
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 2:

Drawing a Triangle
(and an introduction to sampling)

 CMU 15-462/662, Spring 2016

Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to
the camera in each pixel? (“occlusion”)

Pixel

 CMU 15-462/662, Spring 2016

The visibility problem
▪ An informal definition: what scene geometry is visible

within each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

Recall perspective
projection from last class

 CMU 15-462/662, Spring 2016

The visibility problem

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

▪ An informal definition: what scene geometry is visible
within each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

 CMU 15-462/662, Spring 2016

The visibility problem (said differently)
▪ In terms of rays:

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage)

- What object is the first hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

z-axis

x-axis

Hold onto this thought for later in the semester.

 CMU 15-462/662, Spring 2016

Input:
projected position of triangle vertices: P0, P1, P2

Computing triangle coverage

Output:
set of pixels “covered” by the triangle

What pixels does the triangle overlap?

 CMU 15-462/662, Spring 2016

What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4

 CMU 15-462/662, Spring 2016

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

 CMU 15-462/662, Spring 2016

Analytical schemes get tricky when considering occlusion

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

 CMU 15-462/662, Spring 2016

Sampling 101

 CMU 15-462/662, Spring 2016

1D signal

x

f (x)

 CMU 15-462/662, Spring 2016

Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: 5 measurements (“samples”) of f(x)

 CMU 15-462/662, Spring 2016

Audio file: stores samples of a 1D signal

time

Amplitude

Most consumer audio is sampled at 44.1 KHz

 CMU 15-462/662, Spring 2016

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)

f(x3)

f(x4)

 CMU 15-462/662, Spring 2016

Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

 CMU 15-462/662, Spring 2016

Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

 CMU 15-462/662, Spring 2016

How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

 CMU 15-462/662, Spring 2016

Reconstruction from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest

 CMU 15-462/662, Spring 2016

Mathematical representation of sampling

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0where for all

Consider the Dirac delta:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

�(x)

and

When applied to a function f, !(x) acts to pull out the value of f at x = 0:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

 CMU 15-462/662, Spring 2016

Sampling function:

0 T 2T 3T 4T 5T 6T 7T 8T

Consider a sequence of impulses with period T:

0 T 2T 3T 4T 5T 6T 7T 8T

f (x)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT)

XT (x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

(g ⇤ h)(x) =
Z 1

�1
h(y)T

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

0 T 2T 3T 4T 5T 6T 7T 8T
So we can write the result of sampling as a product of f(x) and

a sequence of impulses centered around each sample point

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT)

XT (x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

(g ⇤ h)(x) =
Z 1

�1
h(y)T

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

 CMU 15-462/662, Spring 2016

Convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1

 CMU 15-462/662, Spring 2016

Reconstruction as convolution (box filter)

T

Sampled signal:
(with period T)

Reconstruction filter:
(unit area box of width T)

Reconstructed signal:

0 T 2T 3T 4T 5T 6T 7T 8T

(chooses nearest sample)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT)

XT (x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x)

(h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

non-zero only for iT closest to x

 CMU 15-462/662, Spring 2016

Reconstruction as convolution (triangle filter)
Sampled signal:
(with period T)

Reconstruction filter:
(unit area triangle of width T)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

T
0 T 2T 3T 4T 5T 6T 7T 8T

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

-T T

1/T

 CMU 15-462/662, Spring 2016

Summary
▪ Sampling = measurement of a signal

- Represent signal as discrete set of samples
- Mathematically described by multiplication by impulse train

▪ Reconstruction = generating signal from a discrete set of samples

- Convolution of sampled signal with a reconstruction filter

- Intuition: value of reconstructed function at any point in domain is a weighted
combination of sampled values

- We discussed simple box, triangle filters, but much higher quality filters exist

Truncated gaussian filterTruncated sinc filter

[Image credit: Wikipedia]

Normalized sinc filter

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

 CMU 15-462/662, Spring 2016

Now back to computing coverage

 CMU 15-462/662, Spring 2016

Think of coverage as a 2D signal

coverage(x,y)8=8
18

08

if8the8triangle8
contains8point8(x,y)8

otherwise

 CMU 15-462/662, Spring 2016

Estimate triangle-screen coverage by sampling the binary
function: coverage(x,y)

Pixel (x,y)

1

2

3

4

Example:
Here I chose the coverage
sample point to be at a
point corresponding to the
pixel center.

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated

(x+0.5, y+0.5)

 CMU 15-462/662, Spring 2016

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

 CMU 15-462/662, Spring 2016

OpenGL/Direct3D edge rules
▪ When edge falls directly on a screen sample point, the sample is classified as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft

 CMU 15-462/662, Spring 2016

Results of sampling triangle coverage

 CMU 15-462/662, Spring 2016

I have a sampled signal, now I want to display it
on a screen

 CMU 15-462/662, Spring 2016

Pixels on a screen

LCD display
pixel on my
laptop

Each image sample sent to the display is
converted into a little square of light of
the appropriate color:
(a pixel = picture element)

* Thinking of each LCD pixel as emitting a square of uniform
intensity light of a single color is a bit of an approximation to
how real displays work, but it will do for now.

 CMU 15-462/662, Spring 2016

So if we send the display this:

 CMU 15-462/662, Spring 2016

We see this when we look at the screen
(assuming a screen pixel emits a square of perfectly uniform intensity of light)

 CMU 15-462/662, Spring 2016

Recall: the real coverage signal was this

 CMU 15-462/662, Spring 2016

Aliasing

 CMU 15-462/662, Spring 2016

Representing sound as a superposition of
frequencies

f1(x) = sin("x)

f2(x) = sin(2"x)

f4(x) = sin(4"x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x)

 CMU 15-462/662, Spring 2016

Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

 CMU 15-462/662, Spring 2016

Visualizing the frequency content of images

SpectrumSpatial domain result

 CMU 15-462/662, Spring 2016

Low frequencies only (smooth gradients)

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Spatial domain result

 CMU 15-462/662, Spring 2016

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662, Spring 2016

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662, Spring 2016

High frequencies (edges)

Spatial domain result
(strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold

have 0 magnitude

 CMU 15-462/662, Spring 2016

An image as a sum of its frequency components

+ + +

=

 CMU 15-462/662, Spring 2016

1D example:
Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled
adequately for accurate
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is
insufficiently sampled:
reconstruction appears to be
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade as
low frequencies after reconstruction (due to undersampling)

 CMU 15-462/662, Spring 2016

Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

https://www.youtube.com/watch?v=VNftf5qLpiA

 CMU 15-462/662, Spring 2016

Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above ω0

- 1D: consider low-pass filtered audio signal
- 2D: recall the blurred image example from a few slides ago

ω0-ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / (2ω0)
▪ And reconstruction is performed using a normalized sinc

(ideal reconstruction filter with infinite extent)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

(See detailed explanation in suggested readings for more intuition)

 CMU 15-462/662, Spring 2016

Challenges of sampling-based approaches in graphics

▪ Our signals are not always band-limited in computer graphics.
Why?

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for performant implementations. Why?

Hint:

 CMU 15-462/662, Spring 2016

Aliasing artifacts in images
▪ Undersampling high-frequency signals and the use of non-

ideal resampling filters yields image artifacts
- “Jaggies” in a single image

- “Roping” or “shimmering” of images when animated

- Moiré patterns in high-frequency areas of images

 CMU 15-462/662, Spring 2016

Sampling a zone plate: sin(x2 + y2)

(0,0)

Rings in center-left:
Actual signal (low
frequency oscillation)

Rings on right:
aliasing from
undersampling high
frequency oscillation
and then resampling
back to Keynote slide
resolution

Middle: (interaction
between actual
signal and aliased
resconstruction)

Figure credit: Pat Hanrahan and Bryce Summers

 CMU 15-462/662, Spring 2016

Initial coverage sampling rate (1 sample per pixel)

 CMU 15-462/662, Spring 2016

Increase density of sampling coverage signal
(high frequencies exist in coverage signal because of triangle edges)

 CMU 15-462/662, Spring 2016

Supersampling Example: stratified sampling using
four samples per pixel

 CMU 15-462/662, Spring 2016

Resampling

Coarsely sampled signalReconstructed signal
(lacks high frequencies)

Dense sampling of
reconstructed signal

Converting from one discrete sampled representation to another

Original signal
(high frequency edge)

 CMU 15-462/662, Spring 2016

Resample to display’s pixel resolution
(Because a screen displays one sample value per screen pixel...)

 CMU 15-462/662, Spring 2016

Resample to display’s pixel rate (box filter)

 CMU 15-462/662, Spring 2016

Resample to display’s pixel rate (box filter)

 CMU 15-462/662, Spring 2016

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%

 CMU 15-462/662, Spring 2016

Recall: the real coverage signal was this

 CMU 15-462/662, Spring 2016

Sampling coverage
▪ We want the light emitted from a display to be an accurate to

match the ground truth signal: coverage(x,y))

▪ Resampling a densely sampled signal (supersampled) integrates
coverage values over the entire pixel region. The integrated result
is sent to the display (and emitted by the pixel) so that the light
emitted by the pixel is similar to what would be emitted in that
screen region by an “infinite resolution display”

 CMU 15-462/662, Spring 2016

Sampling triangle coverage
(evaluating coverage(x,y) for a triangle)

 CMU 15-462/662, Spring 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi
 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Compute triangle edge equations from projected positions of vertices

 CMU 15-462/662, Spring 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2016

Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the
triangle if it is inside all three edges.

inside(sx, sy) =
E0 (sx, sy) < 0 &&
E1 (sx, sy) < 0 &&
E2 (sx, sy) < 0;

Note: actual implementation of
inside(sx,sy) involves ≤ checks based on
the triangle coverage edge rules (see
beginning of lecture)

Sample points inside triangle are highlighted red.

 CMU 15-462/662, Spring 2016

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Incremental triangle traversal

P0

P1

P2

Efficient incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai

dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

 CMU 15-462/662, Spring 2016

Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:
- Simplicity of wide parallel execution overcomes

cost of extra point-in-triangle tests (most
triangles cover many samples, especially when
super-sampling coverage)

- Can skip sample testing work: entire block not
in triangle (“early out”), entire block entirely
within triangle (“early in”)

- Additional advantaged related to accelerating
occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests

 CMU 15-462/662, Spring 2016

Summary
▪ We formulated computing triangle-screen coverage as a

sampling problem
- Triangle-screen coverage is a 2D signal
- Undersampling and the use of simple (non-ideal) reconstruction filters may yield aliasing
- In today’s example, we reduced aliasing via supersampling

▪ Image formation on a display
- When samples are 1-to-1 with display pixels, sample values are handed directly to display
- When “supersampling”, resample densely sampled signal down to display resolution

▪ Sampling screen coverage of a projected triangle:
- Performed via three point-inside-edge tests
- Real-world implementation challenge: balance conflicting goals of avoiding unnecessary

point-in-triangle tests and maintaining parallelism in algorithm implementation

 CMU 15-462/662, Spring 2016

Further Reading

▪ A Pixel is Not A Little Square, Alvy Ray Smith, 1995

▪ A Nice Video Illustration of Temporal Aliasing. by Valvano and
Yerraballi

▪ The Fourier Transform and It's Applications (Ch. 5) by B.
Osgood (this is an outstanding reference)

▪ Stanford CS348B's Notes on Sampling. by Pat Hanrahan (also
see Chapter 7.1 in the Physically Based Rendering book)

 CMU 15-462/662, Spring 2016

What you should know
1. How should we choose the correct color for a pixel? There is not an exact right answer.

However, you should be able to discuss some of the issues involved.
2. What is aliasing, and what artifacts does it produce in our images and our animations?
3. One form of aliasing is where high frequencies masquerade as low frequencies. Give an

example of this phenomenon.
4. Suppose we have a single red triangle displayed against a blue background. Does this scene

contain high frequencies?
5. What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to

required sampling rate?
6. The practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take

multiple samples per pixel and average to get pixel color. Try to use what we learned about
sampling theory to explain as precisely as you can why taking multiple samples per pixel can
reduce aliasing artifacts.

7. Be able to write an implicit representation of an edge given two points.
8. Be able to use the implicit edge representation to determine if a point is inside a triangle.

 CMU 15-462/662, Spring 2016

Practice Questions
1. Describe why sampling a signal more densely is one way to reduce aliasing. Is there a downside

of increasing the rate at which a signal is sampled?
2. Consider a quadrilateral with the following vertex positions. (You should assume the vertices

are connected in the order they are listed.)

P0=(1 , 1)
P1=(3 , 1.5)
P2=(2.5, 3.5)
P3=(1 , 3.75)

 Derive the implicit edge equation for the edge between P0 and P1.
 Assuming coverage sample points are uniformally distributed in the domain at half-integer
coordinates (0.5, 0.5), (1.5, 0.5), etc., how many sample points are covered by the given
quadrilateral? For simplicity, assume that a sample point on an edge is considered to be within
the quadrilateral.

