Lecture 2:

Drawing a Triangle
(and an introduction to sampling)

Computer Graphics
CMU 15-462/15-662, Spring 2016



Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap?
(“coverage”)

Pixel Question 2: what triangle is closest to

the camera in each pixel? (“occlusion”)
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The visibility problem

® Aninformal definition: what scene geometry is visible
within each screen pixel?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

X
--;.;—:” iiiii
ez Pinhole
-eet il Camera
' (0,0)
Virtual
Sensor
Recall perspective

projection from last class
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The visibility problem

® Aninformal definition: what scene geometry is visible
within each screen pixel?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)
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The visibility problem (said differently)

m [nterms of rays:

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage)

- What object is the first hit along that ray? (occlusion)
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Hold onto this thought for later in the semester.
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Computing triangle coverage

What pixels does the triangle overlap?

Input: Output:
projected position of triangle vertices: Po, P1, P> set of pixels “covered” by the triangle
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What does it mean for a pixel to be covered by a triangle?

Question: which triangles “cover” this pixel?

A A

=~

T2 \
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One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

15%
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Analytical schemes get tricky when considering occlusion

‘/
Pixel covered by triangle 1, other 9

half covered by triangle 2
4_- 71

NN
/ N Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

Interpenetration of triangles: even trickier
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Sampling 101
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1D signal

J(x)
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Sampling: taking measurements a signal

Below: 5 measurements (“samples”) of f(x)

A

J(x)

f(x4)

X0 x1 X2 X3 x4
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Audio file: stores samples of a 1D signal

Most consumer audio is sampled at 44.1 KHz

Amplitude

time
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Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

A

f(x4)

f(x3)

£(x0) f(x1) £(x2) *

X0 x1 X2 X3 x4
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Piecewise constant approximation

[recon(x) =value of sample closest to x
Jrecon(x) approximates f (x)

‘ Jx)

X0 x1 X2 X3 x4
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Piecewise linear approximation

[recon(x) =linear interpolation between values of two closest samples to x

f(x)
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X0 x1 X2 X3 x4
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How can we represent the signal more accurately?

Sample signal more densely
(increase sampling rate)

X0 x1 X2 X3 x4 x5 X6 X7 X8
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Reconstruction from denser sampling

X0 x1 X2 X3 x4 x5 X6 X7 X8

------ = reconstruction via nearest

= reconstruction via linear interpolation
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Mathematical representation of sampling

Consider the Dirac delta: o ()

©.@

whereforall 7 0, 5(:13) — (0 and / 5(:6)61:5 =1

— OO

When applied to a function £, 5(x) acts to pull out the value of fat x = 0:

/_ " f@)8(x)de = £(0)
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Sampling function: 111 (x)
Consider a sequence of impulses with period 7"

Wr(z) =T ) o(x—iT) J(x)

1=—00

4 *
M
00 :
. . : : 4
Mp(z)f(z) =T > f(T)S(x —iT) S
= i =0 5 L
) °
So we can write the result of sampling as a product of f(x) and ) ; ; ; : ; ; >
a sequence of impulses centered around each sample point 4 T 2t 31 4t 5T er 7T 8T
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Convolution

(9@ = [ fw )y

output signal filter input signal

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

Fla) = {1 lz| < 0.5

N T,
0 otherwise : 5

0.5 ) X
(f*g)(x) = / g(x —y)dy 0.5 05

/ —0.5

S * gisa“smoothed” version of g
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Reconstruction as convolution (box filter)

A .lll.ll..

Sampled signal: - sengens
(with period 7) T P
o(w) = Whr(@)f(@) =T 37 (T3 —iT) A R
Reconstruction filter:
(unit area box of width T) i e ®-.i
Q... prdt L el : :
h(z) = {16T ’f}tg T-/2 0 : 2T 3ET 45T 55T 65T 7ET 8:T>
otnerwise I I
T
Reconstructed signal:
(chooses nearest sample)
00 o0 T/2
frecon(x) = (R g)(z) = T/ h(y) > fUT)o(z —y —iT)dy = /m > fET)s(x —y —iT)
1=—00 o ’i:—OOl | .

non-zero only for i7" closest to x
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Reconstruction as convolution (triangle filter)

Sampled signal: A °
: | J
(with period 7) :
g(x) = Wy(x)f(x) =T Y f(iT)8(x —iT)
1=—00 .
Reconstruction filter: . Ly
(unit area triangle of width T) ¢ o o :
h(x) = T = 0 T 2T 3T a7 5T 6T 77 8T
0 otherwise 'T'
A
Fn
PR >
T T
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Summary

B Sampling = measurement of a signal
- Represent signal as discrete set of samples
- Mathematically described by multiplication by impulse train

®  Reconstruction = generating signal from a discrete set of samples
- Convolution of sampled signal with a reconstruction filter

= Intuition: value of reconstructed function at any point in domain is a weighted
combination of sampled values

- Wediscussed simple box, triangle filters, but much higher quality filters exist

sine(z) = sin(mz)) 05
T [ “
‘v0.4 |
\V 2
Normalized sinc filter Truncated sinc filter Truncated gaussian filter

[Image credit: Wikipedia] (MU 15-462/662, Spring 2016



Now back to computing coverage
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Think of coverage as a 2D signal

1 if the triangle
coverage(X,y) = < contains point (x,y)

_ 0 otherwise
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Estimate triangle-screen coverage by sampling the binary
function: coverage(x,y)

@ <«
(x+0.5, y+0.5)

Example:

Here | chose the coverage
sample pointto be ata
point corresponding to the
pixel center.

B = triangle covers sample, fragment generated for pixel

B = triangle does not cover sample, no fragment generated
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Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?
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OpenGL/Direct3D edge rules

® When edge falls directly on a screen sample point, the sample is classified as within
triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Leftedge: an edge that is not exactly horizontal and is on the left side of the
triangle. (triangle can have one or two left edges)

Picel ‘ Covered
: : L A @y Triangle -
(Cross = canter. x.y &2 0.5) . Pixels

Source: Direct3D Programming Guide, Microsoft (MU 15-462/662, Spring 2016



Results of sampling triangle coverage
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| have a sampled signal, now | want to display it
on a screen

o ® L o (o)
o ® ® o) (o)
o o ® ® 0]
L o o ® o)
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Pixels on a screen

Each image sample sent to the display is
converted into a little square of light of
the appropriate color:

(a pixel = picture element)

LCD display —
pixel on my
laptop

* Thinking of each LCD pixel as emitting a square of uniform
intensity light of a single color is a bit of an approximation to

how real displays work, but it will do for now. CMU 15-462/662, Spring 2016



So if we send the display this:

o ® L o (o)
o ® ® o) (o)
o o ® ® 0]
L o o ® o)

(MU 15-462/662, Spring 2016



We see this when we look at the screen

(assuming a screen pixel emits a square of perfectly uniform intensity of light)
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Recall: the real coverage signal was this

(MU 15-462/662, Spring 2016



Aliasing
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Representing sound as a superposition of
frequencies

Jf4(x) = sin(4mx)

f(x) = fi(x) + 0.75 f>(x) + 0.5 fo(x) AW&VAW&VWBVAW&V%
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Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies

; K
t !
Intensity of Intensity of
low-frequencies (bass) high frequencies

Image credit: ONYX Apps (MU 15-462/662, Spring 2016



Visualizing the frequency content of images

Spatial domain result Spectrum
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Low frequencies only (smooth gradients)

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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High frequencies (edges)

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude
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An image as a sum of its frequency components
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1D example:
Undersampling high-frequency signals results in aliasing

A
Low-frequency signal: sampled
Ji(x) / adequately for accurate
//-\m reconstruction
fo(x) \..r‘/ \.‘_’

M\N

+«— High-frequency signal is
insufficiently sampled:
reconstruction appears to be

from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade as
low frequencies after reconstruction (due to undersampling)
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Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

https://www.youtube.com/watch?v=VNftf5qLpiA
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Nyquist-Shannon theorem

®  (onsider a band-limited signal: has no frequencies above
- 1D: consider low-pass filtered audio signal
- 2D:recall the blurred image example from a few slides ago

" Thesignal can be perfectly reconstructed if sampled with period 7 =1 /(Za)o)
®  And reconstruction is performed using a normalized sinc

oBl|

(ideal reconstruction filter with infinite extent) Iof\
sine(x) = sin(mx)) "

| \ \ | / \ .
; / | A N\
o~ A/ 2 | \ 2 \_/4 ~—6

\J 02

(See detailed explanation in suggested readings for more intuition)
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Challenges of sampling-based approaches in graphics

m Qursignals are not always band-limited in computer graphics.
Why?

Hint:

III

m Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for performant implementations. Why?
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Aliasing artifacts in images

® Undersampling high-frequency signals and the use of non-
ideal resampling filters yields image artifacts
- “Jaggies” in a single image
- “Roping” or “shimmering” of images when animated

- Moiré patterns in high-frequency areas of images
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Sampling a zone plate: sin(x? + y?)

Rings in center-left:
Actual signal (low
frequency oscillation)

Figure credit: Pat Hanrahan and Bryce Summers

Rings on right:
aliasing from
undersampling high
frequency oscillation
and then resampling
back to Keynote slide
resolution

Middle: (interaction
between actual
signal and aliased
resconstruction)
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Initial coverage sampling rate (1 sample per pixel)
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Increase density of sampling coverage signal

(high frequencies exist in coverage signal because of triangle edges)
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Supersampling Example: stratified sampling using

four samples per pixel

° ° ° o
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Resampling

Converting from one discrete sampled representation to another

-

Dense sampling of
reconstructed signal

Original signal
(high frequency edge)

Reconstructed signal Coarsely sampled signal
(lacks high frequencies)
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Resample to display’s pixel resolution

(Because a screen displays one sample value per screen pixel...)
[ ® ®)
‘ o o o) °© o
(@)
o o 0]
o o @) ©
o o
O ° O O o © o ©
o o
O ° O O PS °f o o)
o o [ @) o
o o o ® ®)
o o o @) o
o o o o 0]
® o [ o (@)
o o o ® ®)
® o L [ ) @)
o o o o 0]
o o [ o 0]
o o ® o o
o o [ o 0]
® o o ® P
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Resample to display’s pixel rate (box filter)

o [ ) o
° ° ° © |o ©
o [ ) o
® o o ® °f o o
o o o (@] (o]
o o o o (o]
o [ ) o (@] (o]
o o o o (@)
o o o o (o]
() o o [ ] (@)
[ ] o o () (@)
o @ @ o (o]
o o o o (@)
o [ ) o o (o]
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Resample to display’s pixel rate (box filter)

O O O O

O O O

O O O

O O O O O
O O O O

(MU 15-462/662, Spring 2016



Displayed result (note anti-aliased edges)

0%

50%

25%
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Recall: the real coverage signal was this
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Sampling coverage

m We want the light emitted from a display to be an accurate to
match the ground truth signal: coverage(x,y))

B Resampling a densely sampled signal (supersampled) integrates
coverage values over the entire pixel region. The integrated result
is sent to the display (and emitted by the pixel) so that the light
emitted by the pixel is similar to what would be emitted in that
screen region by an “infinite resolution display”
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Sampling triangle coverage
(evaluating coverage(x,y) for a triangle)
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Point-in-triangle test

Compute triangle edge equations from projected positions of vertices

Pi=(X, Y) o | o | 0| 0| 0| 0| o ) o o | o
A
o | o | 0o | 0| 0o 0o |/oe\ o| o | o
dXi = Xi+1 - Xi /\
dYi= Yii, - Y, o | o | o | 0| o ° \ o | o
o | o | 0o | o o//o ° o\ o | o
Ei(x’y) :(x_‘X’)dY"(y'Yl)d‘X’ o | o | 0o | o / o | o | o \ °
=Aix+Biy+ C; /
o o [ o o/ o | o o o | o\ o
Ei(x, y) = 0 :point on edge o (e | o (/o e | o o o o\
> () : outside edge o l ol ol el ol ol ol ol o )
< ( :inside edge ——— P
o | o //o ;0‘/0)—’( o o | o
° A( o | o | o | 0| 0| o | @
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Point-in-triangle test

P
Pi= (X Y) o o (o | o o o o | o o
’ A
e [ o o | o o |/o\ o | o | o
dXi = Xiv1 - X // \\
dY: = Yiu, - Y, e [ o o | o ° \ o | o
o | o o | o //o ° o\ o | o
Ei(X,y) :(X'Xi) dY; '()"Yi) dX; ° ° ° ° ° ° ° \ °
=Aix+ B, y + Ci
o o o o/ o o o | o\ o
Ei(x,y) = O :point on edge o | o | /o EE '\
> () : outside edge o | o o o o | o o | o )
< 0 :inside edge / ’r/ P;
o [ o /o ;o/)— o o | o
o | F . o | o o o | o
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Point-in-triangle test

P
Pi=(X:Y) o | o | o | o | o | o | o | o
’ A
( ( ( ( ( ( ( ( o
dXi = Xiv1 - X // \
le — Yl‘+] _ Yl { { o ( { \ ([ ([
( ( ( ( /I/. ( .\ [ J L
Ei(x,y) =(x-Xi) dY; -(y-Y) dXi| e | o | o | ® o | o | o \ °
=Aix+ B, y + Ci
o | o | o o/ o | o | o | o\ o
Ei(x,y) = O :point on edge o | o | /o EE '\
> () : outside edge o | o o o o | o o | o )
< 0 :inside edge / ’r/ P;
o o { ;0/)— [ ] { o
( A( ( ( ( ( ( ([
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Point-in-triangle test

P
Pi=(X:Y) o | o | o | o o | o/ | o | o | o
’ A
([ ([ { ( ( ( ( ( ([
dXi = Xiv1 - Xi /\
le — Yl‘+] _ Yl [ ] [ [ ] ([ { \ ( (
o { ([ ([ /. ( .\ ( [ J
Ei(X,y) :(X'Xi) dY; '()"Yi) dXi | e ° ° ° ° ° ° \ °
=Aix+ B, y + Ci
o | o | o o/ o o o | o\ o
Ei(x,y) = O :point on edge ® o | o fo EE '\
> () : outside edge o | o | o o o | o o | o )
< 0 :inside edge / ’r/ P;
o | o fo ;o/)— o o | o
o A( ( ( ( ( ( ([
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Point-in-triangle test

P,
Sample point s = (sx, sy) is inside the o | o | o | o o | o | o | o | o
. PP A
triangle if it is inside all three edges. A R R . /‘ \ N A
inside(sx, sy) = | o | o o / o \ o | o
Eo(sx, sy) < 0 && o o | o | o /o | o o\ o | o
/
E;(sx, sy) <0 && \
(] { { ( e @ @ o
E> (sx, sy) < 0;
o | o | o | o / e | o | o o\ o
[ [ [ @ e @ @ @
o | o | o o e | e 0| o )
Note: actual implementation of / e P
inside(sx,sy) involves < checks based on *1*/* | ® ST | o | o o
the triangle coverage edge rules (see ° ,L( ° o ol o| o | @
beginning of lecture) Po

Sample points inside triangle are highlighted red.
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Incremental triangle traversal

D
Pi=X.Y) o | o | o | 0o | 0| o o” o o | o
A
AX = Xour - X, o | o | o | 0| 0| o o o | o
dYi=Yi1-Yi o | o | 0o | 0| @ o | o

Ei(x,y) =(x-X)dYi -(y-Y)dX;

=Aix+Biy+Ci T T W\ °

Ei(x,y) =0 :point on edge
> () : outside edge o | o | o

< 0 :1inside edge
o oo 1:—¢—¢—l—l—¢jl >
—_ : 1
Efficient incremental update: . . ) (’W B R R
dE;(x+1,y) = Ei(x,y) + dYi = Ei (x,y) + A;

dE; (x,y+1) = Ei(x,y) + dXi= Ei(x,y) + Bi | ®

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Modern approach: tiled triangle traversal

Traverse triangle in blocks

Test all samples in block against triangle in parallel °

Advantages:
- Simplicity of wide parallel execution overcomes °
cost of extra point-in-triangle tests (most
triangles cover many samples, especially when i
super-sampling coverage)

o
- (Can skip sample testing work: entire block not PY
in triangle (“early out”), entire block entirely
within triangle (“early in”) .
]
- Additional advantaged related to accelerating
occlusion computations (not discussed today) °

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests
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Summary

m We formulated computing triangle-screen coverage as a
sampling problem

- Triangle-screen coverage is a 2D signal

- Undersampling and the use of simple (non-ideal) reconstruction filters may yield aliasing
- Intoday’s example, we reduced aliasing via supersampling

® Image formation on a display

- When samples are 1-to-1 with display pixels, sample values are handed directly to display
- When “supersampling”, resample densely sampled signal down to display resolution

m Sampling screen coverage of a projected triangle:

- Performed via three point-inside-edge tests

- Real-world implementation challenge: balance conflicting goals of avoiding unnecessary
point-in-triangle tests and maintaining parallelism in algorithm implementation
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Further Reading

A Pixel is Not A Little Square, Alvy Ray Smith, 1995

A Nice Video lllustration of Temporal Aliasing. by Valvano and
Yerraballi

The Fourier Transform and It's Applications (Ch. 5) by B.
Osgood (this is an outstanding reference)

Stanford (S348B's Notes on Sampling. by Pat Hanrahan (also
see Chapter 7.1 in the Physically Based Rendering book)
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What you should know

1.

How should we choose the correct color for a pixel? There is not an exact right answer.
However, you should be able to discuss some of the issues involved.

2. What is aliasing, and what artifacts does it produce in our images and our animations?

3. One form of aliasing is where high frequencies masquerade as low frequencies. Give an

example of this phenomenon.

Suppose we have a single red triangle displayed against a blue background. Does this scene
contain high frequencies?

What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to
required sampling rate?

The practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take
multiple samples per pixel and average to get pixel color. Try to use what we learned about
sampling theory to explain as precisely as you can why taking multiple samples per pixel can
reduce aliasing artifacts.

Be able to write an implicit representation of an edge given two points.

8. Beable to use the implicit edge representation to determine if a point is inside a triangle.
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Practice Questions

1. Describe why sampling a signal more densely is one way to reduce aliasing. Is there a downside
of increasing the rate at which a signal is sampled?

2. (Consider a quadrilateral with the following vertex positions. (You should assume the vertices
are connected in the order they are listed.)

P0=(1,1)

P1=(3 ,1.5)
P2=(2.5,3.5)
P3=(1,3.75)

Derive the implicit edge equation for the edge between P0 and P1.

Assuming coverage sample points are uniformally distributed in the domain at half-integer
coordinates (0.5, 0.5), (1.5, 0.5), etc., how many sample points are covered by the given
quadrilateral? For simplicity, assume that a sample point on an edge is considered to be within
the quadrilateral.
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