
Computer Graphics 
CMU 15-462/15-662, Spring 2016

Lecture 2:

Drawing a Triangle 
(and an introduction to sampling)



 CMU 15-462/662, Spring 2016

Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to 
the camera in each pixel? (“occlusion”)

Pixel
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The visibility problem
▪ An informal definition: what scene geometry is visible 

within each screen pixel? 
- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis

Recall perspective 
projection from last class
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The visibility problem

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

1

x/z

z-axis

x-axis

▪ An informal definition: what scene geometry is visible 
within each screen pixel? 
- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)
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The visibility problem (said differently)
▪ In terms of rays: 

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage) 

- What object is the first hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

z-axis

x-axis

Hold onto this thought for later in the semester.
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Input: 
projected position of triangle vertices: P0, P1, P2

Computing triangle coverage

Output: 
set of pixels “covered” by the triangle

What pixels does the triangle overlap?
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What does it mean for a pixel to be covered by a triangle? 
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4
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One option: compute fraction of pixel area covered by triangle, then 
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10% 
of pixel, then pixel should be 
10% red.
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Analytical schemes get tricky when considering occlusion

Two regions of triangle 1 contribute to pixel.  
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other 
half covered by triangle 2
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Sampling 101
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1D signal

x

f (x)
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Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: 5 measurements (“samples”) of  f(x)
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Audio file: stores samples of a 1D signal

time

Amplitude

Most consumer audio is sampled at 44.1 KHz



 CMU 15-462/662, Spring 2016

Reconstruction: given a set of samples, how might 
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)

f(x3)

f(x4)
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Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x
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Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x
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How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely 
(increase sampling rate)
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Reconstruction from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest 
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Mathematical representation of sampling

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0where for all

Consider the Dirac delta: 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

�(x)

and

When applied to a function f, !(x) acts to pull out the value of f at x = 0:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)
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Sampling function: 

0 T 2T 3T 4T 5T 6T 7T 8T

Consider a sequence of impulses with period T: 

0 T 2T 3T 4T 5T 6T 7T 8T

f (x)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT )

XT (x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

(g ⇤ h)(x) =
Z 1

�1
h(y)T

1X

i=�1
f(iT )�(x� y � iT )dy =

Z T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

0 T 2T 3T 4T 5T 6T 7T 8T
So we can write the result of sampling as a product of f(x) and 

a sequence of impulses centered around each sample point

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT )

XT (x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

(g ⇤ h)(x) =
Z 1

�1
h(y)T

1X

i=�1
f(iT )�(x� y � iT )dy =

Z T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise
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Convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function: 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1
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Reconstruction as convolution (box filter)

T

Sampled signal: 
(with period T)

Reconstruction filter: 
(unit area box of width T) 

Reconstructed signal:

0 T 2T 3T 4T 5T 6T 7T 8T

(chooses nearest sample)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT )

XT (x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = XT (x)f(x)

(h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

non-zero only for iT closest to x  
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Reconstruction as convolution (triangle filter)
Sampled signal: 
(with period T)

Reconstruction filter: 
(unit area triangle of width T) 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

T
0 T 2T 3T 4T 5T 6T 7T 8T

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

-T T

1/T
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Summary
▪ Sampling = measurement of a signal 

- Represent signal as discrete set of samples 
- Mathematically described by multiplication by impulse train 

▪ Reconstruction = generating signal from a discrete set of samples 

- Convolution of sampled signal with a reconstruction filter 

- Intuition: value of reconstructed function at any point in domain is a weighted 
combination of sampled values 

- We discussed simple box, triangle filters, but much higher quality filters exist

Truncated gaussian filterTruncated sinc filter

[Image credit: Wikipedia]

Normalized sinc filter

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise
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Now back to computing coverage



 CMU 15-462/662, Spring 2016

Think of coverage as a 2D signal

coverage(x,y)8=8
18

08

if8the8triangle8
contains8point8(x,y)8

otherwise
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Estimate triangle-screen coverage by sampling the binary 
function: coverage(x,y)

Pixel (x,y)

1

2

3

4

Example: 
Here I chose the coverage 
sample point to be at a 
point corresponding to the 
pixel center.

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated 

(x+0.5, y+0.5)
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Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2
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OpenGL/Direct3D edge rules
▪ When edge falls directly on a screen sample point, the sample is classified as within 

triangle if the edge is a “top edge” or “left edge” 
- Top edge: horizontal edge that is above all other edges 
- Left edge:  an edge that is not exactly horizontal and is on the left side of the 

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft
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Results of sampling triangle coverage
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I have a sampled signal, now I want to display it 
on a screen
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Pixels on a screen

LCD display 
pixel on my 
laptop

Each image sample sent to the display is 
converted into a little square of light of 
the appropriate color: 
(a pixel = picture element) 

* Thinking of each LCD pixel as emitting a square of uniform 
intensity light of a single color is a bit of an approximation to 
how real displays work, but it will do for now.
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So if we send the display this:
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We see this when we look at the screen 
(assuming a screen pixel emits a square of perfectly uniform intensity of light)
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Recall: the real coverage signal was this
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Aliasing



 CMU 15-462/662, Spring 2016

Representing sound as a superposition of 
frequencies

f1(x) = sin("x)

f2(x) = sin(2"x)

f4(x) = sin(4"x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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Audio spectrum analyzer: representing sound 
as a sum of its constituent frequencies

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies
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Visualizing the frequency content of images

SpectrumSpatial domain result
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Low frequencies only (smooth gradients)

Spectrum (after low-pass filter) 
All frequencies above cutoff have 0 magnitude

Spatial domain result
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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High frequencies (edges)

Spatial domain result 
(strongest edges)

Spectrum (after high-pass filter) 
All frequencies below threshold 

have 0 magnitude
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An image as a sum of its frequency components

+ + +

=
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1D example: 
Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled 
adequately for accurate 
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is 
insufficiently sampled: 
reconstruction appears to be 
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade as 
low frequencies after reconstruction (due to undersampling)
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Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

https://www.youtube.com/watch?v=VNftf5qLpiA
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Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above ω0

- 1D: consider low-pass filtered audio signal 
- 2D: recall the blurred image example from a few slides ago

ω0-ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / (2ω0) 
▪ And reconstruction is performed using a normalized sinc 

(ideal reconstruction filter with infinite extent)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

(See detailed explanation in suggested readings for more intuition)
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Challenges of sampling-based approaches in graphics

▪ Our signals are not always band-limited in computer graphics. 
Why? 

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is 
impractical for performant implementations. Why?

Hint:
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Aliasing artifacts in images
▪ Undersampling high-frequency signals and the use of non-

ideal resampling filters yields image artifacts 
- “Jaggies” in a single image 

- “Roping” or “shimmering” of images when animated 

- Moiré patterns in high-frequency areas of images
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Sampling a zone plate: sin(x2 + y2)

(0,0)

Rings in center-left: 
Actual signal (low 
frequency oscillation)

Rings on right: 
aliasing from 
undersampling high 
frequency oscillation 
and then resampling 
back to Keynote slide 
resolution

Middle: (interaction 
between actual 
signal and aliased 
resconstruction)

Figure credit: Pat Hanrahan and Bryce Summers
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Initial coverage sampling rate (1 sample per pixel)
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Increase density of sampling coverage signal 
(high frequencies exist in coverage signal because of triangle edges)
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Supersampling Example: stratified sampling using 
four samples per pixel
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Resampling

Coarsely sampled signalReconstructed signal 
(lacks high frequencies)

Dense sampling of 
reconstructed signal

Converting from one discrete sampled representation to another

Original signal 
(high frequency edge)
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Resample to display’s pixel resolution 
(Because a screen displays one sample value per screen pixel...)
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Resample to display’s pixel rate (box filter)
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Resample to display’s pixel rate (box filter)
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Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%
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Recall: the real coverage signal was this
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Sampling coverage
▪ We want the light emitted from a display to be an accurate to 

match the ground truth signal: coverage(x,y)) 

▪ Resampling a densely sampled signal (supersampled) integrates 
coverage values over the entire pixel region. The integrated result 
is sent to the display (and emitted by the pixel) so that the light 
emitted by the pixel is similar to what would be emitted in that 
screen region by an “infinite resolution display” 
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Sampling triangle coverage 
(evaluating coverage(x,y) for a triangle)
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi) 

dXi = Xi+1 - Xi 

dYi = Yi+1 - Yi 

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi 
     = Ai x + Bi y + Ci 

Ei (x, y) =  0  : point on edge 
              > 0  : outside edge 
              < 0  : inside edge 

Compute triangle edge equations from projected positions of vertices
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the 
triangle if it is inside all three edges. 

inside(sx, sy) =
E0 (sx, sy) < 0 &&
E1 (sx, sy) < 0 &&
E2 (sx, sy) < 0;

Note: actual implementation of 
inside(sx,sy) involves ≤ checks based on 
the triangle coverage edge rules (see 
beginning of lecture)

Sample points inside triangle are highlighted red.
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Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y)  = 0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

Incremental triangle traversal

P0

P1

P2

Efficient incremental update: 

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai

dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation: 
Only one addition per edge, per sample test 

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks 

Test all samples in block against triangle in parallel

Advantages: 
- Simplicity of wide parallel execution overcomes 

cost of extra point-in-triangle tests (most 
triangles cover many samples, especially when 
super-sampling coverage) 

- Can skip sample testing work: entire block not 
in triangle (“early out”), entire block entirely 
within triangle (“early in”) 

- Additional advantaged related to accelerating 
occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests 



 CMU 15-462/662, Spring 2016

Summary
▪ We formulated computing triangle-screen coverage as a 

sampling problem 
- Triangle-screen coverage is a 2D signal 
- Undersampling and the use of simple (non-ideal) reconstruction filters may yield aliasing 
- In today’s example, we reduced aliasing via supersampling 

▪ Image formation on a display 
- When samples are 1-to-1 with display pixels, sample values are handed directly to display 
- When “supersampling”, resample densely sampled signal down to display resolution 

▪ Sampling screen coverage of a projected triangle: 
- Performed via three point-inside-edge tests 
- Real-world implementation challenge: balance conflicting goals of avoiding unnecessary 

point-in-triangle tests and maintaining parallelism in algorithm implementation
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Further Reading

▪ A Pixel is Not A Little Square, Alvy Ray Smith, 1995 

▪ A Nice Video Illustration of Temporal Aliasing. by Valvano and 
Yerraballi 

▪ The Fourier Transform and It's Applications (Ch. 5) by B. 
Osgood (this is an outstanding reference) 

▪  Stanford CS348B's Notes on Sampling. by Pat Hanrahan (also 
see Chapter 7.1 in the Physically Based Rendering book) 
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What you should know
1. How should we choose the correct color for a pixel?    There is not an exact right answer.   

However, you should be able to discuss some of the issues involved. 
2. What is aliasing, and what artifacts does it produce in our images and our animations? 
3. One form of aliasing is where high frequencies masquerade as low frequencies.   Give an 

example of this phenomenon. 
4. Suppose we have a single red triangle displayed against a blue background.   Does this scene 

contain high frequencies?  
5. What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to 

required sampling rate? 
6. The practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take 

multiple samples per pixel and average to get pixel color.    Try to use what we learned about 
sampling theory to explain as precisely as you can why taking multiple samples per pixel can 
reduce aliasing artifacts. 

7. Be able to write an implicit representation of an edge given two points. 
8. Be able to use the implicit edge representation to determine if a point is inside a triangle. 
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Practice Questions
1. Describe why sampling a signal more densely is one way to reduce aliasing. Is there a downside 

of increasing the rate at which a signal is sampled?  
2. Consider a quadrilateral with the following vertex positions. (You should assume the vertices 

are connected in the order they are listed.) 

P0=(1  , 1   ) 
P1=(3  , 1.5 ) 
P2=(2.5, 3.5 ) 
P3=(1  , 3.75) 

    Derive the implicit edge equation for the edge between P0 and P1. 
    Assuming coverage sample points are uniformally distributed in the domain at half-integer 
coordinates (0.5, 0.5), (1.5, 0.5), etc., how many sample points are covered by the given 
quadrilateral? For simplicity, assume that a sample point on an edge is considered to be within 
the quadrilateral. 


