiosity give a biased estimator?   an inconsistent estimator? 

▪ How does Shadow Mapping make use of rasterization in the shadow computation? 

▪ How do we use rasterization to capture reflections in an environment map such as a cube map? 

▪ Give an example of where an environment map gives a poor approximation. 

▪ What is an ambient occlusion map?    How does it fit into the graphics pipeline (i.e., give a 
rendering flow that makes use of an ambient occlusion map to speed computation). 

▪ Give some examples of scenes or situations where these tricks are insufficient, and we can 
achieve a benefit from instead having a real time ray tracer. 

▪ Understand the “rules of the game” for high speed ray tracing:     multiple cores, SIMD 
processing, and high cost of memory access. 

▪ What does it mean to trace a ray packet?    Under what circumstances will ray packet tracing be 
efficient?    ..be inefficient? 

▪ What sorts of things would you think about if writing a scheduler to determine the order in 
which rays will be traced?
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